JP3793809B2 - Porous material comprising hollow fiber aluminum silicate and method for producing the same - Google Patents
Porous material comprising hollow fiber aluminum silicate and method for producing the same Download PDFInfo
- Publication number
- JP3793809B2 JP3793809B2 JP2002131121A JP2002131121A JP3793809B2 JP 3793809 B2 JP3793809 B2 JP 3793809B2 JP 2002131121 A JP2002131121 A JP 2002131121A JP 2002131121 A JP2002131121 A JP 2002131121A JP 3793809 B2 JP3793809 B2 JP 3793809B2
- Authority
- JP
- Japan
- Prior art keywords
- porous material
- aluminum silicate
- pores
- hollow fiber
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011148 porous material Substances 0.000 title claims description 65
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 title claims description 32
- 239000012510 hollow fiber Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- 238000009833 condensation Methods 0.000 claims description 15
- -1 aluminum compound Chemical class 0.000 claims description 13
- 238000010521 absorption reaction Methods 0.000 claims description 12
- 230000005494 condensation Effects 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 150000003377 silicon compounds Chemical class 0.000 claims description 8
- 238000004108 freeze drying Methods 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 239000011259 mixed solution Substances 0.000 claims description 4
- 238000000352 supercritical drying Methods 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 239000000499 gel Substances 0.000 description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- 235000012255 calcium oxide Nutrition 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000002274 desiccant Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000007791 dehumidification Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- 241000238876 Acari Species 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- ZRGUXTGDSGGHLR-UHFFFAOYSA-K aluminum;triperchlorate Chemical compound [Al+3].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O ZRGUXTGDSGGHLR-UHFFFAOYSA-K 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 125000005624 silicic acid group Chemical group 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高湿度条件下に優れた吸水能を有する無機系多孔質材料に関するものであり、更に詳しくは、相対湿度90%以上の高湿度下に優れた吸水挙動を示す特定のメソポア細孔を有する中空繊維状アルミニウムケイ酸塩からなる多孔質材料、その製法及びその吸水性を利用した多様な用途に関するものである。
