[go: up one dir, main page]

JP6761999B2 - A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule. - Google Patents

A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule. Download PDF

Info

Publication number
JP6761999B2
JP6761999B2 JP2015102913A JP2015102913A JP6761999B2 JP 6761999 B2 JP6761999 B2 JP 6761999B2 JP 2015102913 A JP2015102913 A JP 2015102913A JP 2015102913 A JP2015102913 A JP 2015102913A JP 6761999 B2 JP6761999 B2 JP 6761999B2
Authority
JP
Japan
Prior art keywords
water vapor
adsorbent
aluminum silicate
amorphous aluminum
hygroscopic salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015102913A
Other languages
Japanese (ja)
Other versions
JP2016215126A (en
JP2016215126A5 (en
Inventor
和也 森本
和也 森本
和子 万福
和子 万福
亜衣 星野谷
亜衣 星野谷
貴幸 佐脇
貴幸 佐脇
鈴木 正哉
正哉 鈴木
松田 聡
聡 松田
正行 川村
正行 川村
匠 小室
匠 小室
英夫 新井
英夫 新井
政徳 中川
政徳 中川
喜一郎 大塚
喜一郎 大塚
昇 陶
昇 陶
正幸 谷野
正幸 谷野
理亮 川上
理亮 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2015102913A priority Critical patent/JP6761999B2/en
Publication of JP2016215126A publication Critical patent/JP2016215126A/en
Publication of JP2016215126A5 publication Critical patent/JP2016215126A5/ja
Application granted granted Critical
Publication of JP6761999B2 publication Critical patent/JP6761999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、次世代の産業を支える重要な基盤技術として実用化が強く期待されているナノテクノロジーの技術分野において、その特異な形状に起因する微細構造により吸着能等に優れた特性を示し、革新的な機能性材料としての応用が期待されている物質に関するものであり、特に、非晶質アルミニウムケイ酸塩からマクロ細孔を有する造粒体を作製し、吸湿性の塩を担持させた水蒸気吸着材に関するものである。 The present invention exhibits excellent adsorption ability and the like due to its unique shape in the technical field of nanotechnology, which is strongly expected to be put into practical use as an important basic technology supporting the next-generation industry. It relates to a substance that is expected to be applied as an innovative functional material, and in particular, a granulated body having macropores was prepared from amorphous aluminum silicate and supported on a hygroscopic salt. It relates to a water vapor adsorbent.

ナノサイズの細孔を有する多孔質無機材料は、その特異な微細構造に基づいて、各種物質を吸着することができる特性を有することから、様々な用途に利用されている。また、多孔質無機材料は優れた水蒸気吸着性能を有することから、ヒートポンプ熱交換材、結露防止剤、自律的調湿材料などの応用が期待されている。
特に、デシカント空調では外気から導入される空気中の湿分を取り除くことが目的であるため、夏場の高湿度の空気からでも効率的に湿分を取り除けることが必要とされているばかりでなく、様々な空気の状態においても空気中の湿分を取り除く必要があるため、どの湿度領域においても水蒸気を吸着できる物質が求められている。
Porous inorganic materials having nano-sized pores have a property of being able to adsorb various substances based on their unique fine structure, and are therefore used in various applications. Further, since the porous inorganic material has excellent water vapor adsorption performance, it is expected to be applied to a heat pump heat exchange material, a dew condensation inhibitor, an autonomous humidity control material, and the like.
In particular, since the purpose of desiccant air conditioning is to remove the moisture in the air introduced from the outside air, it is not only necessary to efficiently remove the moisture from the high humidity air in the summer, but also. Since it is necessary to remove moisture in the air even in various air conditions, a substance capable of adsorbing water vapor in any humidity region is required.

その一方でデシカント空調においては、吸着した水蒸気を脱離させるために加熱した空気を送り込み再生を行うが、この送り込む再生空気の温度が高いと、空気を暖めるのに必要なエネルギーが余計にかかってしまう。これまでは再生空気の温度として80℃以上を必要としていたが、未利用熱源の利用等を考慮すると、60℃程度さらには40℃程度の低温の空気にて再生が可能な素材が求められている。 On the other hand, in desiccant air conditioning, heated air is sent to regenerate the adsorbed water vapor, but if the temperature of the regenerated air sent is high, extra energy is required to warm the air. It ends up. Until now, the temperature of the regenerated air had been required to be 80 ° C or higher, but considering the use of unused heat sources, a material that can be regenerated with low-temperature air of about 60 ° C or even 40 ° C is required. There is.

上記背景の中、デシカント空調システムとしての性能向上のため、特に低温再生が可能な高性能水蒸気吸着剤の開発が行われた。そのような中で、非晶質アルミニウムケイ酸塩からなる物質(特許文献1参照)、或いは、非晶質アルミニウムケイ酸塩と低結晶性層状粘土鉱物との複合体からなる物質(特許文献2参照)が開発され、従来の無機材料では達し得なかった、吸着時の温度25℃相対湿度60%と脱離時の温度60℃相対湿度10%での吸脱着量が約30wt%の値を有し、かつ水蒸気吸着等温線において、相対湿度と水蒸気吸着量とが直線的な関係を有する無機材料が開発された。 Against the above background, in order to improve the performance of the desiccant air conditioning system, a high-performance water vapor adsorbent capable of low-temperature regeneration was developed. Under such circumstances, a substance composed of amorphous aluminum silicate (see Patent Document 1) or a substance composed of a composite of amorphous aluminum silicate and low crystalline layered clay mineral (Patent Document 2). (See) was developed, and the amount of adsorption and desorption at a temperature of 25 ° C and a relative humidity of 60% at the time of adsorption and a temperature of 60 ° C and a relative humidity of 10% at the time of desorption, which could not be achieved with conventional inorganic materials, was about 30 wt%. An inorganic material has been developed that has a linear relationship between relative humidity and the amount of water vapor adsorbed on the isotherm of water vapor adsorption.

一方、水分吸着量の向上を目的として、シリカゲル、メソポーラスシリカ、ゼオライト、天然鉱物等の多孔質水分吸着剤に、塩化リチウム、塩化マグネシウム、塩化カルシウム等の吸湿性塩を多孔質水分吸着剤に担持させる技術が提案されている(特許文献3〜6参照)。しかしながら、担持させた吸湿性塩により水分吸着剤の構造が破壊されたり、低温(40℃〜80℃未満)で再生ができないという問題があった。 On the other hand, for the purpose of improving the amount of water adsorbed, a porous water adsorbent such as silica gel, mesoporous silica, zeolite, or natural mineral is supported, and a hygroscopic salt such as lithium chloride, magnesium chloride, or calcium chloride is supported on the porous water adsorbent. Techniques have been proposed (see Patent Documents 3 to 6). However, there are problems that the structure of the water adsorbent is destroyed by the carried hygroscopic salt and that it cannot be regenerated at a low temperature (40 ° C. to less than 80 ° C.).

