[go: up one dir, main page]

JPH0439774B2 - - Google Patents

Info

Publication number
JPH0439774B2
JPH0439774B2 JP59020325A JP2032584A JPH0439774B2 JP H0439774 B2 JPH0439774 B2 JP H0439774B2 JP 59020325 A JP59020325 A JP 59020325A JP 2032584 A JP2032584 A JP 2032584A JP H0439774 B2 JPH0439774 B2 JP H0439774B2
Authority
JP
Japan
Prior art keywords
gaas
layer
electrode
type
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59020325A
Other languages
Japanese (ja)
Other versions
JPS60164366A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59020325A priority Critical patent/JPS60164366A/en
Publication of JPS60164366A publication Critical patent/JPS60164366A/en
Publication of JPH0439774B2 publication Critical patent/JPH0439774B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/161Source or drain regions of field-effect devices of FETs having Schottky gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/824Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置、特に充分なドレイン耐圧
を備えて特性が良好で高出力に適する電界効果ト
ランジスタの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor device, and particularly to the structure of a field effect transistor that has sufficient drain breakdown voltage, good characteristics, and is suitable for high output.

(b) 技術の背景 現在エレクトロニクスの主役となつているシリ
コン(Si)半導体装置の限界を超える高速化、低
消費電力化を実現するために、キヤリア特に電子
の移動度がシリコンより遥に大きいガリウム・砒
素(GaAs)などの化合物半導体を用いる半導体
装置の開発が推進されている。
(b) Technology background In order to achieve higher speeds and lower power consumption that exceed the limits of silicon (Si) semiconductor devices, which are currently the mainstay of electronics, gallium, which has a much higher electron mobility than silicon, has been developed as a carrier. - Development of semiconductor devices using compound semiconductors such as arsenic (GaAs) is being promoted.

化合物半導体を用いるトランジスタとしては、
その製造工程がバイポーラトランジスタより簡単
であるなどの理由によつて電界効果トランジスタ
(以下FETと略称する)の開発が先行しており、
特に半絶縁性の化合物半導体を基板に用いて浮遊
容量を減少せしめたシヨツトキーバリア形FET
が主流となつている。
As a transistor using a compound semiconductor,
Field-effect transistors (hereinafter abbreviated as FETs) have been developed first because their manufacturing process is simpler than bipolar transistors.
A Schottky barrier type FET that uses a semi-insulating compound semiconductor as a substrate to reduce stray capacitance.
has become the mainstream.

(c) 従来技術と問題点 半導体材料としてGaAsが用いられたシヨツト
キーバリア形FET(以下GaAsMESFETと略称す
る)は、例えばマイクロ波帯の増幅などに既に実
用化されている。
(c) Prior art and problems Schottky barrier FETs (hereinafter abbreviated as GaAs MESFETs) using GaAs as a semiconductor material have already been put into practical use, for example, for amplification in the microwave band.

第1図aは高出力GaAs MESFETの構造の例
を示す斜視図であり、1は半絶縁性GaAs基板、
2はn型GaAs層である。各電極は電流容量を増
大するために櫛歯状にして組合わされており、S
はソース電極、Dはドレイン電極、Gはゲート電
極を示す。なお6は絶縁膜であるがその1部のみ
を図示している。
Figure 1a is a perspective view showing an example of the structure of a high-power GaAs MESFET, in which 1 is a semi-insulating GaAs substrate;
2 is an n-type GaAs layer. Each electrode is combined in a comb-like shape to increase current capacity, and S
indicates a source electrode, D indicates a drain electrode, and G indicates a gate electrode. Note that 6 is an insulating film, but only a part of it is shown.

第1図bはGaAs MES FETの部分断面図で、
前図と同様に1は半絶縁性GaAs基板、2はn型
GaAs層を示し、また3はソース電極、4はドレ
イン電極、5はゲート電極、6は表面保護膜であ
る。
Figure 1b is a partial cross-sectional view of a GaAs MES FET.
As in the previous figure, 1 is a semi-insulating GaAs substrate, 2 is an n-type
It shows a GaAs layer, and 3 is a source electrode, 4 is a drain electrode, 5 is a gate electrode, and 6 is a surface protection film.