【0002】
【従来の技術】
近年、我が国における住居に関わる建築物は、高品質化の進展に伴って高断熱化・高気密化が促進され、内部結露の発生及びそれに伴う壁面の濡れやシミの発生、カビやダニなどの繁殖などの問題が生じている。このような居住空間の変化に伴い、結露防止対策技術の重要性はますます高まっている。従来では、乾燥剤として生石灰(酸化カルシウム)やシリカゲルなどを利用したり、除湿器、エアコン等の空調設備を運転することにより、結露の発生を防止する方策が講じられてきた。
【0003】
ところが、上記の乾燥剤は、いずれも吸湿力が強く、除湿能力を制御し難いという問題があり、また、一度飽和点に達すると吸湿能力は大幅に低下するため、吸湿に使用できる有効期間が短いという欠点がある。更に、一度吸収した水分を分離し吸湿能を回復させることが容易ではないため、繰り返し再利用することは困難である。一方、除湿器、エアコン等の空調設備の運転による除湿は、エネルギーを消費する点及び機器の設置、管理などに諸経費を要する等の経済性の点から好ましいものではない。
【0004】
このような状況の下に、本発明者らは、先に、特定のメソポア細孔を有する中空繊維状アルミニウムケイ酸塩が、高湿度条件下において優れた吸水挙動を示すことを見出し、特許出願を行った(特開2002−52337)。ところが、この中空繊維状アルミニウムケイ酸塩は、その空隙に高湿度条件下の調湿に有効な大きさの細孔が形成されるものの、中空繊維状アルミニウムケイ酸塩同士の凝集により細孔が潰されて、吸水能が十分に発揮できなくなるという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、従来技術の上記した課題を解消するためになされたものである。すなわち、本発明の目的は、十分な吸水能を有し、高湿度条件下において調湿能の発現に有効利用される細孔を長期に亘り保持する耐久性に優れた新規な多孔質材料及びその簡易な製造方法を提供することにある。また、本発明の他の目的は、繰り返し使用可能な多孔質材料を用いた良好な調湿材、結露防止剤及び結露防止方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、従来の吸湿材における問題点を解消し、高吸水性を有する無機系多孔質材料の開発に向けて鋭意研究を重ねた結果、特定のメソポア細孔を有する中空繊維状アルミニウムケイ酸塩のゲル状物を乾燥する過程で、ある種の方法を用いて乾燥させると、得られる中空繊維状アルミニウムケイ酸塩の間に凝集を起こさないことから、細孔が壊されずに保持された状態で乾燥し、優れた吸水能を有する多孔質材料が得られることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明の多孔質材料は、細孔半径1.5nm未満のメソポア細孔を有し、かつ繊維間の空隙に直径6nm以上の細孔が保持されている中空繊維状アルミニウムシリケイトからなることを特徴とするものである。この中空繊維状アルミニウムシリケイトは、高湿度条件下に優れた吸水挙動を示すものである。
また、本発明の多孔質材料の製造方法は、ケイ素化合物とアルミニウム化合物の混合溶液からアルミニウムケイ酸塩を合成し、次いで弱酸性条件下に処理して得られる中空繊維状アルミニウムケイ酸塩のゲル状生成物を、凍結乾燥または超臨界乾燥させることによる,細孔半径1.5nm未満のメソポア細孔を有し、かつ繊維間の空隙に直径6nm以上の細孔が保持されている中空繊維状アルミニウムシリケイトからなるものである。
【0008】
本発明の調湿材は、上述の細孔半径1.5nm未満のメソポア細孔を有し、かつ繊維間の空隙に直径6nm以上の細孔が保持されている中空繊維状アルミニウムシリケイトからなる多孔質材料を含むことを特徴とする。
【0009】
本発明の結露防止剤は、上述の細孔半径1.5nm未満のメソポア細孔を有し、かつ繊維間の空隙に直径6nm以上の細孔が保持されている中空繊維状アルミニウムシリケイトからなる多孔質材料を含むことを特徴とする。
また、本発明の結露防止方法は、高湿度空間に、上述の細孔半径1.5nm未満のメソポア細孔を有し、かつ繊維間の空隙に直径6nm以上の細孔が保持されている中空繊維状アルミニウムシリケイトからなる多孔質材料を用いることを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の多孔質材料は、メソポア細孔を持つ中空繊維状アルミニウムシリケイトからなり、その繊維間の空隙に細孔が形成されているものであって、そのメソポアの細孔半径は、1.5nm未満、好ましくは0.3〜1.5nm未満の範囲のものであり、また、繊維間の空隙に形成されている細孔直径は、6nm以上、好ましくは6〜1000nmの範囲の大きさに相当するものである。この多孔質材料は、十分な吸水能を持っており、特に高湿度条件下の吸水に優れている中空繊維のチューブ状アルミニウムケイ酸塩からなっていて、相対湿度90%以上の高湿度条件下において自重の約200%以上の水蒸気を吸着し、かつ相対湿度90%程度以下の通常の湿度条件下において吸着した水蒸気の大部分を放出できるものであり、長期に亘って吸水や調湿に繰り返し利用できるから、 耐久性及び省エネルギー化などに優れたものである。
【0011】