すなわち、引用文献3には、特定の細孔容積、比表面積、構造を有する非晶質・高純度の調湿剤用シリカゲルに調湿補助剤としてのアルカリ金属塩(吸湿性塩)を含有させる技術が開示されている。しかしながら、本発明者らの研究によると、細孔径の小さいシリカゲルは、以下のような種々の問題を抱えていることが分かった。すなわち、(1)細孔径が1〜3nmで、比表面積が900m/gを超えるシリカゲルでは、一度吸着した水分が放出されにくく、再生温度が80℃以上と高温であり、吸湿性塩を含有させても、再生温度を低くすることができない;(2)細孔径が5〜7nmで、比表面積が700m/g以上のシリカゲルは、再生温度が低く、高湿雰囲気での水分吸着量は優れているものの、中低湿雰囲気では水分吸着量が小さい;(3)吸湿性塩を含有させても、デシカント空調機で利用するのに必要なレベルまで水分吸着量が増大しない;(4)さらに、シリカゲルには、構造劣化の問題があり、シリカゲルを単独で用いた場合でも、除湿用フィルター材から脱落したり、除湿性能が低下するほか、吸湿性塩を含有させると、シリカゲルの構造劣化がより進行する。 That is, in Cited Document 3, an amorphous and high-purity silica gel for a humidity control agent having a specific pore volume, specific surface area, and structure contains an alkali metal salt (hygroscopic salt) as a humidity control auxiliary agent. The technology is disclosed. However, according to the research by the present inventors, it has been found that silica gel having a small pore diameter has various problems as follows. That is, (1) silica gel having a pore diameter of 1 to 3 nm and a specific surface area of more than 900 m 2 / g does not easily release the once adsorbed moisture, has a high regeneration temperature of 80 ° C. or higher, and contains a hygroscopic salt. Even if it is allowed to do so, the regeneration temperature cannot be lowered; (2) Silica gel having a pore diameter of 5 to 7 nm and a specific surface area of 700 m 2 / g or more has a low regeneration temperature and a high moisture adsorption amount in a high humidity atmosphere. Although it is excellent, the amount of water adsorbed is small in a medium-low humidity atmosphere; (3) Even if it contains a hygroscopic salt, the amount of water adsorbed does not increase to the level required for use in a silica gel air conditioner; (4) Further , Silica gel has a problem of structural deterioration, and even when silica gel is used alone, it may fall off from the dehumidifying filter material, the dehumidifying performance may deteriorate, and if a hygroscopic salt is contained, the structural deterioration of silica gel may occur. More progress.

また、特許文献4には、特定の細孔直径を有する細孔の内部に降圧剤(吸湿性塩)を添着させたメソ多孔体よりなる蒸気吸放出材料が開示されている。メソ多孔体はシャープな細孔径分布を有するメソ孔を有し、水分は表面張力によって自発的にメソ孔内に吸収されるので、水分吸着量が大きい。しかし、本発明者らの研究によると、メソ多孔体のメソ孔の細孔径は1〜10nmであり、中低湿雰囲気での水分吸着量は大きいが、高湿雰囲気での水分吸着量は小さいという問題があった。また、このメソ多孔体に吸湿性塩を添着させると、メソ多孔体の構造が破壊され、水分吸着量がさらに小さくなるという大きな問題もあった。 Further, Patent Document 4 discloses a vapor absorption / release material made of a mesoporous material in which an antihypertensive agent (hygroscopic salt) is impregnated inside pores having a specific pore diameter. The mesoporous material has mesopores with a sharp pore size distribution, and water is spontaneously absorbed into the mesopores by surface tension, so that the amount of water adsorbed is large. However, according to the research by the present inventors, the pore diameter of the mesopores of the mesoporous material is 1 to 10 nm, and the amount of water adsorbed in a medium-low humidity atmosphere is large, but the amount of water adsorption in a high-humidity atmosphere is small. There was a problem. Further, when a hygroscopic salt is impregnated in this mesoporous material, there is a big problem that the structure of the mesoporous material is destroyed and the amount of water adsorbed is further reduced.

また、特許文献5には、多孔性無機微粒子をポリテトラフルオロエチレンで結着した坦持部材に坦持されている潮解性無機化合物が開示されている。多孔性無機微粒子としては、シリカゲルやゼオライト等の微粒子が挙げられるが、本発明者らの研究によると、ゼオライトは、細孔分布がシャープであり、細孔径が平均で約1nmと非常に小さいため、中低湿雰囲気での水分吸着量は大きいものの、高湿雰囲気での水分吸着量は小さいという問題があった。また、細孔径が小さいために、水分が脱着しにくいという問題があり、再生温度が100℃以上と高い。このゼオライトにアルカリ金属塩等の吸湿性塩を担持させても、水分吸着量が増大せず、また、細孔内の吸湿性塩が水分の脱着を阻害するという問題もあった。 Further, Patent Document 5 discloses a deliquescent inorganic compound carried by a carrying member in which porous inorganic fine particles are bound with polytetrafluoroethylene. Examples of the porous inorganic fine particles include fine particles such as silica gel and zeolite. According to the research by the present inventors, zeolite has a sharp pore distribution and a very small pore diameter of about 1 nm on average. Although the amount of water adsorbed in a medium-low humidity atmosphere is large, there is a problem that the amount of water adsorbed in a high-humidity atmosphere is small. Further, since the pore diameter is small, there is a problem that water is difficult to be desorbed, and the regeneration temperature is as high as 100 ° C. or higher. Even if a hygroscopic salt such as an alkali metal salt is supported on this zeolite, there is a problem that the amount of water adsorbed does not increase and the hygroscopic salt in the pores inhibits the desorption of water.

特許文献6には、天然鉱物であるクリストバライトに塩化カルシウム、塩化リチウムの吸湿性塩を担持させた吸湿剤が開示されている。しかし、本発明者らの研究によると、クリストバライトも、吸着した水分を脱着させるための再生温度が高く、また、吸湿性塩によってクリストバライトの構造が破壊されるという問題があった。 Patent Document 6 discloses a hygroscopic agent in which cristobalite, which is a natural mineral, is supported by hygroscopic salts of calcium chloride and lithium chloride. However, according to the research by the present inventors, cristobalite also has a problem that the regeneration temperature for desorbing the adsorbed water is high, and the structure of cristobalite is destroyed by the hygroscopic salt.

その中で、特許文献1に記載の非晶質アルミニウムケイ酸塩においては、吸湿性の塩を担持させても構造劣化を生じないことから、不燃性の吸放湿性シートが開発されており、この不燃性の吸放湿性シートをハニカム構造体にすることにより吸放湿性構造体の作製法が開発された(特許文献7参照)。 Among them, in the amorphous aluminum silicate described in Patent Document 1, a nonflammable moisture absorbing / releasing sheet has been developed because structural deterioration does not occur even if a hygroscopic salt is supported. A method for producing a moisture absorbing / releasing structure has been developed by forming this nonflammable moisture absorbing / releasing sheet into a honeycomb structure (see Patent Document 7).

また、特許文献2に記載の非晶質アルミニウムケイ酸塩と結晶性層状粘土鉱物との複合体においては、該複合体に吸湿性の塩を担持させ、吸着性能を向上させた粉体が開発された(特許文献8参照)。 Further, in the composite of the amorphous aluminum silicate and the crystalline layered clay mineral described in Patent Document 2, a powder having a hygroscopic salt supported on the composite and improved adsorption performance has been developed. (See Patent Document 8).

