[go: up one dir, main page]

JPS6396965A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JPS6396965A
JPS6396965A JP61243427A JP24342786A JPS6396965A JP S6396965 A JPS6396965 A JP S6396965A JP 61243427 A JP61243427 A JP 61243427A JP 24342786 A JP24342786 A JP 24342786A JP S6396965 A JPS6396965 A JP S6396965A
Authority
JP
Japan
Prior art keywords
schottky contact
schottky
semiconductor device
gate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61243427A
Other languages
Japanese (ja)
Inventor
Takeshi Konuma
小沼 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61243427A priority Critical patent/JPS6396965A/en
Publication of JPS6396965A publication Critical patent/JPS6396965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/6737Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
    • H10D30/6738Schottky barrier electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/675Group III-V materials, Group II-VI materials, Group IV-VI materials, selenium or tellurium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/64Electrodes comprising a Schottky barrier to a semiconductor

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To easily form a Schottky FET which can endure high temperature and has a large contact potential by forming a Schottky contact of a specific material. CONSTITUTION:A Sohottky contact 12' which becomes a gate electrode is formed of W-Si-Ge of Si-Ge having W of high melting point metal on an N-type GaAs substrate 11, and a Ti-Au electrode 15 for facilitating a bonding is formed thereon. With the Schottky electrode as a mask a source and a drain are formed in a self-aligning manner. Then, a Schottky FET which can endure a high temperature and has a large contact potential can be easily formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はショットキ接触を有する半導体装置およびその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device having a Schottky contact and a method for manufacturing the same.

従来の技術 ショットキ接触を有する半導体装置のうちショットキ接
触電界効果トランジスタ(以下5BFETと略記する)
は高周波帯におけるトランジスタとして有望視されてい
る。この様な5BFETの材料として通常G a A 
sが用いられている。G a A !Iを用いた電界効
果トランジスタ(以下GaAS FETとよぶ)の基本
構造は第4図に示す様に、半絶縁性G a A s基板
1上に気相成長法でキャリヤ濃度1017cm”−3程
度、厚み0.3μm程度のn型導電層からなる能動層2
を積層し、この能動層2の表面にソース3.ドレイン4
となる非整流性電極、ゲート5となるショットキ接触を
設置した形になってbる。
Conventional technology Among semiconductor devices having a Schottky contact, a Schottky contact field effect transistor (hereinafter abbreviated as 5BFET)
is seen as promising as a transistor in the high frequency band. The material for such 5BFET is usually G a A
s is used. G a a! The basic structure of a field effect transistor (hereinafter referred to as GaAS FET) using I is as shown in FIG. Active layer 2 consisting of an n-type conductive layer with a thickness of about 0.3 μm
are stacked, and a source 3. is layered on the surface of this active layer 2. drain 4
The non-rectifying electrode becomes the gate 5, and the Schottky contact becomes the gate 5.

このような5BFETの高周波特性を改善せしGDニド
レイン出力コンダクタンス、RGs:ゲート・ソース間
抵抗、RG:ゲート電極抵抗、R5:チャネル抵抗)か
ら明らかな様にゲート・ソース間抵抗RGSを減少せし
めることが“f工。を増大せしめるには有効な方法であ
る。ゲート・ソース間抵抗RGsを減少せしめる方法と
して、ソース・ゲート間のn型導電層からなる能動層2
のキャリヤ濃度;厚みを大きくする方法、あるいはソー
ス・ゲート間距離を減少せしめる方法が有効である。
To improve the high-frequency characteristics of such a 5BFET and reduce the gate-source resistance RGS as evident from the GD drain output conductance, RGs: gate-source resistance, RG: gate electrode resistance, R5: channel resistance). is an effective method for increasing the "f". As a method for reducing the gate-source resistance RGs, an active layer 2 consisting of an n-type conductive layer between the source and gate is used.
Carrier concentration: A method of increasing the thickness or a method of decreasing the distance between the source and gate is effective.

前者の従来の方法として第6図に示す様に、高濃度n型
導電層2′を形成し、ゲート6の近傍の高濃度n型導電
層2′を除去し、ゲート6を形成したものがある。これ
は高濃度n型導電層2′によってゲート・ソース間抵抗
RGSを減少せしめたものである。
As shown in FIG. 6, the former conventional method involves forming a highly doped n-type conductive layer 2', removing the heavily doped n-type conductive layer 2' near the gate 6, and forming the gate 6. be. This is because the gate-source resistance RGS is reduced by the highly doped n-type conductive layer 2'.