本発明の多孔質材料の製法は、ケイ素化合物溶液とアルミニウム化合物溶液とを混合して合成されるアルミニウムケイ酸塩を、弱酸性条件下に処理して得られる中空繊維状アルミニウムケイ酸塩のゲル状生成物を、凍結乾燥または超臨界乾燥させることにより繊維間の空隙を保持した中空繊維状アルミニウムシリケイトを得るものである。この製法では、ゲル状物質間に存在する水を氷結させ、その氷を昇華させることにより乾燥させているから、中空繊維状アルミニウムケイ酸塩同士の凝集がなく、したがって、ゲル状態の中空繊維の空隙に形成されている直径6nm以上の大きさの細孔は潰されずに保持した状態で乾燥されるために、吸水能が十分に発揮される中空繊維状アルミニウムシリケイトを得ることを特徴としている。このことは、従来法では、弱アルカリ条件下にゲル化させた後、加熱乾燥させるために、中空繊維状アルミニウムケイ酸塩の空隙に形成されている細孔が、そのアルミニウムケイ酸塩同士の凝集により潰されて生成する従来の中空繊維状アルミニウムシリケイトとは形状が異なることを意味している。
【0012】
本発明の製造方法において、原料としてはケイ素化合物とアルミニウム化合物が用いられる、ケイ素源として使用される試剤は、モノケイ酸類であればよく、具体的には、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、無定形コロイド状二酸化ケイ素(エアロジルなど)などが好適なものとして挙げられる。また、そのケイ酸分子と結合させるアルミニウム源としては、アルミニウムイオンを有するものであればよく、具体的には、塩化アルミニウム、硝酸アルミニウム、過塩素酸アルミニウムなどのアルミニウム化合物などが好適なものとして挙げられる。これらのケイ素源及びアルミニウム源は、上記した化合物に限られるものではなく、それらと同効のものであれば同様に使用可能である。
【0013】
これらの原料を適切な水溶液に溶解させ、それぞれ所定の濃度のケイ素化合物溶液とアルミニウム化合物溶液を調整する。これらの溶液を任意の比率で混合しても前駆体の形成には特に問題とはならないが、好適にはケイ素/アルミニウム比は0.5〜1.0となるように混合する。溶液中のケイ素化合物濃度は1〜1000mmol/lであり、またアルミニウム化合物濃度は1〜2000mmol/lであるが、好適な濃度としては1〜500mmol/lのケイ素化合物溶液と1〜1000mmol/lのアルミニウム化合物溶液を混合することが好ましい。このアルミニウム化合物溶液にケイ素化合物溶液を混合した後、アルカリ性溶液を滴下し、pHが弱酸性から中性付近になるように調整して、前駆体を形成させる。この前駆体の生成過程における中和反応に必要なアルカリ性溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニアなどが用いられる。
【0014】
このようにして前駆体を形成させた後、遠心分離、濾過及び膜分離等の処理を行って、溶液中の共存イオンを取り除いた後、回収した前駆体を純水中に分散させる。その後、副生成物の生成を抑制するため、その分散液に酸を添加してpHが3〜6の弱酸性溶液、好適にはpHが3.5〜4.5の弱酸性溶液に調整する。また、その際に用いる酸としては、例えば、塩酸、硝酸、過塩素酸などが挙げられる。
【0015】
この弱酸性水溶液に分散させた前駆体を2日間加熱処理を行う。加熱の方法及び条件は、例えば、マントルヒーターやオートクレーブを用いて、水が蒸発しないように加熱を行えばよく、その温度範囲としては50〜120℃であるが、好適には100℃前後が望ましい。加熱後、生成物を含む水溶液を100℃で約1日間かけて水を蒸発させ、ゲル状生成物を回収する。
【0016】
また、加熱後、生成物を含む水溶液にアルカリ性水溶液を加えpHを8〜12程度のアルカリ性水溶液にすることにより、生成物をゲル状物質として凝集させてもよい。このときに用いられるアルカリとしては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウムなどが挙げられる。さらに、遠心分離により余分な水を取り除いて、ゲル状生成物を回収することもできる。
【0017】
次に、回収されたゲル生成物を凍結乾燥または超臨界乾燥により乾燥させることが必要である。この乾燥法を採用することにより、形成される中空繊維状アルミニウムケイ酸塩による特異な立体形状をそのまま保存することができる。その凍結乾燥としては、公知の凍結乾燥装置を用いて、例えば、−50〜−30℃、100〜500Paの条件で脱水させることができる。また、超臨界乾燥としては、例えば、通常の超臨界条件である10〜30℃、5〜8MPaにおいて脱水を行うことができる。
このようにして、細孔半径1.5nm未満のメソポア細孔を有する中空繊維状アルミニウムシリケイトからなり、その中空繊維の空隙に6nm以上の細孔が形成された特異な立体形状を有するチューブ状のアルミニウムシリケイトが得られる。
【0018】
上記方法により得られる中空繊維状アルミニウムシリケイトは、上述した細孔を持つ中空状の繊維が複雑に絡み合って形成されている無機系多孔質材料からなり、水の吸着能及び脱着能に優れた性能を示す上に、耐久性を有するものであって、例えば、相対湿度90%以上の高湿度条件下においては、自重の約200%以上の水蒸気を吸着でき、かつ低湿度条件下においては吸着した水蒸気の大部分を容易に放出できる特性を有するから、水分量の調整、水分の貯蔵及び空間内の結露防止などに何度も繰り返し使用可能であり、調湿材、水分貯蔵及び結露防止などに有利に利用できる。