前記例の如きGaAs MES FETのソース及び
ドレイン電極は、電極とn型GaAs層との間に良
好なオーミツク接触を形成することを目的とし
て、従来例えば金ゲルマニウム合金(AuGe)を
厚さ30〔nm〕程度に被着し更に金(Au)をAuGe
膜上に厚さ300〔μm〕程度に被着して所要のパタ
ーンを形成した後に、例えば温度450〔℃〕、時間
2分間程度の加熱処理を施してAs,GeとGa,
Asとの相互拡散による合金化を行なつている。
The source and drain electrodes of GaAs MES FETs such as the one described above are conventionally made of gold-germanium alloy (AuGe) with a thickness of 30 nm in order to form good ohmic contact between the electrodes and the n-type GaAs layer. ] and further coated with gold (Au) to AuGe
After depositing on the film to a thickness of about 300 [μm] and forming the desired pattern, heat treatment is performed at a temperature of 450 [℃] for about 2 minutes to form As, Ge, Ga,
Alloying is performed by interdiffusion with As.

n型GaAs層とオーミツク接触する電極構造と
しては、前記AuGe/Au構造にニツケル(Ni)
或いは白金(Pt)膜を挿入するAuGe/Ni/Au,
AuGe/Pt/Au構造、或いはGeに代えてシリコ
ン(Si)又は錫(Sn)を用いるなど種々の構造
が知られている。
For the electrode structure that makes ohmic contact with the n-type GaAs layer, nickel (Ni) is added to the AuGe/Au structure.
Or AuGe/Ni/Au with platinum (Pt) film inserted,
Various structures are known, such as an AuGe/Pt/Au structure or using silicon (Si) or tin (Sn) instead of Ge.

前記の合金化は、n型−化合物半導体表面
にこれに対してドナー不純物となるGe等を高濃
度にドープしてn+型領域を電極に整合して形成
する効果をもち、化合物半導体装置の製造プロセ
スとして広く行なわれている。しかしながらこの
合金化後の電極形成領域は通常半導体である
GaAs層に対して均一な合金層の状態とはならず
このため局所的な電流集中、電界分布が起こりや
すく電極の耐圧低下を招いている。
The above-mentioned alloying has the effect of doping the surface of an n-type compound semiconductor with Ge, etc., which serves as a donor impurity, at a high concentration to form an n + type region aligned with the electrode. It is widely used as a manufacturing process. However, the electrode formation region after this alloying is usually a semiconductor.
The GaAs layer is not in a uniform alloy layer state, and as a result, local current concentration and electric field distribution are likely to occur, resulting in a decrease in the withstand voltage of the electrode.

先に述べたGaAs MES FETなどにおいて高
出力を実現するためにはドレイン電圧を高く設定
することが必要であるが、従来の合金化を行なつ
た電極構造においてはしばしばドレイン耐圧が不
足する障害が発生しておりその改善が必要とされ
ている。
In order to achieve high output in devices such as the GaAs MES FET mentioned above, it is necessary to set the drain voltage high, but conventional alloyed electrode structures often suffer from insufficient drain breakdown voltage. This has occurred and improvement is required.

ドレイン耐圧向上の手段として、ドレイン電極
形成領域に予め高濃度にドナー不純物を導入して
電界集中を緩和する方法などが既に知られている
が、GaAs等の化合物半導体においては加熱処理
温度の制限或いは保護膜やその他の要因により不
純物の活性化が完全には行なわれず、充分な高キ
ヤリア濃度が得られないなどの問題がある。
As a means of improving drain breakdown voltage, methods such as introducing donor impurities at a high concentration in advance into the drain electrode formation region to alleviate electric field concentration are already known, but in compound semiconductors such as GaAs, it is difficult to There are problems such as impurities not being completely activated due to the protective film and other factors, making it impossible to obtain a sufficiently high carrier concentration.

(d) 発明の目的 本発明は前記問題点に対処して、GaAs系電界
効果トランジスタに関してそのドレイン耐圧が高
い信頼性をもつて向上する構造を提供することを
目的とする。
(d) Object of the Invention It is an object of the present invention to address the above-mentioned problems and provide a structure in which the drain breakdown voltage of a GaAs-based field effect transistor is improved with high reliability.

(e) 発明の構成 本発明の前記目的は、ガリウム・砒素化合物半
導体層上にインジウム・ガリウム・砒素化合物半
導体層が組成が連続的に変化する領域を含んで設
けられ、該インジウム・ガリウム・砒素化合物半
導体層にシヨツトキー接触するドレイン電極を備
えてなる電界効果トランジスタを含んでなる半導
体置により達成される。
(e) Structure of the Invention The object of the present invention is to provide an indium-gallium-arsenide compound semiconductor layer on a gallium-arsenide compound semiconductor layer including a region where the composition changes continuously, This is achieved by a semiconductor device comprising a field effect transistor comprising a drain electrode in Schottky contact with a compound semiconductor layer.