後者の従来の方法としては第6図に示す様K、ゲート電
極5を傘状にして傘状ゲート電極5をマスクとして自己
整合法でソース3.ドレイン4となる非整流性接触を形
成する。これによりソース・ゲート間距離が短縮しゲー
トリソース間抵抗RGS  が減少する。
The latter conventional method is as shown in FIG. 6, in which the gate electrode 5 is formed into an umbrella shape and the source 3. A non-rectifying contact is formed to become the drain 4. This shortens the source-gate distance and reduces the gate-resource resistance RGS.

又GaAs F E T f x 7ハンスメント型F
ETとデプレッション型からなる論理回路に用いる場合
には、論理振巾及び雑音余裕度の点から接触電位の大き
いショットキ接触用材料を用いるのが望ましい。
Also, GaAs FET f x 7 hancement type F
When used in a logic circuit consisting of ET and depression type, it is desirable to use a Schottky contact material with a large contact potential in terms of logic amplitude and noise margin.

発明が解決しようとする問題点 このように従来においては、高温に耐え、かつ接触電位
の大きいショットキ接触材料と、それを用い自己整合的
に半導体装置を製造する方法が望まれていた。
Problems to be Solved by the Invention As described above, in the past, there has been a desire for a Schottky contact material that can withstand high temperatures and has a large contact potential, and a method for manufacturing semiconductor devices in a self-aligned manner using the Schottky contact material.

問題点を解決するための手段 本発明は、高融点金属を含むSi−Geよシなるショッ
トキ接触材料を用いるものであシ、さらに望ましくはこ
の杼判よシなるゲート電極を形成し、この電極をマスク
として化合物半導体の所望領域に不純物領域を形成する
ものである。
Means for Solving the Problems The present invention uses a Schottky contact material such as Si-Ge containing a refractory metal, and more preferably forms a gate electrode in the shape of this shuttle, and Using this as a mask, an impurity region is formed in a desired region of the compound semiconductor.

そこで本発明の第1の目的は高温に耐えかつ接触電位φ
Bの大きい、ショットキ接触材料を提供することであシ
、第2の目的は上記ショットキ接触材料を用いて、自己
整合法でソース・ドレイン領域となる高濃度不純物領域
を形成する半導体装置を提供するものである 作  用 本発明を用いることにより、高温処理に耐えかつ層抵抗
が低い良好なシッットキ電極が形成でき、これを用いて
自己整合法で8BFETl形成することにより、5BF
ETの特性向上、高性能な論理回路の実現が可能となる
Therefore, the first object of the present invention is to withstand high temperatures and to provide a contact potential φ
The second purpose is to provide a Schottky contact material with a large B. A second purpose is to provide a semiconductor device in which a high concentration impurity region that becomes a source/drain region is formed by a self-alignment method using the above Schottky contact material. By using the present invention, it is possible to form a good Schittky electrode that can withstand high temperature treatment and has low layer resistance.
It becomes possible to improve the characteristics of ET and realize high-performance logic circuits.

実施例 以下本発明の半導体装置とその製造方法を実施例で説明
する。
EXAMPLES Hereinafter, the semiconductor device of the present invention and its manufacturing method will be explained using examples.

(実施例1) 第1図aに示す様にキャリア濃度5 X 10 ” 3
− ’程度のn型G a A m基板11上に第1図す
に示す様[Wl含有する81−G@膜12を300o人
堆積する。W−8L−Ge膜12はWSiGe板をター
ゲットとし、アルコン雰囲気中で高周波(RF)スパッ
タ装置を用いて行なった。次に第1図Cに示すようにW
−81−Ge膜12上にシリコン窒化膜13’(H20
00人堆積する。シリコン窒化膜13は基板温度300
℃にし、プラズマ堆積法を用いて形成した。G a A
 m基板11とW−8i−Ge膜12からなるショット
キ接触の熱処理温度による変化を見るため、アルゴン雰
囲気中で30分間熱処理を行う。
(Example 1) As shown in Figure 1a, the carrier concentration was 5 x 10'' 3
As shown in FIG. 1, 300 layers of 81-G@ film 12 containing Wl is deposited on an n-type GaAm substrate 11 of about -'. The W-8L-Ge film 12 was formed using a radio frequency (RF) sputtering device in an Alcon atmosphere using a WSiGe plate as a target. Next, as shown in Figure 1C, W
-81-Silicon nitride film 13' (H20
00 people deposited. The silicon nitride film 13 has a substrate temperature of 300
℃ and formed using a plasma deposition method. G a A
In order to observe changes in the heat treatment temperature of the Schottky contact consisting of the m-substrate 11 and the W-8i-Ge film 12, heat treatment is performed for 30 minutes in an argon atmosphere.

