KR0146039B1 - P-n-p diamond transistor - Google Patents
P-n-p diamond transistorInfo
- Publication number
- KR0146039B1 KR0146039B1 KR1019910700819A KR910700819A KR0146039B1 KR 0146039 B1 KR0146039 B1 KR 0146039B1 KR 1019910700819 A KR1019910700819 A KR 1019910700819A KR 910700819 A KR910700819 A KR 910700819A KR 0146039 B1 KR0146039 B1 KR 0146039B1
- Authority
- KR
- South Korea
- Prior art keywords
- transistor
- substrate
- type
- diamond
- nitrogen
- Prior art date
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 28
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000004065 semiconductor Substances 0.000 claims abstract description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 20
- 229910052796 boron Inorganic materials 0.000 claims abstract description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 239000011574 phosphorus Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 7
- 239000000370 acceptor Substances 0.000 claims description 4
- 239000002775 capsule Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/8303—Diamond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/60—Lateral BJTs
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
- Bipolar Transistors (AREA)
Abstract
이 발명은 P-N-P 다이아몬드 트랜지스터(10)와 그 제조방법을 제공한다. 트랜지스터(10)는 화학적증착법에 의해 설정된 n-형 반도체층(18)으로 절연영역(16)에 의해 분리된 2개의 p-형 반도체영역(14)을 갖는 다이이몬드 기판(12)을 포함한다. 바람직하게, p-형영역(14)은 붕소를 도핑하고 질소게터를 사용하여 질소불순물의 집중을 제어함으로써 얻어진다. n-형층(18)은 바람직하게 인을 함유한다.This invention provides the P-N-P diamond transistor 10 and its manufacturing method. The transistor 10 includes a diamond substrate 12 having two p-type semiconductor regions 14 separated by an insulating region 16 by an n-type semiconductor layer 18 set by chemical vapor deposition. Preferably, p-type region 14 is obtained by doping boron and controlling the concentration of nitrogen impurity using a nitrogen getter. The n-type layer 18 preferably contains phosphorus.
Description
이 발명은 P-N-P 다이아몬드 트랜지스터 및 그 제조방법에 관한 것이다.The present invention relates to a P-N-P diamond transistor and a method of manufacturing the same.
대부분 합성 다이아몬드는 질소와 같은 불순물을 함유하고 이와같은 불순물은 통상 온도 및 압력에서 처리되지 않는다는 것은 공지되어 있다. 반도체 다이아몬드 재료의 형성은 매우 높은 압력에서 붕소로 도핑함에 따라 얻어지게 된다. 그러나, 간단한 구조 및 매우 간단하게 제조되는 P-N-P 다이아몬드 트랜지스터를 형성하는 어떤 공지된 제안은 지금까지 없었다. 그래서, 이 발명은 상기 요구조건에 부합할수 있는 트랜지스터 및 그 제조방법을 제공하는 것이다.It is known that most synthetic diamonds contain impurities such as nitrogen and such impurities are usually not processed at temperature and pressure. Formation of the semiconductor diamond material is obtained by doping with boron at a very high pressure. However, there have been no known proposals for forming a P-N-P diamond transistor which has a simple structure and is manufactured very simply. Thus, the present invention provides a transistor capable of meeting the above requirements and a method of manufacturing the same.
이 발명의 제 1 양상에 따라서 다이아몬드 기판을 제공하는 단계와, 각기 반도체영역을 형성하도록 p-형 불순물로 기판의 2개의 분리영역을 도핑하는 단계와, P-N-P 트랜지스터 구조가 얻어지도록 반도체 다이아몬드의 n-형층을 제공하여 화학적 증착법 이용하는 단계를 포함하는 트랜지스터 제조방법을 제공하게 된다.Providing a diamond substrate according to the first aspect of the invention, doping two separate regions of the substrate with p-type impurities to form semiconductor regions, respectively, and n- of the semiconductor diamond so that a PNP transistor structure is obtained. Provided is a transistor manufacturing method comprising the step of using a chemical vapor deposition method.