すなわち本発明によるドレイン電極の構造で
は、従来の合金化を伴なうオーミツク接触電極構
造に代えて、シヨツトキー接触構造を採用する。
このシヨツトキー接触のバリアポテンシヤルを後
に説明する如く低い値に選択的に設定するため
に、ドレイン電極を配設する半導体層をインジウ
ム・ガリウム・砒素化合物(InxGa1-xAs)とし、
このInxGa1-xAs層とGaAs基体との間を連続的に
インジウム(In)の組成比を変化させたIny
Ga1-yAs(0≦y≦x)領域でつなぐことによつ
て、格子不整合及び電子親和力の差によるバリア
を消減させる。
That is, in the structure of the drain electrode according to the present invention, a Schottky contact structure is used instead of the conventional Ohmic contact electrode structure that involves alloying.
In order to selectively set the barrier potential of this shot key contact to a low value as explained later, the semiconductor layer on which the drain electrode is arranged is made of an indium-gallium-arsenic compound (InxG a1-x As).
The InxG a1-x As layer and the GaAs substrate are made of Iny
By connecting in the G a1-y As (0≦y≦x) region, barriers caused by lattice mismatch and differences in electron affinity are eliminated.

シヨツトキー接触電極は、合金化を伴なう従来
のオーミツク接触電極に比較して、界面が非常に
滑らかに形成されて局所的な電界集中を生じない
ためにその耐圧が向上する。またドレイン電極と
しては、シヨツトキー接触の順方向ポテンシヤル
降下によるドレイン端抵抗を生ずるために電極領
域内の電界の均等化が促進されて耐圧の改善に有
利である。
Compared to conventional ohmic contact electrodes that involve alloying, the Schottky contact electrode has a very smooth interface and does not cause local electric field concentration, so its withstand voltage is improved. Further, as for the drain electrode, since the drain end resistance is generated due to the forward potential drop of the shot key contact, the equalization of the electric field within the electrode region is promoted, which is advantageous for improving the withstand voltage.

しかしながらシヨツトキー接触するドレイン電
極を用いるならばシヨツトキーバリアφBによる
電力損失の発生は免れられない。従来ゲート電極
等で行なわれている如きn型GaAsとのシヨツト
キー接触では、例えば金(Au)で0.9〔eV〕、アル
ミニウム(Al)で0.8〔eV〕程度以上のバリアが
あり電力損失が大きい。これに対して、本発明に
用いるInxGa1-xAsと金属のシヨツトキー接触で
は、Inの組成比Xの増大とともにシヨツトキーバ
リアφBが抵減する。第2図はAuとInxGal-xAsと
の間のシヨツトキーバリアφBの組成比Xとの相
関を示す。
However, if a drain electrode that contacts the shot key is used, power loss due to the shot key barrier φB cannot be avoided. In shot-key contact with n-type GaAs, which is conventionally performed in gate electrodes, etc., there is a barrier of about 0.9 [eV] for gold (Au) and 0.8 [eV] for aluminum (Al), resulting in large power loss. On the other hand, in the shot-key contact between InxG a1-x As and metal used in the present invention, the shot-key barrier φB decreases as the In composition ratio X increases. FIG. 2 shows the correlation with the composition ratio X of the Schottky barrier φB between Au and InxG al-x As.

シヨツトキーバリアによる電力損失の抑制と、
他方電流路長の差によるドレイン電極面の電流密
度分布のかたよりを平均化するために僅かのシヨ
ツトキーバリアを設けることとを考慮して、Inの
組成比Xによつてシヨツトキーバリア高さを通常
1.0乃至0.4〔eV〕程度に選択抑制してFETの特性
を最適化することができる。
Suppression of power loss by shot key barrier,
On the other hand, considering that a slight shot key barrier is provided in order to average out the bias in the current density distribution on the drain electrode surface due to the difference in current path length, the shot key barrier height can be adjusted by changing the In composition ratio X. Normally
The characteristics of the FET can be optimized by selectively suppressing it to about 1.0 to 0.4 [eV].

(f) 発明の実施例 以下本発明を実施例により図面を参照して具体
的に説明する。
(f) Embodiments of the Invention The present invention will be specifically described below using embodiments with reference to the drawings.

第3図aは本発明の実施例を示す断面図、同図
bはそのドレイン側のエネルギーバンド図であ
る。
FIG. 3a is a sectional view showing an embodiment of the present invention, and FIG. 3b is an energy band diagram on the drain side thereof.