次に第1図dに示すようにG a A m基板11に金
−ゲルマニウム(Au −Ge )からなるオーミック
電極14を形成し、さらにW −S i −Ge膜12
を通常の写真食刻法を用いて適当な形状にしてW −S
 1−Ge膜からなるショットキ接触12′を形成する
。さらにショットキ接触12′へのポンディングを容易
にするためシ目ットキ接触り2′上にチタン−金(Ti
−Au)からなる電極16を形成し、適当なパッケージ
に組立て\、W −S i  Ge カラなるシタット
キ接触ダイオードが完成する。
Next, as shown in FIG.
into a suitable shape using ordinary photo-etching method and form W-S.
A Schottky contact 12' made of 1-Ge film is formed. Furthermore, in order to facilitate bonding to the Schottky contact 12', titanium-gold (Ti) is placed on the Schottky contact 2'.
-Au) and assembled into a suitable package to complete a W-S i Ge color contact diode.

第2図は上記実施例で得られたシッットキ接触ダイオー
ドの熱処理温度による特性の変化を示したものである。
FIG. 2 shows the change in characteristics of the Sittky contact diode obtained in the above example depending on the heat treatment temperature.

本実施例のシロットキ接触ダイオードとの比較のため、
従来からG a A aのショットキ接触材料として用
いられているアルミニウムAeを用いたショットキ接触
ダイオードの特性を同時に示す。同図で理想係数n、接
触電位φBはショットキ接触ダイオードの順方向特性か
ら求めたものである。即ちn、φBは次式から求めた。
For comparison with the Shirotki contact diode of this example,
The characteristics of a Schottky contact diode using aluminum Ae, which has been conventionally used as a Schottky contact material for G a A a, are also shown. In the figure, the ideality coefficient n and the contact potential φB are determined from the forward characteristics of the Schottky contact diode. That is, n and φB were determined from the following equations.

I、=Is(exp(qV/nkT)−1:)I  =
 AT2exp (−qφB/kT)第2図から明らか
な様に従来のAIのショー/ )キ接触を有するダイオ
ードではSOO℃の装処理でショットキ接触として動作
しなくなる。−力木発明の実施例によるW−8i−Ge
のショットキ接触を用いたダイオードは850℃の熱処
理に耐える。即ちW−st−Geはショットキ接触材料
として、耐熱性を有し、かつφBの大きい材料であるこ
とが分かる。
I,=Is(exp(qV/nkT)-1:)I=
AT2exp (-qφB/kT) As is clear from FIG. 2, a conventional AI diode with a Schottky contact no longer operates as a Schottky contact when subjected to SOO°C treatment. - W-8i-Ge according to an embodiment of the strength tree invention
diodes using Schottky contacts withstand heat treatment at 850°C. That is, it can be seen that W-st-Ge is a Schottky contact material that has heat resistance and a large φB.

(実施例2) 第3図a 〜dはW−3t−Get−用いたショットキ
接触が高温の熱処理温度に耐えることを利用して、自己
整合法で5BFETi製造する方法を示す図である。
(Example 2) FIGS. 3a to 3d are diagrams showing a method of manufacturing 5BFETi by a self-alignment method, taking advantage of the fact that a Schottky contact using W-3t-Get- can withstand high temperature heat treatment.