이 발명의 제 2 양상에 따라서 2개의 p-형 반도체영역을 갖는 다이아몬드 기판과, P-N-P 구조가 얻어지도록 화학적 증착법에 의해 설정된 n-형 반도체층을 포함한 트랜지스터를 제공하게 된다.According to a second aspect of the present invention, a transistor including a diamond substrate having two p-type semiconductor regions and an n-type semiconductor layer set by chemical vapor deposition so as to obtain a P-N-P structure is provided.
바람직하게 p-형 영역은 붕소를 함유한다.Preferably the p-type region contains boron.
잇점에 있게 n-형층은 인을 함유한다.Advantageously, the n-type layer contains phosphorus.
바람직하게, 질소게터는 보상되지 않은 붕소수용기(acceptor)의 총수에 번갈아 영향을 끼치는 기판의 질소공여(donor) 함유량을 조절하도록 반작용 질량내에 도입하게 된다.Preferably, the nitrogen getter is introduced into the reaction mass to control the nitrogen donor content of the substrate which alternately affects the total number of uncompensated boron acceptors.
이 발명의 실시예는 이 발명에 따라서 제조된 트랜지스터를 거쳐서 단면을 다이어그램식으로 도시한 첨부도면과 관련하여 실예에 의하여 기재하게 될 것이다.Embodiments of this invention will be described by way of example with reference to the accompanying drawings, diagrammatically illustrating a cross section through a transistor made in accordance with the invention.
도면에 도시한 바와같이, 트랜지스터(10)는 절연영역(16)에 의해 분리된 2개의 p-형 반도체영역(14)을 갖는 다이아몬드 기판(12)을 포함한다. n-형 반도체층(18)는 P-N-P 구조를 형성하고 p-형영역(14)을 접촉하기 위하여 화학적 증착법에 의해 설정하게 된다. 각 전기접속부(20)는 p-형영역(14)과 n-형층(18)을 결합하게 된다. 그래서, P-N-P 다이아몬드 트랜지스터가 얻어지게 된다.As shown in the figure, the transistor 10 includes a diamond substrate 12 having two p-type semiconductor regions 14 separated by an insulating region 16. The n-type semiconductor layer 18 is formed by chemical vapor deposition to form a P-N-P structure and contact the p-type region 14. Each electrical connection 20 couples the p-type region 14 and the n-type layer 18. Thus, a P-N-P diamond transistor is obtained.
대부분 합성(인조) 다이아몬드는 다이아몬드 격자에 탄소를 대체하기 위한 분리된 질소원자의 형태인 불순물로써 질소를 함유한다. 각 질소원자는 밸런스(드리워진) 밴드와 전도밴드 사이의 밴드갭에서 공여에너지가 있으므로 다이아몬드 격자의 공유원자가 결합요구를 만족시키도록 하나이상의 전자를 갖는다. 공여레벨의 위치는 다이아몬드가 전기 절연체에 남으므로 정상온도에서 n-형 전기반도체가 상승하도록 전도밴드 아래의 에너지 때문에 너무 깊게 된다.Most synthetic (artificial) diamonds contain nitrogen as an impurity in the form of discrete nitrogen atoms to replace carbon in the diamond lattice. Each nitrogen atom has a donor energy in the bandgap between the balanced and conducted bands so that the covalent atoms of the diamond lattice have one or more electrons to satisfy the bond requirements. The location of the donation level is too deep due to the energy under the conduction band so that the diamond remains in the electrical insulator and the n-type electrical semiconductor rises at normal temperature.
일반적으로, 합성 다이아몬드(온도구배 기술에 의해 성장한 자기-핵 다이아몬드 그릿(grit) 및 보다 큰 씨이드-성장 다이아몬드)는 비교적 작은 (110) 및 (113)면에 의해 형성된 정팔면체 형태를 갖는다.Generally, synthetic diamonds (self-nucleated diamond grit and larger seed-grown diamonds grown by temperature gradient techniques) have an octahedral form formed by relatively small (110) and (113) planes.