本実施例は半絶縁性GaAs基板11上に分子線
エピタキシヤル成長方法(MBE)或いは有機金
属熱分解気相成長方法(MOCVD)によつて下
記の半体層を積層形成した半導体基体を用いてい
る。すなわち12は例えば不純物濃度1×1017
〔cm-3〕、厚さ0.5〔μm〕程度のn型GaAs層、1
3は例えば不純物濃度が5×1017〔cm-3〕程度で、
Inの組成比がGaAs層12と連続してX=0から
次第に増加し厚さ約0.5〔μm〕の上面においてX
=0.5となるn+型InxGa1-xAs層、14は層13と
同一不純物濃度で組成も連続するn+型In0.5Ga0.5
As層で厚さは約50〔μm〕である。この層14は
必ずしも必要ではないが、これを設けることによ
つて製造プロセスの安定性が向上する。
This example uses a semiconductor substrate in which the following half layers are stacked on a semi-insulating GaAs substrate 11 by molecular beam epitaxial growth (MBE) or metal organic pyrolysis vapor deposition (MOCVD). There is. In other words, 12 is, for example, the impurity concentration 1×10 17
[cm -3 ], n-type GaAs layer with a thickness of about 0.5 [μm], 1
For example, 3 has an impurity concentration of about 5×10 17 [cm -3 ],
Continuing with the GaAs layer 12, the composition ratio of In gradually increases from X=0 to
= 0.5, n + type InxG a1-x As layer, 14 is n + type In 0.5 Ga 0.5 with the same impurity concentration and continuous composition as layer 13.
The thickness of the As layer is approximately 50 [μm]. Although this layer 14 is not absolutely necessary, its provision improves the stability of the manufacturing process.

この半導体基体のドレイン電極形成領域以外の
n+型InGaAs層14及び13の除去をレジストマ
スクを用いて、例えば臭素(Br2)を0.5〜1%含
むメタルール(CH3OH)溶液でGaAs面が露出
するまで行なつている。ソース電極15を
AuGe/Auを用いて従来技術によりn型GaAs層
12上に配設し、次いでドレイン電極16、本実
施例においてはAuを用いて、n+型In0.5Ca0.5As層
14上に配設する。ゲート電極17は従来技術に
よりn型GaAs層12を選択的にエツチングした
リセスにAlを用いて配設する。
The area other than the drain electrode formation area of this semiconductor substrate
The n + -type InGaAs layers 14 and 13 are removed using a resist mask, for example, with a metalul (CH 3 OH) solution containing 0.5 to 1% bromine (Br 2 ) until the GaAs surface is exposed. source electrode 15
A drain electrode 16 is formed using AuGe/Au using conventional techniques on the n-type GaAs layer 12, and then a drain electrode 16, in this example using Au, is formed on the n + -type In 0.5 Ca 0.5 As layer 14. . The gate electrode 17 is formed using Al in a recess that is selectively etched in the n-type GaAs layer 12 using a conventional technique.

本実施例のドレイン電極16とn+型In0.5Ga0.5
As層14との間のシヨツトキー接触のバリア高
さφBは約0.2〔eV〕であつて、第3図bに見られ
る如く従来のn型GaAs上のシヨツキー接触に比
較して大幅に低減されている。更にn+
InxGa1-xAs(0≦x≦0.5)層13によつてエネル
ギーバンドは滑らかに接続されて半導体基体内に
ポテンシヤルの段差を生じていない。
Drain electrode 16 of this embodiment and n + type In 0.5 Ga 0.5
The barrier height φB of the Schottky contact with the As layer 14 is approximately 0.2 [eV], which is significantly reduced compared to the conventional Schottky contact on n-type GaAs, as seen in Figure 3b. There is. Furthermore n + type
The energy bands are smoothly connected by the InxG a1-x As (0≦x≦0.5) layer 13, and no step in potential occurs within the semiconductor substrate.

以上の説明はゲート電極が半導体基体に対して
シヨツトキー接触するMESFETを対象としてい
るが、本発明は接合形FET及び絶縁ゲート形
FETについても同様に適用することができる。
Although the above explanation is directed to MESFETs in which the gate electrode makes short key contact with the semiconductor substrate, the present invention applies to junction type FETs and insulated gate type FETs.
The same can be applied to FETs.

(g) 発明の効果 以上説明した如く本発明によれば、電界効果ト
ランジスタの電極中高耐圧が必要であるドレイン
電極を任意に選択できる低いバリアのシヨツトキ
ー接触電極とし、かつ半導体内のポテンシヤル差
の発生を防止することによつて、充分なドレイン
耐圧を有しかつ電力効率も良好な高出力の電界効
果トランジスタを実現することができる。
(g) Effects of the Invention As explained above, according to the present invention, the drain electrode, which requires a high withstand voltage among the electrodes of a field effect transistor, is made into a low-barrier shot-key contact electrode that can be selected arbitrarily, and the potential difference in the semiconductor is generated. By preventing this, it is possible to realize a high-output field effect transistor that has sufficient drain breakdown voltage and good power efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbはGaAs MES FETの従来例
を示す斜視図及び断面図、第2図はInGaAsの組
成比とシヨツトキーバリア高さとの相関の例を示
す図、第3図aは本発明の実施例の断面図、同図
bはそのエネルギーバンド図である。 図において、11は半絶縁性GaAs基板、12
はn型GaAs層、13はn+型InxGa1-xAs(0≦x
≦0.5)層、14はn+型In0.5Ga0.5As層、15はソ
ース電極、16はドレイン電極、17はゲート電
極を示す。
Figures 1a and b are perspective views and cross-sectional views of conventional GaAs MES FETs, Figure 2 is a diagram showing an example of the correlation between the InGaAs composition ratio and the Schottky barrier height, and Figure 3a is a diagram of a conventional GaAs MES FET. A cross-sectional view of an embodiment of the invention, and FIG. 3B is an energy band diagram thereof. In the figure, 11 is a semi-insulating GaAs substrate, 12
is an n-type GaAs layer, 13 is an n + type InxG a1-x As (0≦x
≦0.5) layer, 14 is an n + type In 0.5 Ga 0.5 As layer, 15 is a source electrode, 16 is a drain electrode, and 17 is a gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 ガリウム・砒素化合物半導体層上にインジウ
ム・ガリウム・砒素化合物半導体層が組成が連続
的に変化する領域を含んで設けられ、該インジウ
ム・ガリウム・砒素化合物半導体層にシヨツトキ
ー接触するドレイン電極を備えてなる電界効果ト
ランジスタを含んでなることを特徴とする半導体
装置。
1. An indium-gallium-arsenide compound semiconductor layer is provided on a gallium-arsenide compound semiconductor layer including a region where the composition changes continuously, and a drain electrode is provided in short key contact with the indium-gallium-arsenide compound semiconductor layer. 1. A semiconductor device comprising a field effect transistor.
JP59020325A 1984-02-06 1984-02-06 semiconductor equipment Granted JPS60164366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59020325A JPS60164366A (en) 1984-02-06 1984-02-06 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020325A JPS60164366A (en) 1984-02-06 1984-02-06 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS60164366A JPS60164366A (en) 1985-08-27
JPH0439774B2 true JPH0439774B2 (en) 1992-06-30

Family

ID=12023978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020325A Granted JPS60164366A (en) 1984-02-06 1984-02-06 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS60164366A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3881922T2 (en) * 1987-03-18 1993-10-07 Fujitsu Ltd Composite semiconductor device with non-alloy ohmic contacts.

Also Published As

Publication number Publication date
JPS60164366A (en) 1985-08-27

Similar Documents

Publication Publication Date Title
JPH0435904B2 (en)
JPH024140B2 (en)
US5162877A (en) Semiconductor integrated circuit device and method of producing same
US6090649A (en) Heterojunction field effect transistor and method of fabricating the same
US5770489A (en) Method of making a compound semiconductor field-effect transistor
JP3147036B2 (en) Compound semiconductor device and method of manufacturing the same
JP3119248B2 (en) Field effect transistor and method of manufacturing the same
JPH0326535B2 (en)
JPH0439774B2 (en)
JPH0797638B2 (en) Field effect transistor
KR100347520B1 (en) A Heterojunction Bipolar Transistor and, A Method Manufacturing the HBT
JPS59181060A (en) semiconductor equipment
JP2695832B2 (en) Heterojunction field effect transistor
KR910006751B1 (en) Semiconductor integrated circuit device and its manufacturing method
KR100299665B1 (en) Method of forming ohmic contact of heterojunction dipole transistor
JP2976664B2 (en) Manufacturing method of bipolar transistor
JPS6254464A (en) Bipolar transistor and its manufacturing method
JPH0249012B2 (en)
JPS6357946B2 (en)
JP2001298031A (en) Junction type bipolar transistor, method of manufacturing the same, and semiconductor integrated circuit device
JP3520625B2 (en) Method for manufacturing semiconductor device
JP2541280B2 (en) Semiconductor device
KR20000038236A (en) Manufacturing method of heterojunction dipole device
JP2834172B2 (en) Field effect transistor
JP2000340581A (en) Semiconductor device and manufacture thereof