【0019】
本発明の中空繊維状アルミニウムシリケイトからなる多孔質材料を調湿材として用いるには、湿度の調節を要する室内や容器内に、例えば、従来公知のタイル状の壁材或いは壁紙などとして配置することにより行う。また、その多孔質材料は、多量の水分を吸着し保持できるから、水分の凝縮により生起する結露を防止するには、結露の発生し易い住居の窓際や押入れなどに、従来より乾燥剤として用いられている生石灰(酸化カルシウム)やシリカゲルなどと同様に配置することにより行うことができる。
【0020】
【実施例】
以下、実施例により本発明をさらに具体的に説明するが、本発明はこの実施例により何ら限定されるものではない。
実施例1
SiO2濃度が100mmol/lになるように、純水で希釈したオルトケイ酸ナトリウム水溶液125mlを調整した。また、これとは別に、塩化アルミニウムを純水に溶解させ、Al2O3濃度が150mmol/lの水溶液125mlを調整した。
次に、この調整された塩化アルミニウム水溶液に、上記のオルトケイ酸水溶液を混合し、マグネティックスターラーで攪拌して混合溶液を調整した。この溶液のケイ素/アルミニウム比は0.67であった。
その後、この混合溶液に1N水酸化ナトリウム水溶液22mlを滴下して、pHを約6になるように調整した溶液を、遠心分離にかけて前駆体を回収した。さらに、この前駆体を純水で3回の遠心分離により洗浄した後、1000mlの純水中に分散させた。
【0021】
次に、その前駆体を分散させた溶液に5N塩酸1.2mlを添加してpHを約4になるように調整した溶液を、マントルヒーターにて100℃で2日間加熱した。加熱終了後、その溶液をビーカーに移し100℃の乾燥器内に約1日静置して水を蒸発させた。これによって得られたゲル状の生成物を、凍結乾燥装置(商品名:真空凍結乾燥機FD−5N型、東京理化機器機械社製)を用いて300Pa、−45℃において12時間の凍結乾燥を行うことにより、細孔半径0.8nm及び空隙直径6〜20nmの細孔を多量に有する中空繊維状アルミニウムシリケイトを得た。
【0022】
【発明の効果】
本発明によれば、 中空状の無機繊維が複雑に絡み合って形成された特異な立体構造を有する多孔質材料を容易に作製することができる。
この多孔質材料は、中空繊維状アルミニウムシリケイトからなり、水分の吸着及び脱着性能に優れた大きさの細孔を多量に有し、また、再現性に優れた耐久性をも有していることから、良好な結露防止能とその繰り返し利用が可能な調湿材料として有用であり、また、高湿度域において多量の水分を吸着・保持できるため、水分貯蔵材料としても利用可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inorganic porous material having excellent water absorption ability under high humidity conditions, and more specifically, specific mesopore pores exhibiting excellent water absorption behavior under high humidity of 90% or higher relative humidity. The present invention relates to a porous material made of a hollow fiber-like aluminum silicate having the above, its production method, and various uses utilizing its water absorption.
[0002]
[Prior art]
In recent years, buildings related to residences in Japan have been promoted to have high thermal insulation and high airtightness with the progress of quality improvement, such as the occurrence of internal dew condensation and associated wall wetting and stains, mold and mites. Problems such as breeding have occurred. With such changes in living space, the importance of anti-condensation countermeasure technology is increasing. Conventionally, measures have been taken to prevent the occurrence of condensation by using quick lime (calcium oxide) or silica gel as a desiccant, or by operating air conditioning equipment such as a dehumidifier or an air conditioner.