特開2008−179533号公報JP-A-2008-179533 国際公開第2009/084632号International Publication No. 2009/084632 特開2003−201113号公報Japanese Unexamined Patent Publication No. 2003-201113 特開平11−114410号公報Japanese Unexamined Patent Publication No. 11-114410 特公平7−49091号公報Special Fair 7-49091 Gazette 特開昭60−241930号公報Japanese Unexamined Patent Publication No. 60-241930 特開2010−240554号公報JP-A-2010-240554 特開2011−255331号公報Japanese Unexamined Patent Publication No. 2011-255331

デシカント空調システムにおいて、吸着材を除湿塔に詰めて風を流す場合、吸着材が粉体のままでは風が流れずに止まってしまうか或いは風の抵抗が大きくなるため、吸着材を造粒体にして抵抗を小さくする方法がある。
そこで、本発明者らが検討した結果、非晶質アルミニウムケイ酸塩に吸湿性の塩を担持させて得られた粉体、或いは非晶質アルミニウムケイ酸塩と結晶性層状粘土鉱物との複合体に吸湿性の塩を担持させて得られた粉体(上記特許文献8)を造粒すると、乾燥時あるいは水蒸気吸着時に膨張し崩壊してしまい、繰り返し吸脱着が可能な造粒体を作製することは不可能であることが判明した。
In a desiccant air conditioning system, when the adsorbent is packed in a dehumidifying tower and the wind flows, the adsorbent is granulated because the wind does not flow and stops or the wind resistance increases if the adsorbent remains in powder form. There is a way to reduce the resistance.
Therefore, as a result of studies by the present inventors, a powder obtained by supporting a hygroscopic salt on an amorphous aluminum silicate, or a composite of an amorphous aluminum silicate and a crystalline layered clay mineral. When a powder obtained by supporting a hygroscopic salt on a body (Patent Document 8 above) is granulated, it expands and collapses during drying or adsorption of water vapor, and a granulated body capable of repeated adsorption and desorption is produced. It turned out to be impossible to do.

本発明は、以上のような事情に鑑みてなされたものであって、中湿度領域において高性能な吸着性能を有するのみならず、40〜60℃の低温にて再生が可能な優れた吸着性能を有し、吸湿性塩を担持させても構造劣化を生じない造粒体及びその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and not only has high-performance adsorption performance in the medium humidity region, but also has excellent adsorption performance capable of being regenerated at a low temperature of 40 to 60 ° C. It is an object of the present invention to provide a granulated body which does not cause structural deterioration even if a hygroscopic salt is supported, and a method for producing the same.

本発明者らは、上記目的を達成すべく検討を重ねた結果、非晶質アルミニウムケイ酸塩からなる粉体を用いてマクロな細孔を有する造粒体を作製し、得られた造粒体に塩化カルシウム等の吸湿性の塩を担持させることによって上記課題が解決できることを見出した。 As a result of repeated studies to achieve the above object, the present inventors prepared a granulated material having macroscopic pores using a powder made of amorphous aluminum silicate, and obtained granulated material. It has been found that the above-mentioned problems can be solved by carrying a hygroscopic salt such as calcium chloride on the body.

すなわち、上記課題を解決するための本発明は、以下のとおりである。
(1)非晶質アルミニウムケイ酸塩のマクロ細孔を有する押出造粒体に、吸湿性の塩を担持させたことを特徴とする水蒸気吸着材。
(2)前記吸湿性の塩が、塩化マグネシウム及び/又は塩化カルシウムであることを特徴とする(1)に記載の水蒸気吸着材。
(3)非晶質アルミニウムケイ酸塩を用いて、押出造粒により、マクロ細孔を有する造粒体を製造した後、該造粒体に、吸湿性の塩を担持させることを特徴とする水蒸気吸着材の製造方法。
(4)前記吸湿性の塩が、塩化マグネシウム及び/又は塩化カルシウムであることを特徴とする(3)に記載の水蒸気吸着材の製造方法。
(5)水ガラスと硫酸アルミニウム水溶液をSi/Alモル比が0.8より大きく、1.2以下となるように混合し、これに酸またはアルカリを添加してpH6〜9に調整した後、加熱して、前記非晶質アルミニウムケイ酸塩を製造することを特徴とする(3)又は(4)に記載の水蒸気吸着材の製造方法。
(6)デシカント空調用吸着材であることを特徴とする(1)又は(2)に記載の水蒸気吸着材。
(7)(1)又は(2)に記載の水蒸気吸着材を用いることを特徴とするデシカント空調システム。
(8)蓄熱用吸着材であることを特徴とする(1)又は(2)に記載の水蒸気吸着材。
(9)吸着材として(1)又は(2)に記載の水蒸気吸着材を用いることを特徴とする蓄熱システム。
That is, the present invention for solving the above problems is as follows.
(1) amorphous aluminum silicate, the extrusion granulation having macropores, water vapor adsorbent, characterized in that by supporting a hygroscopic salt.
(2) The water vapor adsorbent according to (1), wherein the hygroscopic salt is magnesium chloride and / or calcium chloride.
(3) It is characterized in that a granulated body having macropores is produced by extrusion granulation using an amorphous aluminum silicate, and then the granulated body is supported with a hygroscopic salt. A method for producing a water vapor adsorbent.
(4) The method for producing a water vapor adsorbent according to (3), wherein the hygroscopic salt is magnesium chloride and / or calcium chloride.
(5) Water glass and an aqueous solution of aluminum sulfate are mixed so that the Si / Al molar ratio is larger than 0.8 and 1.2 or less, and an acid or alkali is added thereto to adjust the pH to 6 to 9. The method for producing a water vapor adsorbent according to (3) or (4), which comprises heating to produce the amorphous aluminum silicate.
(6) The water vapor adsorbent according to (1) or (2), which is a desiccant air-conditioning adsorbent.
(7) A desiccant air-conditioning system using the water vapor adsorbent according to (1) or (2).
(8) The water vapor adsorbent according to (1) or (2), which is a heat storage adsorbent.
(9) A heat storage system characterized in that the water vapor adsorbent according to (1) or (2) is used as the adsorbent.

本発明により得られる、非晶質アルミニウムケイ酸塩の、マクロな細孔を有する造粒体に、塩化カルシウム溶液を含浸させた水蒸気吸着材は、40℃の再生で25℃相対湿度60%における水蒸気吸着量が30wt%程度、60℃の再生で25℃相対湿度60%における水蒸気吸着量が40wt%程度、100℃の再生で25℃相対湿度60%における水蒸気吸着量が50wt%程度の優れた水蒸気吸着性能を有し、かつ吸湿性塩類を担持させても構造劣化が生じない安定な構造を有しているため、水蒸気吸着剤特にデシカント空調用吸着剤として格別の効果が奏される。 The water vapor adsorbent obtained by impregnating a granulated body of amorphous aluminum silicate having macropores with a calcium chloride solution obtained by the present invention is regenerated at 40 ° C. at 25 ° C. and a relative humidity of 60%. Excellent water vapor adsorption amount of about 30 wt%, water vapor adsorption amount of about 40 wt% at 25 ° C relative humidity 60% at 60 ° C regeneration, and water vapor adsorption amount of about 50 wt% at 25 ° C relative humidity 60% at 100 ° C regeneration. Since it has a water vapor adsorption performance and a stable structure in which structural deterioration does not occur even if hygroscopic salts are carried, a special effect is exhibited as a water vapor adsorbent, particularly as an adsorbent for desiccant air conditioning.