まず第3図aに示す様に半絶縁性G a A m基板2
1に気相成長法或はイオン注入法を用いてキャリア濃度
101 程度、厚み0.3μm程度のn壓導電層からな
る能動層22t−形成する。次に第3図すに示すように
能動層220表面にW −Si −Ge膜を実施例1と
同様の方法で堆積し、写真食刻法を用いて5BFETの
ゲート電極となるショットキ接触26を形成し、これを
マスクとしてシリコy(Sl)(2−加速電圧200 
KsV テ10 011  イオン注入法型FETン窒
化膜(813N4)を熱処理保護膜とし800℃で20
分間熱処理し、高濃度n型導電層22′を形成する。高
濃度n型導電層22′上にノース23.ドレイン24と
なる非整流性電極を設置して5BFETを完成する。
First, as shown in Fig. 3a, a semi-insulating GaAm substrate 2 is prepared.
In step 1, an active layer 22t consisting of an n-type conductive layer having a carrier concentration of about 10@1 and a thickness of about 0.3 .mu.m is formed using a vapor phase growth method or an ion implantation method. Next, as shown in FIG. 3, a W-Si-Ge film is deposited on the surface of the active layer 220 in the same manner as in Example 1, and a Schottky contact 26, which will become the gate electrode of the 5BFET, is formed using photolithography. Silico y (Sl) (2-acceleration voltage 200
KsV Te10 011 Ion-implanted FET nitride film (813N4) was used as a heat-treated protective film at 800°C for 20
A heat treatment is performed for a minute to form a high concentration n-type conductive layer 22'. North 23. on high concentration n-type conductive layer 22'. A non-rectifying electrode serving as the drain 24 is installed to complete the 5BFET.

図面から明らかな様に、高濃度のn型導電層22′はキ
ャリヤ濃度が高く、その厚みが厚く、かつゲート電極と
なるショットキ接触と近接しているため、ソース・ゲー
ト間抵抗を減少せしめることが出来、5BFKTの高周
波特性が向上する。
As is clear from the drawing, the high concentration n-type conductive layer 22' has a high carrier concentration, is thick, and is close to the Schottky contact that will become the gate electrode, so that the source-gate resistance can be reduced. This improves the high frequency characteristics of 5BFKT.

実施例1,2では基板としてGaAst−用いて説明し
たが、本発明は他の■−■族化分化分物半導体材料Ga
、 Asを含むAdxGal−xAs 。
In Examples 1 and 2, the explanation was given using GaAst as the substrate, but the present invention is also applicable to other semiconductor material Ga
, AdxGal-xAs containing As.

InxGa1−xAs等にも適用できる。又ショットキ
接触の材料として、W −S L −Geについて説明
したが、W以外の高融点合金例えばTa、 Ti等を用
いても良いことは勿論である。
It can also be applied to InxGa1-xAs, etc. Although W-S L-Ge has been described as the material for the Schottky contact, it is of course possible to use high melting point alloys other than W, such as Ta and Ti.