[0003]
However, each of the above desiccants has a problem that the moisture absorption capacity is strong and it is difficult to control the dehumidification capacity. There is a drawback of being short. Furthermore, since it is not easy to separate the moisture once absorbed and restore the hygroscopic ability, it is difficult to reuse it repeatedly. On the other hand, dehumidification by the operation of air conditioning equipment such as a dehumidifier and an air conditioner is not preferable from the viewpoint of economy, such as energy consumption and installation and management of equipment.
[0004]
Under such circumstances, the present inventors previously found that a hollow fibrous aluminum silicate having specific mesopore pores exhibits excellent water absorption behavior under high humidity conditions, and applied for a patent. was performed (JP 200 2 -52 337). However, although this hollow fiber aluminum silicate has pores having a size effective for conditioning under high humidity conditions in the voids, the pores are formed by aggregation of the hollow fiber aluminum silicates. There was a problem that the water-absorbing ability could not be fully exhibited due to being crushed.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems of the prior art. That is, an object of the present invention is to provide a novel porous material having a sufficient water-absorbing ability and having excellent durability for retaining pores that are effectively used for the expression of humidity control under high humidity conditions and for a long period of time. It is to provide a simple manufacturing method. Another object of the present invention is to provide a good humidity control material, a dew condensation preventing agent and a dew condensation prevention method using a porous material that can be used repeatedly.
[0006]
[Means for Solving the Problems]
The present inventors have solved the problems in conventional hygroscopic materials, and as a result of intensive research toward the development of inorganic porous materials having high water absorption, hollow fiber aluminum having specific mesopore pores During the process of drying the silicate gel, the pores remain unbroken because they do not agglomerate between the resulting hollow fiber aluminum silicates when dried using certain methods. As a result, it was found that a porous material having an excellent water absorption ability was obtained, and the present invention was completed.
[0007]
That is, the porous material of the present invention is made of a hollow fibrous aluminum silicate having mesopore pores having a pore radius of less than 1.5 nm and having pores having a diameter of 6 nm or more held in the gaps between the fibers. It is characterized by. This hollow fibrous aluminum silicate exhibits excellent water absorption behavior under high humidity conditions.
Further, the method for producing a porous material of the present invention is a hollow fiber aluminum silicate gel obtained by synthesizing aluminum silicate from a mixed solution of a silicon compound and an aluminum compound and then treating the mixture under mildly acidic conditions. The hollow product has mesopore pores having a pore radius of less than 1.5 nm, and pores having a diameter of 6 nm or more are retained in the voids between the fibers by freeze drying or supercritical drying of the product. It consists of aluminum silicate.
[0008]
The humidity control material of the present invention has a porous structure composed of hollow fibrous aluminum silicate having mesopore pores with a pore radius of less than 1.5 nm and having pores with a diameter of 6 nm or more held in the gaps between the fibers. It is characterized by containing a quality material.
[0009]
The anti-condensation agent of the present invention has a porous structure composed of hollow fibrous aluminum silicate having mesopore pores with a pore radius of less than 1.5 nm and having pores with a diameter of 6 nm or more held in the gaps between the fibers. It is characterized by containing a quality material.
Further, the dew condensation prevention method of the present invention is a hollow having mesopore pores having a pore radius of less than 1.5 nm as described above in a high-humidity space, and pores having a diameter of 6 nm or more being held in voids between fibers. It is characterized by using a porous material made of fibrous aluminum silicate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The porous material of the present invention is made of hollow fibrous aluminum silicate having mesopore pores, and pores are formed in voids between the fibers, and the pore radius of the mesopores is 1.5 nm. The pore diameter formed in the voids between the fibers corresponds to a size of 6 nm or more, preferably 6 to 1000 nm. To do. This porous material is made of a hollow fiber tubular aluminum silicate that has a sufficient water absorption capacity and is particularly excellent in water absorption under high humidity conditions. Can absorb most of the water vapor of about 200% of its own weight and release most of the water vapor adsorbed under normal humidity conditions of about 90% or less relative humidity. Repeatedly absorbs and adjusts humidity over a long period of time. Because it can be used, it has excellent durability and energy saving.