격리된 대체질소의 집중은 성장부분의 다른형태와 다르고, (111)에 대해 가장높은 (즉, 팔면체)부분, (100)에 대해 보다 낮은 (즉, 정육면체)부분, (113)에 대해 여전히 낮은 (즉, 사다리꼴)부분, (110)에 대해 가장낮은 (즉, 12면체)부분이다. 합성 다이아몬드에서, 질소의 총량은 합성캡슐 안으로 질소게터의 병합에 의해 조절하게 된다.The concentration of sequestered alternative nitrogen differs from other forms of growth, with the highest (ie octahedral) portion for (111), the lower (ie cube) portion for (100), and still lower for (113). (Ie trapezoidal) portion, the lowest (ie dodecahedral) portion for (110). In synthetic diamonds, the total amount of nitrogen is controlled by incorporation of nitrogen getters into the synthetic capsule.
총 질소집중은 충분히 낮게 제공된다. 그리고, 붕소의 작은양으로 합성캡슐을 도핑하는 것이 p-형 반도체 다이아몬드를 제조하는 것이다.Total nitrogen concentration is provided low enough. Then, doping the synthetic capsule with a small amount of boron is to produce a p-type semiconductor diamond.
붕소는 (111)면, (110)면 및 (100)과 (113)면에 의해 보다 작은 양을 선택적으로 취하게 된다. 그러나, 붕소 수용기 결점은 질소공여 결점에 의해 통상 보상하게 된다. p-형 반도체는 붕소집중이 질소집중보다 크게될 때 보상되지 않은 붕소결점을 초래한다. 합성캡슐에서 추가적인 붕소 및 질소게터의 양을 조절함으로써 절연재료의 부분사이의 p-형 반도체 재료의 부분으로 다이아몬드를 성장시킬수 있다.Boron is selectively taken in smaller amounts by the (111) plane, the (110) plane, and the (100) and (113) planes. However, boron receptor defects are usually compensated by nitrogen donor defects. P-type semiconductors lead to uncompensated boron defects when the boron concentration becomes greater than the nitrogen concentration. By controlling the amount of additional boron and nitrogen getters in the synthetic capsule, diamond can be grown to the portion of the p-type semiconductor material between portions of the insulating material.
질소결함은 이상적인 온도의 n-형 반도체에서는 생기지 않지만 다이아몬드안으로 인원자의 병합은 n-형 반도체로 유도된다.Nitrogen defects do not occur in n-type semiconductors at ideal temperatures, but the incorporation of personnel into the diamond leads to n-type semiconductors.
실제로는 만족스럽지 못한 인으로 고압합성 캡슐을 도핑함에 따라 n-형 반도체 다이아몬드를 제조하도록 한다. 이 발명은 n-형 반도체 다이아몬드가 화학적증착법(CVD)의 기술을 사용하여 얻어지게 된다. 인은 화학적증착법 도포재로써 사용된다.Doping high pressure synthetic capsules with phosphors that are not actually satisfactory leads to the production of n-type semiconductor diamonds. This invention allows an n-type semiconductor diamond to be obtained using the technique of chemical vapor deposition (CVD). Phosphorus is used as a chemical vapor deposition coating.
이 발명의 일실시예는 첨부된 도면에 따라서 기재하였다. 그러나, 상기 설명을 참조할 때 기술분야에서 능훅한 자라면 다양한 변경이 이 발명의 범주내에 들어간다는 것을 인지할 것이다.One embodiment of this invention has been described in accordance with the accompanying drawings. However, referring to the above description, those skilled in the art will recognize that various changes fall within the scope of this invention.