実施例1における塩化カルシウムを含浸させた造粒体の水蒸気吸着結果を示す図。The figure which shows the steam adsorption result of the granule impregnated with calcium chloride in Example 1. FIG. 実施例1における塩化マグネシウムを含浸させた造粒体の水蒸気吸着結果を示す図。The figure which shows the water vapor adsorption result of the granule impregnated with magnesium chloride in Example 1. FIG. 実施例1により得られた造粒体の薄片試料の光学顕微鏡による観察写真。An observation photograph of a flaky sample of the granulated body obtained in Example 1 with an optical microscope. 実施例2における造粒体の水蒸気吸着結果を示す図。The figure which shows the steam adsorption result of the granulated body in Example 2. FIG. 含浸後の構造安定性評価における水蒸気吸着結果を示す図。The figure which shows the water vapor adsorption result in the structural stability evaluation after impregnation.

次に、本発明について更に詳細に説明する。
本発明において基材となる非晶質物質は、構成元素をケイ素(Si)、アルミニウム(Al)、酸素(O)及び水素(H)とし、多数のSi−O−Al結合で組み立てられた水和ケイ酸アルミニウムである。
この非晶質アルミニウムケイ酸塩は、無機ケイ素化合物溶液と無機アルミニウム化合物溶液をSi/Al比が0.8〜1.2となるように混合し、酸又はアルカリを添加してpHを〜9に調整し、その後脱塩処理したものを95℃程度にて加熱することにより人工的に得ることが可能である。
Next, the present invention will be described in more detail.
The amorphous substance as the base material in the present invention contains silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as constituent elements, and water assembled by a large number of Si—O—Al bonds. Japanese aluminum silicate.
This amorphous aluminum silicate is prepared by mixing an inorganic silicon compound solution and an inorganic aluminum compound solution so that the Si / Al ratio is 0.8 to 1.2, and adding an acid or alkali to adjust the pH to 6 to 6 . It can be artificially obtained by adjusting the pH to 9 and then heating the desalted compound at about 95 ° C.

本発明では、非晶質アルミニウムケイ酸塩粉末に、有機バインダーの一つであるメチルセルロースと水を添加し混練した後、押出造粒によりマクロ細孔を有する造粒体を作製する。この造粒体に吸湿性塩の一つである塩化カルシウムを担持させることにより、40℃の再生で相対湿度60%において30.3wt%、60℃の再生で相対湿度60%において40.7wt%、100℃の再生で相対湿度60%において51.3wt%の優れた水蒸気吸着性能を有している物質を作成することが可能となった。
すなわち、非晶質アルミニウムケイ酸塩を用いてマクロ細孔を有する造粒体を作成し、吸湿性の塩を担持させることにより、従来では得られなかった、優れた水蒸気吸湿挙動を有する造粒体の提供が可能となったものである。
In the present invention, methyl cellulose, which is one of the organic binders, and water are added to the amorphous aluminum silicate powder and kneaded, and then extruded granulation is performed to prepare a granulated material having macropores. By supporting calcium chloride, which is one of the hygroscopic salts, in this granulated product, 30.3 wt% at 60% relative humidity at 40 ° C. and 40.7 wt% at 60% relative humidity at 60 ° C. It has become possible to produce a substance having an excellent water vapor adsorption performance of 51.3 wt% at a relative humidity of 60% by regeneration at 100 ° C.
That is, by creating a granulated body having macropores using amorphous aluminum silicate and supporting a hygroscopic salt, granulated granules having excellent water vapor moisture absorption behavior which could not be obtained in the past. It is possible to provide the body.

本発明において、加熱前の前駆物質の調製には、原料として、通常、無機ケイ素化合物と無機アルミニウム化合物が用いられる。
ケイ素源として使用される試剤は、ケイ酸水溶液であればよく、具体的には、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、水ガラス、無定形コロイド状二酸化ケイ素(エアロジル等)、等が好適なものとして挙げられる。
また、上記ケイ酸塩分子と結合させるアルミニウム源は、アルミニウムイオンであればよく、具体的には、例えば、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウムおよびアルミン酸ナトリウム等のアルミニウム化合物が挙げられる。これらのケイ素源及びアルミニウム源は、上記の化合物に限定されるものではなく、それらと同効のものであれば同様に使用することができる。
In the present invention, an inorganic silicon compound and an inorganic aluminum compound are usually used as raw materials for the preparation of the precursor before heating.
The reagent used as a silicon source may be an aqueous solution of silicic acid, and specifically, sodium orthosilate, sodium metasilicate, water glass, amorphous colloidal silicon dioxide (aerosil, etc.), etc. are suitable. Can be mentioned.
The aluminum source to be bonded to the silicate molecule may be aluminum ions, and specific examples thereof include aluminum compounds such as aluminum chloride, aluminum nitrate, aluminum sulfate and sodium aluminate. These silicon sources and aluminum sources are not limited to the above compounds, and can be used in the same manner as long as they have the same effect.

これらの原料を適切な水溶液に溶解させ、所定の濃度の溶液を調製する。本目的を満たす優れた吸着挙動を示す非晶質アルミニウムケイ酸を合成するには、ケイ素/アルミニウムモル比は0.8〜1.2となるように混合することが必要である。溶液中のケイ素化合物の濃度は1〜2000mmol/Lで、アルミニウム化合物の溶液の濃度は1〜2000mmol/Lであるが、好適な濃度としては1〜700mmol/Lのケイ素化合物溶液と、1〜1000mmol/Lのアルミニウム化合物溶液を混合することが好ましい。これらの比率及び濃度に基づいて、アルミニウム化合物溶液にケイ素化合物溶液を混合し、酸又はアルカリを添加してpHを6〜9に調整して、前駆体を形成した後、この前駆体物質を含む懸濁液を、95℃程度で所定時間加熱後、洗浄および乾燥を行うことによって、目的の基材となる非晶質アルミニウムケイ酸塩が得られる。 These raw materials are dissolved in an appropriate aqueous solution to prepare a solution having a predetermined concentration. In order to synthesize an amorphous aluminum silicate showing excellent adsorption behavior satisfying this purpose, it is necessary to mix the silicon / aluminum molar ratio so as to be 0.8 to 1.2. The concentration of the silicon compound in the solution is 1 to 2000 mmol / L, and the concentration of the solution of the aluminum compound is 1 to 2000 mmol / L. Suitable concentrations are 1 to 700 mmol / L of the silicon compound solution and 1 to 1000 mmol. It is preferable to mix a / L aluminum compound solution. Based on these ratios and concentrations, the silicon compound solution is mixed with the aluminum compound solution, acid or alkali is added to adjust the pH to 6-9 to form a precursor, and then this precursor substance is contained. The suspension is heated at about 95 ° C. for a predetermined time, washed and dried to obtain an amorphous aluminum silicate as a target base material.