[0011]
The method for producing a porous material of the present invention is a hollow fiber aluminum silicate gel obtained by treating an aluminum silicate synthesized by mixing a silicon compound solution and an aluminum compound solution under mildly acidic conditions. The fibrous product is freeze-dried or supercritically dried to obtain a hollow fiber-like aluminum silicate having voids between the fibers. In this production method, water existing between the gel-like substances is frozen, and the ice is dried by sublimation. Therefore, there is no aggregation of the hollow fiber-like aluminum silicates, and therefore the hollow fibers in the gel state are not aggregated. Since the pores having a diameter of 6 nm or more formed in the voids are dried without being crushed, a hollow fiber-like aluminum silicate exhibiting sufficient water absorption capability is obtained. This is because, in the conventional method, the pores formed in the voids of the hollow fiber-like aluminum silicate are gelated under weak alkaline conditions and then dried between the aluminum silicates. This means that the shape is different from the conventional hollow fiber aluminum silicate which is crushed by aggregation.
[0012]
In the production method of the present invention, a silicon compound and an aluminum compound are used as raw materials. The reagent used as the silicon source may be monosilicates, specifically, sodium orthosilicate, sodium metasilicate, amorphous. Colloidal silicon dioxide (aerosil, etc.) is preferred. Also, the aluminum source to be bonded to the silicic acid molecule is not particularly limited as long as it has aluminum ions. Specifically, aluminum compounds such as aluminum chloride, aluminum nitrate, and aluminum perchlorate are preferable. It is done. These silicon sources and aluminum sources are not limited to the compounds described above, and can be used in the same manner as long as they have the same effect.
[0013]
These raw materials are dissolved in an appropriate aqueous solution to prepare a silicon compound solution and an aluminum compound solution having predetermined concentrations, respectively. Even if these solutions are mixed at an arbitrary ratio, there is no particular problem for the formation of the precursor, but it is preferably mixed so that the silicon / aluminum ratio is 0.5 to 1.0. The silicon compound concentration in the solution is 1 to 1000 mmol / l, and the aluminum compound concentration is 1 to 2000 mmol / l. Preferred concentrations are 1 to 500 mmol / l silicon compound solution and 1 to 1000 mmol / l. It is preferable to mix the aluminum compound solution. After mixing a silicon compound solution with this aluminum compound solution, an alkaline solution is dropped, and the pH is adjusted from weakly acidic to near neutral to form a precursor. Examples of the alkaline solution necessary for the neutralization reaction in the precursor generation process include sodium hydroxide, potassium hydroxide, and ammonia.
[0014]
After the precursor is formed in this manner, treatments such as centrifugation, filtration and membrane separation are performed to remove coexisting ions in the solution, and then the recovered precursor is dispersed in pure water. Then, in order to suppress the production | generation of a by-product, an acid is added to the dispersion liquid, and it adjusts to the weakly acidic solution whose pH is 3-6, Preferably the pH is 3.5-4.5. . Moreover, as an acid used in that case, hydrochloric acid, nitric acid, perchloric acid etc. are mentioned, for example.
[0015]
The precursor dispersed in the weakly acidic aqueous solution is subjected to heat treatment for 2 days. The heating method and conditions may be, for example, heating using a mantle heater or autoclave so that water does not evaporate. The temperature range is 50 to 120 ° C., preferably around 100 ° C. . After the heating, the aqueous solution containing the product is evaporated at 100 ° C. for about 1 day, and the gel product is recovered.
[0016]
Moreover, you may aggregate a product as a gel-like substance by adding alkaline aqueous solution to the aqueous solution containing a product after heating, and making pH into about 8-12 alkaline aqueous solution. Examples of the alkali used at this time include ammonia, sodium hydroxide, potassium hydroxide, and the like. Further, the gel-like product can be recovered by removing excess water by centrifugation.