Claims (10)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB89021356 | 1989-02-01 | ||
GB8902135.6 | 1989-02-01 | ||
GB898902135A GB8902135D0 (en) | 1989-02-01 | 1989-02-01 | P-n-p diamond transistor |
LI8912354.1 | 1989-05-30 | ||
GB89123541 | 1989-05-30 | ||
GB8912354A GB2228141B (en) | 1989-02-01 | 1989-05-30 | P-n-p diamond transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR920702015A KR920702015A (en) | 1992-08-12 |
KR0146039B1 true KR0146039B1 (en) | 1998-11-02 |
Family
ID=10650914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019910700819A KR0146039B1 (en) | 1989-02-01 | 1990-02-01 | P-n-p diamond transistor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR0146039B1 (en) |
GB (2) | GB8902135D0 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173761A (en) * | 1991-01-28 | 1992-12-22 | Kobe Steel Usa Inc., Electronic Materials Center | Semiconducting polycrystalline diamond electronic devices employing an insulating diamond layer |
JP3051912B2 (en) * | 1996-09-03 | 2000-06-12 | 科学技術庁無機材質研究所長 | Synthesis method of phosphorus-doped diamond |
-
1989
- 1989-02-01 GB GB898902135A patent/GB8902135D0/en active Pending
- 1989-05-30 GB GB8912354A patent/GB2228141B/en not_active Expired - Fee Related
-
1990
- 1990-02-01 KR KR1019910700819A patent/KR0146039B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
GB8902135D0 (en) | 1989-03-22 |
KR920702015A (en) | 1992-08-12 |
GB8912354D0 (en) | 1989-07-12 |
GB2228141A (en) | 1990-08-15 |
GB2228141B (en) | 1992-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100940863B1 (en) | Strained transistor integration for cmos | |
US3764409A (en) | Method for fabricating a semiconductor component for a semiconductor circuit | |
JPH0697666B2 (en) | Semiconductor device structure using multi-level epitaxial structure and manufacturing method thereof | |
JPH04230037A (en) | Vapor application method of n-type silicon layer, npn transistor | |
US4507157A (en) | Simultaneously doped light-emitting diode formed by liquid phase epitaxy | |
US3475661A (en) | Semiconductor device including polycrystalline areas among monocrystalline areas | |
US3935040A (en) | Process for forming monolithic semiconductor display | |
EP0334682B1 (en) | Method for forming P-type germanium layer on a gallium arsenide body | |
KR100763425B1 (en) | Process for producing highly doped semiconductor wafers, and dislocation-free, highly doped semiconductor wafers | |
US3669769A (en) | Method for minimizing autodoping in epitaxial deposition | |
US3178798A (en) | Vapor deposition process wherein the vapor contains both donor and acceptor impurities | |
JPH03173423A (en) | Manufacturing method of PN junction element | |
KR0146039B1 (en) | P-n-p diamond transistor | |
US3765960A (en) | Method for minimizing autodoping in epitaxial deposition | |
US3984857A (en) | Heteroepitaxial displays | |
AU630663B2 (en) | P-n-p diamond transistor | |
US3874920A (en) | Boron silicide method for making thermally oxidized boron doped poly-crystalline silicon having minimum resistivity | |
US3065116A (en) | Vapor deposition of heavily doped semiconductor material | |
KR950004579A (en) | Improved semiconductor material and method of controlling the switching speed of devices formed thereon | |
JP2663965B2 (en) | Method for manufacturing semiconductor device made of compound semiconductor | |
US3190773A (en) | Vapor deposition process to form a retrograde impurity distribution p-n junction formation wherein the vapor contains both donor and acceptor impurities | |
US3418182A (en) | High concentration doping of silicon using ammonium phosphate | |
JPH0334648B2 (en) | ||
JPS6019155B2 (en) | Manufacturing method of semiconductor issuing device | |
JPS6046020A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19910801 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19950125 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 19910801 Comment text: Patent Application |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19980331 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19980507 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19980507 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20010502 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20020502 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20030422 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20040423 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20050422 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20050422 Start annual number: 8 End annual number: 8 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20070410 |