発明の効果 以上実施例で説明した様に本発明は高温熱処理に耐えか
つφBの大きいショットキ接触材料として、高融点金属
を含むS i −Geが層抵抗が低いことを見出し、そ
れを用いて自己整合法が5BFETで形成することによ
り、ソース・ゲート間抵抗を減少せしめて5BFETの
特性を向上せしめ、かつφBが大きいので論理振巾及び
雑音余裕度の点から論理回路の高性能化が図れる。
Effects of the Invention As explained in the examples, the present invention has discovered that Si-Ge containing a high-melting point metal has a low layer resistance as a Schottky contact material that can withstand high-temperature heat treatment and has a large φB. By forming the 5BFET in the matching method, the source-gate resistance is reduced and the characteristics of the 5BFET are improved, and since φB is large, the performance of the logic circuit can be improved in terms of logic amplitude and noise margin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1−y dは本発明の一実施例における半導体装
置の製造方法を示す工程断面図、第2図は同半導体装置
および従来の半導体装置の熱処理温度の特性の変化を比
較して示す特性図、第3図a〜dは本発明の他の実施例
における半導体装置の製造方法を示す工程断面図、第4
図、第6図、第6図はそれぞれ従来のシwツ)キメリヤ
ゲート電界効果型トランジスタの断面図である。 11・・・・・・n型G a A m基板、12・・・
・・・窒化シリコン(TIN) 、 12’−−−−−
−W−5l−Geからなるシ。 ットキ接触、13・・・・・・シリコン窒化膜、14・
・・・・・オーミック電極、16・・・・・・T i 
−Auからなる電極、21−・・・−半絶縁性G a 
A m基板、2200110.能動層、22′・・・・
・・高濃度nfi導電層、23・・・・・・ソース電極
、24・・・・・・ドレイン電極、26・・・・・・シ
ョットキ接触(ゲート電極)。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名//
 =−n ’JLCra−As10反/Z −−−si
 −Ge Pr臭 第2図 り製処(E1泉 (t〕 第3図 第4図 第5図 第6図
FIG. 1-yd is a process cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a comparison showing changes in heat treatment temperature characteristics of the same semiconductor device and a conventional semiconductor device. Characteristic diagrams, FIGS. 3a to 3d are process cross-sectional views showing a method for manufacturing a semiconductor device according to another embodiment of the present invention, and FIGS.
6 and 6 are cross-sectional views of conventional chimeric gate field effect transistors, respectively. 11... n-type Ga Am substrate, 12...
...Silicon nitride (TIN), 12'------
-W-5l-Ge. contact, 13...silicon nitride film, 14.
...Ohmic electrode, 16...T i
- Electrode made of Au, 21-...-Semi-insulating Ga
A m substrate, 2200110. Active layer, 22'...
... High concentration NFI conductive layer, 23 ... Source electrode, 24 ... Drain electrode, 26 ... Schottky contact (gate electrode). Name of agent: Patent attorney Toshio Nakao and 1 other person//
=-n'JLCra-As10 anti/Z ---si
-Ge Pr odor 2nd drawing process (E1 spring (t) Figure 3 Figure 4 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)高融点金属を含有しているSi−Geによるショ
ットキ接触を有してなる半導体装置。
(1) A semiconductor device having a Schottky contact made of Si-Ge containing a high melting point metal.
(2)能動層として作用する半導体層にショットキ接触
となるゲート電極を設けてなる特許請求の範囲第1項に
記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein a gate electrode that makes a Schottky contact is provided on the semiconductor layer that acts as an active layer.
(3)III−V族化合物半導体に高融点金属を含有して
いるSi−Ge、或は窒素を含有しているSi−Ge或
は窒素を含む高融点金属を含有しているSi−Geから
なるショットキ接触ゲート電極を設ける工程と、前記シ
ョットキ接触ゲート電極をマスクとして前記化合物半導
体の所望の領域に不純物濃度の高い領域を形成する工程
とを有してなる半導体装置の製造方法。
(3) From Si-Ge containing a high melting point metal in a III-V compound semiconductor, Si-Ge containing nitrogen, or Si-Ge containing a high melting point metal containing nitrogen 1. A method for manufacturing a semiconductor device, comprising: providing a Schottky contact gate electrode; and using the Schottky contact gate electrode as a mask, forming a region with a high impurity concentration in a desired region of the compound semiconductor.
(4)III−V族化合部半導体がGaAsがある特許請
求の範囲第3項記載の半導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 3, wherein the III-V compound semiconductor is GaAs.
JP61243427A 1986-10-14 1986-10-14 Semiconductor device and its manufacturing method Pending JPS6396965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243427A JPS6396965A (en) 1986-10-14 1986-10-14 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243427A JPS6396965A (en) 1986-10-14 1986-10-14 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JPS6396965A true JPS6396965A (en) 1988-04-27

Family

ID=17103710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243427A Pending JPS6396965A (en) 1986-10-14 1986-10-14 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6396965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056995A (en) * 1991-06-27 1993-01-14 Nec Corp High melting point metal silicide film and its formation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056995A (en) * 1991-06-27 1993-01-14 Nec Corp High melting point metal silicide film and its formation method

Similar Documents

Publication Publication Date Title
JPS6396965A (en) Semiconductor device and its manufacturing method
JP3169066B2 (en) Field effect transistor and method of manufacturing the same
JPH0249012B2 (en)
JPS6357946B2 (en)
JPS58157172A (en) Semiconductor device and its manufacturing method
JPH04343440A (en) Semiconductor device
JPH0434824B2 (en)
JPS58103175A (en) Semiconductor device and manufacture thereof
JPH07201887A (en) Field effect transistor
JPH0354851B2 (en)
JPS609120A (en) Manufacture of semiconductor device
JPH03280552A (en) Manufacture of field effect transistor
JPS59213172A (en) Semiconductor device and manufacture thereof
JPS6142963A (en) Manufacturing method of semiconductor device
JPS62150888A (en) Manufacture of field effect transistor
JPS6232656A (en) Semiconductor device and manufacture thereof
JPH0439774B2 (en)
JPS59195874A (en) Method for manufacturing field effect transistors
JPS63169064A (en) semiconductor equipment
JPS59161875A (en) 3-V compound semiconductor device
JPS59193070A (en) Manufacturing method of shot-gate field effect transistor
JPH02135743A (en) Manufacture of field effect transistor
JPH03231424A (en) Manufacture of compound semiconductor device
JPS6362114B2 (en)
JPH0436459B2 (en)