得られた非晶質アルミニウムケイ酸塩に、バインダーと水を加えマクロ細孔、すなわち、直径50nm以上の細孔を有する造粒体を作製する。目的を満たす造粒体を作製するには、バインダーの添加量を非晶質アルミニウムケイ酸塩の重量に対し、0〜50wt%添加する必要があるが、好ましくは0〜5wt%であり、全く添加しなくても可能である。添加する水の量は非晶質アルミニウムケイ酸塩に対し、50〜200wt%添加する必要があるが、好ましくは100〜150wt%である。
この非晶質アルミニウムケイ酸塩に添加するバインダーの種類は、特に限定されないが、好ましくは有機系バインダーのメチルセルロースが用いられる。またこの非晶質アルミニウムケイ酸塩から造粒体を作製する方法は、特に限定されないが、好ましくは押出造粒が用いられる。
A binder and water are added to the obtained amorphous aluminum silicate to prepare a granule having macropores, that is, pores having a diameter of 50 nm or more. In order to produce a granulated product satisfying the purpose, it is necessary to add 0 to 50 wt% of the binder to the weight of the amorphous aluminum silicate, preferably 0 to 5 wt%, which is completely It is possible without addition. The amount of water to be added needs to be 50 to 200 wt% with respect to the amorphous aluminum silicate, but is preferably 100 to 150 wt%.
The type of binder added to the amorphous aluminum silicate is not particularly limited, but methyl cellulose, which is an organic binder, is preferably used. The method for producing a granulated product from this amorphous aluminum silicate is not particularly limited, but extrusion granulation is preferably used.

本発明におけるバインダーとしては、無機バインダー、有機バインダーのどちらも使用が可能である。
無機バインダーとしては、無機ゾルや粘土系バインダーが挙げられる。無機ゾルとしては、例えばアルミナゾル、シリカゾル、チタニアゾル、セピオライトゾル、アタパルジャイトゾル、水ガラスなどが挙げられる。粘土系バインダーとしては、白土、カオリナイト、モンモリロナイト、蛙目粘土、セピオライト、アタパルジャイトなどが挙げられる。
有機バインダーとしては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルメロース(カルボキシシメチルセルロース)等のセルロース系バインダー、アルギン酸ナトリウム等のアルギン酸系バインダー、澱粉、小麦粉、ブリティシュガム、キサンタンガム、デキストリン、デキストラン、プルラン等の多糖類系バインダー、ゼラチン等の動物系バインダー、ポリビニルアルコール、ポリビニルピロリドン等のビニル系バインダー、ポリアクリル酸、ポリアクリル酸エステル等のアクリル系バインダー、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエチレングリコール等のその他樹脂系バインダーなどが挙げられる。
これらのバインダーの一種または二種以上を混合して用いてもよい。
As the binder in the present invention, both an inorganic binder and an organic binder can be used.
Examples of the inorganic binder include an inorganic sol and a clay-based binder. Examples of the inorganic sol include alumina sol, silica sol, titania sol, sepiolite sol, attapulsite sol, water glass and the like. Examples of the clay-based binder include white clay, kaolinite, montmorillonite, frog-eye clay, sepiolite, and attapulsite.
Examples of the organic binder include cellulose-based binders such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, and carmellose (carboxysimyl cellulose), alginic acid-based binders such as sodium alginate, starch, wheat flour, British gum, xanthan gum, and dextrin. , Polysaccharide binders such as dextran and pullulan, animal binders such as gelatin, vinyl binders such as polyvinyl alcohol and polyvinylpyrrolidone, acrylic binders such as polyacrylic acid and polyacrylic acid ester, polyethylene oxide, polypropylene oxide, polyethylene. Other resin-based binders such as glycol can be mentioned.
One or a mixture of two or more of these binders may be used.

また本発明における造粒体の製造方法としては、圧縮造粒、押出造粒、解砕造粒、転動造粒、流動層造粒、攪拌造粒、噴霧造粒などを挙げることができるが、中でも、圧縮造粒、押出造粒、転動造粒が好ましい。 Further, as a method for producing a granulated material in the present invention, compression granulation, extrusion granulation, crushing granulation, rolling granulation, fluidized bed granulation, stirring granulation, spray granulation and the like can be mentioned. Of these, compression granulation, extrusion granulation, and rolling granulation are preferable.

上記のように非晶質アルミニウムケイ酸塩の粉体に、有機バインダーの一つであるメチルセルロースと水を添加し混練した後、押出造粒によりマクロ細孔を有する造粒体を作製し、この造粒体に吸湿性塩の一つである塩化カルシウムを担持させることにより、目的の水蒸気吸着特性において優れた吸着剤を得ることができる。
上記の造粒体に吸湿性塩を担持させる方法は、特に限定されないが、好ましくは、非晶質アルミニウムケイ酸塩からなる造粒体に、吸湿性塩の溶液を含漬させる方法が用いられる。
具体的には、非晶質アルミニウムケイ酸塩からなる造粒体を、塩化カルシウムなどの吸湿性塩の溶液にひたし攪拌の後、100℃にて1日乾燥させることによって、目的の水蒸気吸着特性において優れた吸着剤を得ることができる。
As described above, methyl cellulose, which is one of the organic binders, and water are added to the amorphous aluminum silicate powder and kneaded, and then extruded granulation is performed to prepare a granulated material having macropores. By supporting calcium chloride, which is one of the hygroscopic salts, in the granulated material, an adsorbent having excellent water vapor adsorption characteristics can be obtained.
The method for supporting the hygroscopic salt on the above-mentioned granulated body is not particularly limited, but a method of impregnating the granulated body made of amorphous aluminum silicate with a solution of the hygroscopic salt is preferably used. ..
Specifically, a granulated product made of amorphous aluminum silicate is immersed in a solution of a hygroscopic salt such as calcium chloride, stirred, and then dried at 100 ° C. for 1 day to achieve the desired water vapor adsorption characteristics. An excellent adsorbent can be obtained in.

本発明における吸湿性の塩としては、塩化リチウム、塩化ナトリウム、塩化マグネシウムなどのハロゲン化金属塩、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸亜鉛などの金属硫酸塩、酢酸カリウムなどの金属酢酸塩、塩酸ジメチルアミンなどのアミン塩、オルトリン酸などのリン酸化合物、塩酸グアニジン、リン酸グアニジン、スルファミン酸グアニジンなどのグアニジン塩、水酸化ありウム、水酸化ナトリウム、水酸化マグネシウムなどの金属水酸化物などを挙げることができるが、中でも、ハロゲン化金属塩、グアニジン塩が好ましい。 The hygroscopic salts in the present invention include metal halide salts such as lithium chloride, sodium chloride and magnesium chloride, metal sulfates such as sodium sulfate, calcium sulfate, magnesium sulfate and zinc sulfate, and metal acetates such as potassium acetate. Amin salts such as dimethylamine hydrochloride, phosphoric acid compounds such as orthophosphoric acid, guanidine salts such as guanidine hydrochloride, guanidine phosphate, guanidine sulfamate, metal hydroxides such as ammonium hydroxide, sodium hydroxide, magnesium hydroxide, etc. Of these, metal halide salts and guanidine salts are preferable.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.