[0017]
Next, it is necessary to dry the recovered gel product by freeze drying or supercritical drying. By adopting this drying method, it is possible to preserve the unique three-dimensional shape of the formed hollow fiber aluminum silicate as it is. As the lyophilization, dehydration can be performed using a known lyophilization apparatus under the conditions of −50 to −30 ° C. and 100 to 500 Pa, for example. Moreover, as supercritical drying, dehydration can be performed, for example, at normal supercritical conditions of 10 to 30 ° C. and 5 to 8 MPa.
In this way, the tube-shaped aluminum silicate having a mesopore pore having a pore radius of less than 1.5 nm and having a unique three-dimensional shape in which pores of 6 nm or more are formed in the voids of the hollow fiber. Aluminum silicate is obtained.
[0018]
The hollow fiber-like aluminum silicate obtained by the above method is composed of an inorganic porous material formed by intricately intertwining the hollow fibers having the pores described above, and has excellent performance in water adsorption and desorption. In addition, it has durability, for example, it can adsorb water vapor of about 200% or more of its own weight under high humidity conditions with a relative humidity of 90% or more, and adsorbs under low humidity conditions. Since it has the property that it can easily release most of the water vapor, it can be used repeatedly to adjust the amount of water, store water and prevent condensation in the space, etc., for humidity conditioning, moisture storage and prevention of condensation It can be used advantageously.
[0019]
In order to use the porous material made of the hollow fiber-like aluminum silicate of the present invention as a humidity control material, it is arranged, for example, as a conventionally known tile-shaped wall material or wallpaper in a room or container that requires humidity adjustment. To do. In addition, since the porous material can adsorb and retain a large amount of moisture, it is conventionally used as a desiccant in the windows and closets of houses where condensation is likely to occur in order to prevent condensation caused by condensation of moisture. It can be performed by arranging in the same manner as quicklime (calcium oxide) and silica gel.
[0020]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
Example 1
125 ml of sodium orthosilicate aqueous solution diluted with pure water was adjusted so that the SiO 2 concentration was 100 mmol / l. Separately, aluminum chloride was dissolved in pure water to prepare 125 ml of an aqueous solution having an Al 2 O 3 concentration of 150 mmol / l.
Next, the orthosilicate aqueous solution was mixed with the adjusted aluminum chloride aqueous solution and stirred with a magnetic stirrer to prepare a mixed solution. The silicon / aluminum ratio of this solution was 0.67.
Thereafter, 22 ml of a 1N sodium hydroxide aqueous solution was dropped into this mixed solution, and the solution adjusted to have a pH of about 6 was centrifuged to recover the precursor. Furthermore, this precursor was washed with pure water by centrifugation three times, and then dispersed in 1000 ml of pure water.
[0021]
Next, a solution prepared by adding 1.2 ml of 5N hydrochloric acid to the solution in which the precursor was dispersed and adjusting the pH to about 4 was heated at 100 ° C. for 2 days with a mantle heater. After the heating, the solution was transferred to a beaker and left in a dryer at 100 ° C. for about 1 day to evaporate water. The gel product thus obtained was freeze-dried at 300 Pa and −45 ° C. for 12 hours using a freeze-drying apparatus (trade name: vacuum freeze-dryer FD-5N type, manufactured by Tokyo Rika Kikai Co., Ltd.). By performing, a hollow fiber-like aluminum silicate having a large amount of pores having a pore radius of 0.8 nm and a void diameter of 6 to 20 nm was obtained.
[0022]
【The invention's effect】
According to the present invention, it is possible to easily produce a porous material having a unique three-dimensional structure formed by intricately intertwining hollow inorganic fibers.