(実施例1)
本発明における水蒸気吸着材の基材となる非晶質アルミニウムケイ酸塩を、以下のように合成した。
Si源としてSi濃度が0.41mol/Lの水ガラス水溶液1000mLと、Al源としてAl濃度が0.45mol/Lの硫酸アルミニウム水溶液1000mLを用いた。硫酸アルミニウム水溶液に水ガラス水溶液を加え、約15分間攪拌を行った。このときのSi/Al比は0.91である。攪拌後、5Nの水酸化ナトリウム水溶液を添加し、pHが7程度になるまで添加した。水酸化ナトリウム水溶液の滴下量は18mLであった。このようにして生成させた懸濁液を1時間攪拌し前駆体懸濁液を作成した。
調整した1Lの前駆体懸濁液を、2000mL用の耐熱容器に入れ、98℃で18時間加熱を行った。反応後、遠心分離にて3回洗浄し、60℃で1日乾燥させた。
(Example 1)
The amorphous aluminum silicate used as the base material of the water vapor adsorbent in the present invention was synthesized as follows.
As a Si source, 1000 mL of a water glass aqueous solution having a Si concentration of 0.41 mol / L and 1000 mL of an aluminum sulfate aqueous solution having an Al concentration of 0.45 mol / L were used as an Al source. A water glass aqueous solution was added to the aluminum sulfate aqueous solution, and the mixture was stirred for about 15 minutes. The Si / Al ratio at this time is 0.91. After stirring, a 5N aqueous sodium hydroxide solution was added, and the mixture was added until the pH reached about 7. The dropping amount of the sodium hydroxide aqueous solution was 18 mL. The suspension thus produced was stirred for 1 hour to prepare a precursor suspension.
The prepared 1 L precursor suspension was placed in a heat-resistant container for 2000 mL and heated at 98 ° C. for 18 hours. After the reaction, the cells were washed by centrifugation three times and dried at 60 ° C. for 1 day.

得られた生成物については、粉末X線回折測定を行った。生成物の粉末X線回折図形は、2θ=26、40°付近にブロードなピークが見られ、非晶質アルミニウムケイ酸塩が生成していることが確認された。 The obtained product was subjected to powder X-ray diffraction measurement. The powder X-ray diffraction pattern of the product showed a broad peak near 2θ = 26 and 40 °, confirming that amorphous aluminum silicate was formed.

上記によって得られた非晶質アルミニウムケイ酸塩20gに、メチルセルロースを0.8g、水を30g添加し、手で混練した後、クレイガンにて押出造粒を行った。生成されたひも状の成型体を切断し、60℃で1日乾燥することにより、目的の造粒体を得た。このときに得られた造粒体の嵩密度は0.38g/mLであった。 To 20 g of the amorphous aluminum silicate obtained as described above, 0.8 g of methyl cellulose and 30 g of water were added, kneaded by hand, and then extruded and granulated with a clay gun. The resulting string-shaped molded body was cut and dried at 60 ° C. for 1 day to obtain the desired granulated body. The bulk density of the granules obtained at this time was 0.38 g / mL.

上記によって得られた造粒体を5mol/Lの塩化カルシウム水溶液あるいは5mol/Lの塩化マグネシウム水溶液に1時間浸漬させた後、純水に5秒浸して造粒体表面を洗浄し、その後100℃で1日乾燥させることにより、目的の水蒸気吸着性能に優れた造粒体を得た。 The granulated product obtained as described above is immersed in a 5 mol / L calcium chloride aqueous solution or a 5 mol / L magnesium chloride aqueous solution for 1 hour, and then immersed in pure water for 5 seconds to wash the surface of the granulated product, and then at 100 ° C. By drying in 1 day, a granulated product having excellent water vapor adsorption performance was obtained.

(水蒸気吸着評価)
実施例1にて得られた非晶質アルミニウムケイ酸塩に塩化カルシウムあるいは塩化マグネシウムを含浸させた造粒体について、40〜100℃の各温度にて乾燥機で18時間乾燥後、温度25℃湿度60%の条件にて恒温恒湿槽で6時間水蒸気を吸着させ、それぞれの重量変化から、水蒸気吸着量を求め、水蒸気吸着性能評価を行った。このとき塩を担持させていない造粒体、シリカゲル、ゼオライト13Xを比較試料とした。
5mol/L塩化カルシウム水溶液に浸漬させた水蒸気吸着率の結果を図1に、5mol/L塩化カルシウム水溶液に浸漬させた結果を図2に示す。また比較試料と合わせた結果を表1に示す。
(Evaluation of water vapor adsorption)
The granulated product obtained by impregnating the amorphous aluminum silicate obtained in Example 1 with calcium chloride or magnesium chloride was dried in a dryer at each temperature of 40 to 100 ° C. for 18 hours, and then the temperature was 25 ° C. Water vapor was adsorbed in a constant temperature and humidity chamber under the condition of humidity of 60% for 6 hours, and the amount of water vapor adsorbed was determined from each weight change, and the water vapor adsorption performance was evaluated. At this time, a granule, silica gel, and zeolite 13X on which no salt was supported were used as comparative samples.
The result of the water vapor adsorption rate immersed in the 5 mol / L calcium chloride aqueous solution is shown in FIG. 1, and the result of the immersion in the 5 mol / L calcium chloride aqueous solution is shown in FIG. Table 1 shows the results combined with the comparative sample.

Figure 0006761999
Figure 0006761999

図1及び表1に示すように、5mol/L塩化カルシウム水溶液に浸漬させた造粒体の水蒸気吸着率は、40℃乾燥で30.3wt%、60℃乾燥で40.7wt%、100℃乾燥で51.3wt%であった。
また、図2及び表1に示すように、5mol/L塩化マグネシウム水溶液に浸漬させた造粒体の水蒸気吸着率は、40℃乾燥で26.9wt%、60℃乾燥で37.4wt%、100℃乾燥で48.3wt%であった。
As shown in FIGS. 1 and 1, the water vapor adsorption rate of the granulated product immersed in a 5 mol / L calcium chloride aqueous solution was 30.3 wt% when dried at 40 ° C., 40.7 wt% when dried at 60 ° C., and dried at 100 ° C. It was 51.3 wt%.
Further, as shown in FIGS. 2 and 1, the water vapor adsorption rate of the granules immersed in the 5 mol / L magnesium chloride aqueous solution was 26.9 wt% when dried at 40 ° C., 37.4 wt% when dried at 60 ° C., 100. It was 48.3 wt% when dried at ° C.

一方、表1に示すように、比較として用いた造粒体未処理品、シリカゲル、ゼオライト13Xの水蒸気吸着率は、造粒体未処理品は、40℃乾燥で14.3wt%、60℃乾燥で18.5wt%、100℃乾燥で22.1wt%であり、シリカゲルは40℃乾燥で14.8wt%、60℃乾燥で18.8wt%、100℃乾燥で22.5wt%、ゼオライト13Xは、40℃乾燥で2.6wt%、60℃乾燥で4.9wt%、100℃乾燥で11.1wt%であった。 On the other hand, as shown in Table 1, the steam adsorption rates of the untreated granulated product, silica gel, and zeolite 13X used for comparison were 14.3 wt% and dried at 60 ° C. for the untreated granulated product. 18.5 wt% and 22.1 wt% when dried at 100 ° C. Silica gel is 14.8 wt% when dried at 40 ° C., 18.8 wt% when dried at 60 ° C., 22.5 wt% when dried at 100 ° C., and 13X zeolite. It was 2.6 wt% when dried at 40 ° C., 4.9 wt% when dried at 60 ° C., and 11.1 wt% when dried at 100 ° C.

上記吸着評価より、実施例で得られた物質の水蒸気吸着性能は、非晶質アルミニウムケイ酸塩からなる造粒体のみでは得られることはできず、非晶質アルミニウムケイ酸塩からなる造粒体を塩化カルシウム水溶液に含浸させることによって初めて得られる性質であることが明らかとなった。 From the above adsorption evaluation, the water vapor adsorption performance of the substance obtained in the example cannot be obtained only by the granulated body made of amorphous aluminum silicate, and the granulated product made of amorphous aluminum silicate. It was clarified that it is the property obtained only by impregnating the body with an aqueous solution of calcium chloride.

(マクロ細孔観察)
実施例1の押出造粒により得られた造粒体において、薄片試料を光学顕微鏡にて観察した写真を図3に示す。図3に示されるように、サブミクロン〜マイクロメートルオーダーのマクロ細孔が存在することが確認された。
(Macro pore observation)
FIG. 3 shows a photograph of a flaky sample observed with an optical microscope in the granulated body obtained by extrusion granulation of Example 1. As shown in FIG. 3, it was confirmed that macropores on the order of submicrons to micrometers were present.

(実施例2)
実施例1と同じ非晶質アルミニウムケイ酸塩粉体を用いて、非晶質アルミニウムケイ酸塩5kgに、メチルセルロースを0.2kg、水を6.5kg添加し、機械による混練後、押出造粒機により押出造粒を行った。生成されたひも状の成型体を切断し、80℃で1日乾燥することにより、目的の造粒体を得た。このときに得られた造粒体の嵩密度は0.44g/mLであった。
(Example 2)
Using the same amorphous aluminum silicate powder as in Example 1, 0.2 kg of methyl cellulose and 6.5 kg of water were added to 5 kg of amorphous aluminum silicate, kneaded by a machine, and then extruded granulated. Extrusion granulation was performed by a machine. The resulting string-shaped molded body was cut and dried at 80 ° C. for 1 day to obtain the desired granulated body. The bulk density of the granules obtained at this time was 0.44 g / mL.

上記によって得られた造粒体を5mol/Lの塩化カルシウム水溶液に1時間浸漬させた後、純水に5秒浸して造粒体表面を洗浄し、その後、100℃で1日乾燥させることにより、目的の水蒸気吸着性能に優れた造粒体を得た。 The granules obtained as described above are immersed in a 5 mol / L calcium chloride aqueous solution for 1 hour, then immersed in pure water for 5 seconds to wash the surface of the granules, and then dried at 100 ° C. for 1 day. , A granulated material having excellent water vapor adsorption performance was obtained.

(水蒸気吸着評価)
実施例2にて得られた非晶質アルミニウムケイ酸塩に塩化カルシウムを含浸させた造粒体について、40〜100℃の各温度にて乾燥機で18時間乾燥後、温度25℃湿度60%の条件にて恒温恒湿槽で6時間水蒸気を吸着させ、それぞれの重量変化から、水蒸気吸着量を求め、水蒸気吸着性能評価を行った。
5mol/L塩化カルシウム水溶液に浸漬させた水蒸気吸着率の結果を図4に示す。
図4に示すように、5mol/L塩化カルシウム水溶液に浸漬させた造粒体の水蒸気吸着率は、40℃乾燥で29.4wt%、60℃乾燥で40.7wt%、100℃乾燥で50.6wt%であった。
(Evaluation of water vapor adsorption)
The granulated product obtained by impregnating the amorphous aluminum silicate obtained in Example 2 with calcium chloride was dried in a dryer at each temperature of 40 to 100 ° C. for 18 hours, and then the temperature was 25 ° C. and the humidity was 60%. Water vapor was adsorbed in a constant temperature and humidity chamber for 6 hours under the above conditions, and the amount of water vapor adsorbed was determined from each weight change, and the water vapor adsorption performance was evaluated.
The result of the water vapor adsorption rate immersed in a 5 mol / L calcium chloride aqueous solution is shown in FIG.
As shown in FIG. 4, the water vapor adsorption rate of the granules immersed in a 5 mol / L calcium chloride aqueous solution was 29.4 wt% when dried at 40 ° C., 40.7 wt% when dried at 60 ° C., and 50. It was 6 wt%.

上記吸着評価より、実施例で得られた物質の水蒸気吸着性能は、非晶質アルミニウムケイ酸塩からなる造粒体のみでは得られることはできず、非晶質アルミニウムケイ酸塩からなる造粒体を塩化カルシウム水溶液に含浸させることによって初めて得られる性質であることが明らかとなった。 From the above adsorption evaluation, the water vapor adsorption performance of the substance obtained in the example cannot be obtained only by the granulated body made of amorphous aluminum silicate, and the granulated product made of amorphous aluminum silicate. It was clarified that it is the property obtained only by impregnating the body with an aqueous solution of calcium chloride.

(含浸後の構造安定性評価)
実施例1にて作製した5mol/L塩化カルシウム水溶液に浸漬させた造粒体の構造安定性の評価を行うため、乾燥・吸着を120回繰り返す耐久性試験を行った。そのときの水蒸気吸着性能結果を図5に示す。
このように120回乾燥・吸着を繰り返しても、水蒸気の吸着性能は変化しないことから、塩化カルシウム水溶液に浸漬させた造粒体であっても構造劣化が生じないことが明らかとなった。
(Evaluation of structural stability after impregnation)
In order to evaluate the structural stability of the granulated product immersed in the 5 mol / L calcium chloride aqueous solution prepared in Example 1, a durability test was conducted in which drying and adsorption were repeated 120 times. The result of water vapor adsorption performance at that time is shown in FIG.
Since the adsorption performance of water vapor does not change even if the drying and adsorption are repeated 120 times in this way, it is clear that the structural deterioration does not occur even in the granulated body immersed in the calcium chloride aqueous solution.

(比較例)
実施例1および2にて用いた非晶質アルミニウムケイ酸塩粉体を、5mol/L塩化カルシウム水溶液に浸漬して乾燥させた紛体5kgに、メチルセルロースを0.2kg、水を2kg添加し、機械による混練後、押出造粒機により押出造粒を行った。生成されたひも状の成型体を切断し、80℃で1日乾燥したところ、成型体は崩壊し造粒体を作製することはできなかった。
(Comparison example)
To 5 kg of the powder obtained by immersing the amorphous aluminum silicate powder used in Examples 1 and 2 in a 5 mol / L calcium chloride aqueous solution and drying it, 0.2 kg of methyl cellulose and 2 kg of water were added to the machine. After kneading with the above, extrusion granulation was performed by an extrusion granulator. When the produced string-shaped molded body was cut and dried at 80 ° C. for 1 day, the molded body collapsed and a granulated body could not be produced.

本発明の、非晶質アルミニウムケイ酸塩のマクロ細孔を有する造粒体に吸湿性の塩を担持させた水蒸気吸着材は、中湿度領域において高性能な吸着性能を有するのみならず、40〜60℃の低温にて再生が可能な優れた吸着性を有する吸着材であり、蓄熱用、バッチ式デシカント空調用などの吸着材を提供するものとして有用である。 The water vapor adsorbent of the present invention in which a hygroscopic salt is supported on a granulated body having macropores of amorphous aluminum silicate not only has high-performance adsorption performance in a medium humidity region, but also 40. It is an adsorbent having excellent adsorptivity that can be regenerated at a low temperature of about 60 ° C., and is useful as an adsorbent for heat storage, batch-type desiccant air conditioning, and the like.

Claims (9)

非晶質アルミニウムケイ酸塩のマクロ細孔を有する押出造粒体に、吸湿性の塩を担持させたことを特徴とする水蒸気吸着材。 Amorphous aluminum silicate, the extrusion granulation having macropores, water vapor adsorbent, characterized in that by supporting a hygroscopic salt. 前記吸湿性の塩が、塩化マグネシウム及び/又は塩化カルシウムであることを特徴とする請求項1に記載の水蒸気吸着材。 The water vapor adsorbent according to claim 1, wherein the hygroscopic salt is magnesium chloride and / or calcium chloride. 非晶質アルミニウムケイ酸塩を用いて、押出造粒により、マクロ細孔を有する造粒体を製造した後、該造粒体に、吸湿性の塩を担持させることを特徴とする水蒸気吸着材の製造方法。 A water vapor adsorbent characterized by producing a granulated product having macropores by extrusion granulation using an amorphous aluminum silicate, and then supporting a hygroscopic salt on the granulated product. Manufacturing method. 前記吸湿性の塩が、塩化マグネシウム及び/又は塩化カルシウムであることを特徴とする請求項に記載の水蒸気吸着材の製造方法。 The method for producing a water vapor adsorbent according to claim 3 , wherein the hygroscopic salt is magnesium chloride and / or calcium chloride. ガラスと硫酸アルミニウム水溶液をSi/Alモル比が0.8より大きく、1.2以下となるように混合し、これに酸またはアルカリを添加してpH6〜に調整した後、加熱して、前記非晶質アルミニウムケイ酸塩を製造することを特徴とする請求項又はに記載の水蒸気吸着材の製造方法。 Water glass and an aqueous solution of aluminum sulfate are mixed so that the Si / Al molar ratio is larger than 0.8 and 1.2 or less, and acid or alkali is added to adjust the pH to 6 to 9 , and then the mixture is heated. The method for producing a water vapor adsorbent according to claim 3 or 4 , wherein the amorphous aluminum silicate is produced. デシカント空調用吸着材であることを特徴とする請求項1又は2に記載の水蒸気吸着材。The water vapor adsorbent according to claim 1 or 2, wherein the adsorbent is a desiccant air conditioner. 吸着材として請求項1又は2に記載の水蒸気吸着材を用いることを特徴とするデシカント空調システム。A desiccant air conditioning system characterized in that the water vapor adsorbent according to claim 1 or 2 is used as the adsorbent. 蓄熱用吸着材であることを特徴とする請求項1又は2に記載の水蒸気吸着材。The water vapor adsorbent according to claim 1 or 2, wherein the adsorbent is a heat storage adsorbent. 吸着材として請求項1又は2に記載の水蒸気吸着材を用いることを特徴とする蓄熱システム。A heat storage system characterized in that the water vapor adsorbent according to claim 1 or 2 is used as the adsorbent.
JP2015102913A 2015-05-20 2015-05-20 A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule. Active JP6761999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102913A JP6761999B2 (en) 2015-05-20 2015-05-20 A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102913A JP6761999B2 (en) 2015-05-20 2015-05-20 A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.

Publications (3)

Publication Number Publication Date
JP2016215126A JP2016215126A (en) 2016-12-22
JP2016215126A5 JP2016215126A5 (en) 2018-06-21
JP6761999B2 true JP6761999B2 (en) 2020-09-30

Family

ID=57579952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102913A Active JP6761999B2 (en) 2015-05-20 2015-05-20 A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.

Country Status (1)

Country Link
JP (1) JP6761999B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426213B2 (en) * 2016-01-14 2018-11-21 国立研究開発法人産業技術総合研究所 Amorphous aluminum silicate and method for producing the same
JP6894094B2 (en) * 2017-10-18 2021-06-23 国立研究開発法人産業技術総合研究所 Water vapor adsorbent and its manufacturing method
JP6736072B2 (en) * 2018-10-24 2020-08-05 国立研究開発法人産業技術総合研究所 Dehumidification system for gardening facilities
CN109336122B (en) * 2018-12-06 2023-02-28 中国矿业大学(北京) Preparation method of aluminum silicate
KR102027778B1 (en) * 2019-01-30 2019-10-02 장호경 Granular desiccant, a method for producing the same, and a method for recycling the same
CN111676406B (en) * 2020-06-05 2021-09-14 武汉科技大学 Phase-change heat storage ceramic and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443878B2 (en) * 1993-06-18 2003-09-08 東ソー株式会社 Amorphous aluminosilicate and its use
DE4424329A1 (en) * 1993-10-14 1995-04-20 Engelhard Process Chem Gmbh Adsorbents based on inorganic oxides modified with organic dyes
JP4649707B2 (en) * 2000-06-12 2011-03-16 黒崎白土工業株式会社 Method for producing metal compound-supported granular material
JP3785455B2 (en) * 2002-07-09 2006-06-14 独立行政法人産業技術総合研究所 Heat exchange material for heat pump
EP2322479A4 (en) * 2008-09-02 2013-07-03 Nat Inst Of Advanced Ind Scien ALUMINUM AMORPHOUS SILICATE MANUFACTURING METHOD, ALUMINUM AMORPHOUS SILICATE THUS OBTAINED, AND ADSORPTION AGENT USING THE SAME
JP2010240554A (en) * 2009-04-03 2010-10-28 Mitsubishi Paper Mills Ltd Hygroscopic sheet, hygroscopic structure and production method thereof
JP2011255331A (en) * 2010-06-10 2011-12-22 National Institute Of Advanced Industrial Science & Technology High performance water vapor adsorbent having alminosilicate compound material as base material

Also Published As

Publication number Publication date
JP2016215126A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6761999B2 (en) A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.
JP7150897B2 (en) Carbon dioxide adsorbent for indoor air quality control
JP4576616B2 (en) Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range
JP5212992B2 (en) Aluminum silicate complex and high performance adsorbent comprising the complex
US11612857B2 (en) Honeycomb matrix comprising macroporous desiccant, process and use thereof
JP2010520805A (en) Adsorbent with high speed and high pressure crush strength
JP2006240956A (en) Amorphous aluminum silicate, adsorbent having amorphous aluminum silicate, dehumidifying rotor and air conditioner
JP6894094B2 (en) Water vapor adsorbent and its manufacturing method
CN104492373A (en) Diatomite-based composite porous ceramic material for adsorbing volatile organic pollutant and preparation method thereof
Rajamani et al. Bundled-firewood like AlOOH-CaCl2 nanocomposite desiccant
JP2007167495A (en) Aldehyde-containing air purifying agent and its manufacturing method
JP6707743B2 (en) Method for manufacturing desiccant
JP2011255331A (en) High performance water vapor adsorbent having alminosilicate compound material as base material
JP4113943B2 (en) Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same
JP3540040B2 (en) Adsorbent manufacturing method
JP5841413B2 (en) Humidifier
JP5140278B2 (en) Desiccant material and air dehumidification method using the same
JP5495054B2 (en) Method for producing aluminum silicate composite
RU2525178C1 (en) Adsorbent for drying gases
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP2007223826A (en) Heat-resistant activated carbon and method of manufacturing the same
JP4538626B2 (en) Method for producing tubular aluminum silicate having fine pores
JP2008086965A (en) How to improve adsorption performance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190325

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200827

R150 Certificate of patent or registration of utility model

Ref document number: 6761999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250