This porous material is made of hollow fibrous aluminum silicate, has a large number of pores with a size excellent in moisture adsorption and desorption performance, and also has durability with excellent reproducibility. Therefore, it is useful as a humidity control material capable of preventing dew condensation and using it repeatedly, and can absorb and retain a large amount of water in a high humidity range, so that it can also be used as a moisture storage material.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002131121A JP3793809B2 (en) | 2002-05-07 | 2002-05-07 | Porous material comprising hollow fiber aluminum silicate and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002131121A JP3793809B2 (en) | 2002-05-07 | 2002-05-07 | Porous material comprising hollow fiber aluminum silicate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003320216A JP2003320216A (en) | 2003-11-11 |
JP3793809B2 true JP3793809B2 (en) | 2006-07-05 |
Family
ID=29543883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002131121A Expired - Lifetime JP3793809B2 (en) | 2002-05-07 | 2002-05-07 | Porous material comprising hollow fiber aluminum silicate and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3793809B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4941963B2 (en) * | 2006-06-09 | 2012-05-30 | 独立行政法人産業技術総合研究所 | Tubular aluminum silicate, gel material comprising the same, and method for preparing the same |
WO2008081606A1 (en) * | 2006-12-27 | 2008-07-10 | National Institute Of Advanced Industrial Science And Technology | Amorphous aluminum silicate having excellent adsorption characteristics in high-humidity range and process for producing the same |
JP5435272B2 (en) * | 2009-11-24 | 2014-03-05 | 株式会社豊田中央研究所 | Method for producing spherical silica-based mesoporous material |
EP2684847B1 (en) * | 2011-03-11 | 2017-02-01 | Hitachi Chemical Company, Ltd. | Aluminum silicate, metal ion adsorbent, and method for producing same |
KR102053323B1 (en) | 2015-07-31 | 2019-12-06 | 주식회사 엘지화학 | Laundry machine having moisture absorption material |
-
2002
- 2002-05-07 JP JP2002131121A patent/JP3793809B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003320216A (en) | 2003-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08299745A (en) | Moisture exchange adsorbent | |
CN102131734A (en) | Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the amorphous aluminum silicate | |
JP2006240956A (en) | Amorphous aluminum silicate, adsorbent having amorphous aluminum silicate, dehumidifying rotor and air conditioner | |
JP6761999B2 (en) | A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule. | |
JP3793809B2 (en) | Porous material comprising hollow fiber aluminum silicate and method for producing the same | |
JP4936394B2 (en) | Amorphous aluminum silicate having excellent adsorption characteristics in high humidity region and method for producing the same | |
JP5392121B2 (en) | Method for producing hygroscopic agent | |
CN105170079A (en) | Method for preparing dehumidizer | |
JP5140278B2 (en) | Desiccant material and air dehumidification method using the same | |
JP3089395B2 (en) | Porous material with autonomous humidity control function | |
JP2011255331A (en) | High performance water vapor adsorbent having alminosilicate compound material as base material | |
CN101962192A (en) | High-adsorbability porous silicon dioxide absorbing agent and preparation method and application thereof | |
JP2004059330A (en) | Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same | |
JP3398761B2 (en) | Humidity control material showing excellent water absorption behavior under high humidity conditions | |
JP3869136B2 (en) | Manufacturing method of humidity control material | |
KR20190093154A (en) | Plate-shape titanosilicate molecular sieve, method of preparing the same, and carbon dioxide absorbent including the same | |
JP5495054B2 (en) | Method for producing aluminum silicate composite | |
JP3871174B2 (en) | Method for producing humidity conditioning material having antibacterial function | |
JP3785455B2 (en) | Heat exchange material for heat pump | |
JP3554752B2 (en) | Reusable humidity control material and method for producing the same | |
JP3837464B2 (en) | Anti-condensation material consisting of hollow spherical silicate clusters with autonomous humidity control function | |
JP3360111B2 (en) | Moisture absorbing and releasing material with low hysteresis and durable water vapor | |
CN103933928A (en) | Dehumidification adsorbent and preparation method thereof | |
JP3629530B2 (en) | Heat exchange material with hollow spherical structure particles with microscopic water vapor permeable pores | |
JP4631022B2 (en) | Novel aluminum silicate and its synthesis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20030825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060314 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3793809 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |