[go: up one dir, main page]

JPS6370832A - liquid crystal display device - Google Patents

liquid crystal display device

Info

Publication number
JPS6370832A
JPS6370832A JP61215418A JP21541886A JPS6370832A JP S6370832 A JPS6370832 A JP S6370832A JP 61215418 A JP61215418 A JP 61215418A JP 21541886 A JP21541886 A JP 21541886A JP S6370832 A JPS6370832 A JP S6370832A
Authority
JP
Japan
Prior art keywords
pixel electrode
active matrix
matrix panel
liquid crystal
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61215418A
Other languages
Japanese (ja)
Other versions
JPH0823640B2 (en
Inventor
Yojiro Matsueda
洋二郎 松枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61215418A priority Critical patent/JPH0823640B2/en
Publication of JPS6370832A publication Critical patent/JPS6370832A/en
Publication of JPH0823640B2 publication Critical patent/JPH0823640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアクティブマトリクスパネルの構造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to the structure of an active matrix panel.

〔従来の技術〕[Conventional technology]

従来アクティブマ) +1クスパネルの構造は“日経エ
レクトロニクス 1984年9月10日号腐351P、
211〜2401に示されるようなものであつ几。
The structure of the +1x panel is as follows: “Nikkei Electronics September 10, 1984 issue 351P,
211 to 2401.

第2図はアクティブマトリクスパネルの画素部分の平面
図の例である。22けポリシリコンまたはアモルファス
シリコンの薄膜でTFTのチャネル部及びソース・ドレ
イン電極を形成している。
FIG. 2 is an example of a plan view of a pixel portion of an active matrix panel. The channel portion and source/drain electrodes of the TFT are formed of a thin film of polysilicon or amorphous silicon.

24けポリシリコンや金属からなる薄膜でTFTのゲ1
−ト電極及び走査線を形成している。26は画素Kl!
、27けデータ線である。
24-layer thin film made of polysilicon or metal
- form electrodes and scanning lines. 26 is pixel Kl!
, 27 data lines.

〔発明bz解決しようとする問題点〕[Problems that the invention aims to solve]

しかじ両速の従来技術では以下に述べるような問題点を
生じる。まず第1K、液晶に印加される電圧は液晶自身
の時定数に依存するため、温[/l’−変化すると液晶
の時定数が変化して表示状態も変化するという問題点で
ある。特に高温においては液晶の抵抗が小さくなり時定
数も短くなるためコントラスト比が減少する。第2の問
題点け、液晶は支流駆動する必要があるため通常はビデ
オ信号を交流反転して用いるが、この信号の極性の違い
によりTFTの書き込み及び保持の状態も異なるため、
液晶に印加される電圧b;非対称な改分を持ち、フリッ
カ−を生じるというものである。
However, the dual-speed conventional technology causes the following problems. First, the first problem is that since the voltage applied to the liquid crystal depends on the time constant of the liquid crystal itself, when the temperature changes, the time constant of the liquid crystal changes and the display state also changes. Particularly at high temperatures, the resistance of the liquid crystal decreases and the time constant decreases, resulting in a decrease in contrast ratio. The second problem is that since the liquid crystal needs to be driven by a tributary current, the video signal is usually inverted with alternating current, but the writing and holding states of the TFT also differ depending on the polarity of this signal.
Voltage b applied to the liquid crystal has an asymmetrical change and causes flicker.

本発明けこれらの問題を解決するものであり、その目的
とするところは、高温でもコントラスト比hi減少する
ことなく、かつフリッカ−の少ないアクティブマトリク
スパネルの構造を与えるところにある。
The present invention is intended to solve these problems, and its purpose is to provide an active matrix panel structure that does not reduce the contrast ratio hi even at high temperatures and has less flicker.

C問題点を解決する念めの手段〕 本発明のアクティブマトリクスパネルは、前段の走査線
の上部ま几は下部にTFTのチャネル部と同じ導電膜を
、ゲート絶縁膜を介して配置し、前記導電膜が画素電極
く接続されていろことを特徴とする。
Preparatory Measures to Solve Problem C] The active matrix panel of the present invention has the same conductive film as the channel part of the TFT disposed above and below the scanning line in the previous stage with a gate insulating film interposed therebetween. It is characterized in that the conductive film is connected to the pixel electrode.

〔作用〕[Effect]

本発明の上記の構造によれば、液晶の容量と並列にゲー
ト絶縁膜の容量が付加されることとなり液晶の時定数h
;長くなるためコントラスト比が大きくなる。また、温
度が上昇して液晶の時定数が小さくなってもゲート絶縁
膜の容量は変化しないため、コントラスト比の減少を抑
えることができる。さらにビデオ信号の極性の違いによ
り生ずるTlPTの書き込み及び保持における非対称な
動作の影響を受けに〈〈なりフリッカ−が減少する。
According to the above structure of the present invention, since the capacitance of the gate insulating film is added in parallel with the capacitance of the liquid crystal, the time constant h of the liquid crystal
;The contrast ratio increases because it becomes longer. Further, even if the temperature rises and the time constant of the liquid crystal decreases, the capacitance of the gate insulating film does not change, so it is possible to suppress a decrease in contrast ratio. Furthermore, flicker is reduced due to the asymmetric operation of TlPT writing and holding caused by the difference in polarity of the video signal.

〔・実施例1〕 第1回顧は本発明の一実施倒を示すアクティブマド、リ
クスパネルの平面図であり、同図(b)及び(C)はそ
れぞれ同図6)のA−B及び(!−,D&でおける断面
図である。この図を用いて製造工aK従い説明する。ま
ず絶縁基板1上にポリシリコンま几はアモルファスシリ
コンの薄膜2をデポジットし図のようにパターニングす
る。この薄膜は’rlFTのチャネル部及びソース・ド
レイン電極、そして容量を作り込む几めの電極となる0
次にゲート絶縁膜3を形成し、その上にゲート電量も兼
ねる走査線4を形成する。その材料としてはポリシリコ
ンT?Tの場合にはポリシリコンや高融点金属が、アモ
ルファスシリコンTIFTの場合には通常の金属や透明
導電寝等bt用いられている。この上に層間絶縁嘆5を
デポジットし、コンタクトホールな開口し1画素電極6
及びデータ線7を形成し友ものがアクティブマトリクス
基板である。この基板と数μmの空間を介して、共通電
榎を有するもう一つの基板を対向させ、この空間に液晶
を封入し次ものbzアクティブマトリクスパネルマある
[Example 1] The first review is a plan view of an active mud panel and a risk panel showing one implementation of the present invention, and FIGS. !-, D&. The manufacturing process will be explained using this figure. First, a thin film 2 of polysilicon or amorphous silicon is deposited on an insulating substrate 1 and patterned as shown in the figure. The thin film serves as the channel part and source/drain electrodes of 'rlFT, as well as detailed electrodes for creating capacitance.
Next, a gate insulating film 3 is formed, and a scanning line 4 which also serves as a gate charge amount is formed thereon. Is the material polysilicon T? In the case of T, polysilicon or a high melting point metal is used, and in the case of amorphous silicon TIFT, a normal metal or a transparent conductive material is used. An interlayer insulation film 5 is deposited on this, and a contact hole is opened for one pixel electrode 6.
The substrate forming the data line 7 and the data line 7 is an active matrix substrate. This substrate is opposed to another substrate having a common electrode via a space of several μm, and a liquid crystal is sealed in this space to form the next BZ active matrix panel.

第3図は、N型のMO8千ヤパシタのゲート電圧依存性
を示し次ものである。ゲート電圧7Gがしきい値電圧v
thを超えると容量は増大しQ6となりしtい値電圧以
下では重なり容量a gso  の入となる。従ってv
O>vthの領埴でMO8容量を使うことが望ましいが
1本実施例にシいては第1図(6)の前段の走査線4の
下に作り込んだMOEi容量けTFlと同じ導電型であ
り1例えばN型の場合にはTFTが0FIP している
通常の状態でけla<VthであるためKOgllOの
入の容量となる。しかし、ゲート膜の厚さは液晶の封入
される空間に対して十分薄いため、単位直積あ几りの容
量bt大きくなり第1図b)K示すようなパターンの重
なり容量a gs。
FIG. 3 shows the gate voltage dependence of an N-type MO8,000 capacitor. Gate voltage 7G is threshold voltage v
When the voltage exceeds th, the capacitance increases to Q6, and below the threshold voltage t, the capacitance becomes an overlapping capacitance a gso . Therefore v
It is desirable to use an MO8 capacitor in the range of O>vth, but in this embodiment, the MOEi capacitor built under the scanning line 4 in the previous stage in FIG. 1 (6) is of the same conductivity type as TFl. Yes 1 For example, in the case of N type, in the normal state where the TFT is 0FIP, Kla<Vth, so the capacitance is KOgllO. However, since the thickness of the gate film is sufficiently thin relative to the space in which the liquid crystal is sealed, the capacitance bt of the unit direct product becomes large, resulting in the overlapping capacitance a gs of the pattern as shown in FIG. 1 b) K.

の入でも1画素電9@6によって駆動される液晶の容量
の30〜50%糧度の容量となる。このMOB容量は液
晶の容量と並列に付加されるため、見かけ上液晶の時定
数が増大し、表示性能が大巾に向上する。これを第4図
を用いて説明する。この図はアクティブマトリクスパネ
ルの各部の電位を示す図であり、横軸に時刻、縦軸に電
位をとっである。周知のように、NTBCのビデオ信号
はインターレースされた2つのフィールド、すなわち奇
数フィールドと偶数フィールドによって17し−ムが構
成され1つの8面が完成される。液晶は交流駆動しなく
てはならない几め、データ線の信号は42のよ5に交流
反転させ几ものを用いる。
Even with the input voltage, the capacity becomes 30 to 50% of the capacity of the liquid crystal driven by the one pixel electrode 9@6. Since this MOB capacitor is added in parallel with the capacitance of the liquid crystal, the time constant of the liquid crystal appears to increase, and the display performance is greatly improved. This will be explained using FIG. 4. This figure is a diagram showing the potential of each part of the active matrix panel, with time on the horizontal axis and potential on the vertical axis. As is well known, the NTBC video signal consists of 17 frames made up of two interlaced fields, ie, an odd field and an even field, to complete one 8-frame. Since the liquid crystal must be driven with alternating current, the signal on the data line is inverted with alternating current as in 42.

41け走査線の信号であり、NチャネルのTFTで駆動
する場合にはこのようなパルスが必要となる。44及び
45けそれぞれ従来例と本発明の実施例における画素電
極の電経であり、43け共通電極の電位である。この共
通電極と画素電極の間の電位差が液晶に印加される電圧
である。時刻t。
This is a signal for 41 scanning lines, and such a pulse is required when driving an N-channel TFT. Numbers 44 and 45 are the electric currents of the pixel electrodes in the conventional example and the embodiment of the present invention, respectively, and number 43 is the potential of the common electrode. The potential difference between this common electrode and the pixel electrode is the voltage applied to the liquid crystal. Time t.

fJvららまでを奇数フィールド%t、からt6までを
偶数フィールドとすると、まず奇数フィール、ドにおい
て時刻t、においてT F T hZ ON L、画素
電極にデータ線の信号が書き込まれ1時刻t8において
TFTが0IFFするとある時定数で画素電極電位は共
通電極電位に向かって放電する。同様に偶数フィールド
においても1時刻t4においてTF’J’がONし1画
素電極にデータ線の信号b−書き込まれ、゛時刻t、に
おいてTIFTがOFFすると画素電極電位は共通電極
電位に向かって放電していく。斜線で示し1部分は本実
施において液晶に印加されろ電圧であり、従来例に比べ
て時定数が長くなう次ことにより、より大ぎな電圧を印
加することができることがわかる。この究めコントラス
ト比が増大する。まft1M0B容景とTFTのドレイ
ン電極との間の配線部は第1回顧のようにデータ線と画
素電極の間に配置することにより、このす針量からもれ
る光を遮断する働きもあるtめ、コントラスト比を増大
させるとともに1画像のきれがよくなる。さらに、温度
の変化に対して液晶の時定数が多少変動しても、付加し
7tMOE+容量は変化しないため第3図の斜線部の面
積はあまり変動しない。
Assuming that fJv et al. is an odd field %t, and t6 is an even field, first, in the odd field, at time t, T F T hZ ON L, the data line signal is written to the pixel electrode, and at time t8, the TFT When becomes 0IFF, the pixel electrode potential discharges toward the common electrode potential with a certain time constant. Similarly, in the even field, TF'J' is turned on at time t4 and the data line signal b is written to one pixel electrode, and when TIFT is turned off at time t, the pixel electrode potential is discharged toward the common electrode potential. I will do it. The shaded part is the voltage applied to the liquid crystal in this embodiment, and it can be seen that a larger voltage can be applied because the time constant is longer than in the conventional example. This increases the contrast ratio. By placing the wiring between the FT1M0B image and the drain electrode of the TFT between the data line and the pixel electrode as in the first review, it also serves to block light leaking from this wire. Therefore, the contrast ratio is increased and the sharpness of one image is improved. Furthermore, even if the time constant of the liquid crystal changes somewhat with respect to temperature changes, the additional 7tMOE+capacitance does not change, so the area of the shaded portion in FIG. 3 does not change much.

すなわち、広い温度範囲で再現性のよい表示画面を得る
ことができる。その上、フリヴカーも従来例に対して3
〜5d′B下がることが出願人の実験で確かめられ比。
That is, a display screen with good reproducibility can be obtained over a wide temperature range. Moreover, Frivkar also has 3 points compared to the conventional example.
Applicant's experiments have confirmed that the ratio decreases by ~5d'B.

これけ奇数フィールドと偶数フィールドでのTIPTの
書き退入及び保持における非対称な動作の影響をうけに
くくなる次めである。
This makes the TIPT less susceptible to asymmetric operation in writing and retaining in odd and even fields.

〔実施例2〕 第5図b)は本発明の第2の実施例におけるアクティブ
マトリクスパネルの平面図であり、同図φ)及び(6)
はそれぞれ同図ヒ)のに−B及びO−Dにおける断面図
である。このアクティブマトリクスパネルは第1の実施
例と全く同じ工場を月いて製造することができる。61
〜67けそれぞれ第1図の1〜7に対応してかり、61
は絶縁基板、62けポリシリコンマ九はアモルファスシ
リコンの薄膜、63けゲート絶縁膜、64け走査線、6
5は眉間絶縁膜、66け画素電極、67けデータ線であ
る。透過型の場合は、66の画素電極には透明導電膜を
用い、67のデータ線には画素電事と同じ透明導電膜ま
念は金属の薄膜を用いる。
[Example 2] Fig. 5b) is a plan view of an active matrix panel in a second embodiment of the present invention, and φ) and (6) in the same figure are
are sectional views taken along the lines -B and OD in the same figure, respectively. This active matrix panel can be manufactured in exactly the same factory as the first embodiment. 61
~67 numbers correspond to numbers 1 to 7 in Figure 1, respectively, and 61
62 is an insulating substrate, 62 is a polysilicon film, 6 is an amorphous silicon thin film, 63 is a gate insulating film, 64 is a scanning line, 6
5 is an insulating film between the eyebrows, 66 pixel electrodes, and 67 data lines. In the case of a transmission type, a transparent conductive film is used for the pixel electrode 66, and a thin metal film is used for the data line 67, which is the same transparent conductive film as the pixel electrode.

本実施例においては第1の実施例と同じく、前段の走査
線64の下にTIFTと同じ導電型のMO8容量を作り
込んであるため、T F T hs 0FIP してい
る通常の状態では重なり容量のみhz有効である。
In this embodiment, as in the first embodiment, an MO8 capacitor of the same conductivity type as the TIFT is built under the scanning line 64 in the previous stage, so in the normal state of T F T hs 0FIP, there is an overlap capacitance. Only Hz is valid.

しかし1本実施例にきいては、走査線64が図4− r
a>のようにデータ線と平行につき出た形状となってお
り、この部分にもMO8容量を作り込むことb;できる
次め、第1の実施例の約2倍の容量を付加することがで
きる。したがってより広い温度範囲で、よりコントラス
ト比が大きくフリッカ−の少ない高品質な表示画面を得
ることf)iで鎗る。
However, in one embodiment, the scan line 64 is
It has a shape that extends parallel to the data line as shown in the figure above, and an MO8 capacitor can also be built into this part. can. Therefore, it is possible to obtain a high quality display screen with a larger contrast ratio and less flicker over a wider temperature range.

しかも1図4−μ)のように画素電極とデータ線のすき
間を覆うようKMO8容量を作り込むことにより、この
すき間からもれる光を遮断することができ1.″:Iン
トラスト比の増大に寄与する。
Moreover, by building a KMO8 capacitor to cover the gap between the pixel electrode and the data line as shown in Figure 4-μ), light leaking through this gap can be blocked.1. ″: Contributes to an increase in the intra-intrast ratio.

〔実施例3〕 第6図Ca)は本発明の第3の実施例Kかける7クテイ
プマトリクスパネルの平面図であり、同図の)及び(c
)はそれぞれ同図上)のA−B及びO−Dにおける断面
図である。本実施例は第1および第2の実施例と異なり
、TIF’E’と異なる導電シのMO8容量を作り込む
。例えば、0M0a型のドライバーを内置し几アク≠イ
ブマトリクスパネルなどには有効である。
[Example 3] FIG. 6 Ca) is a plan view of a 7-cut tape matrix panel according to the third embodiment of the present invention, and FIG.
) are sectional views taken along AB and OD of the upper part of the figure, respectively. This embodiment differs from the first and second embodiments in that an MO8 capacitor with a conductivity different from TIF'E' is created. For example, it is effective for a matrix panel with a 0M0a type driver installed internally.

第5図を用いて本実施例のアクティブマトリクスパネル
の構造を説明する。まず絶縁基板81上にポリシリコン
またはアモルファスシリコン薄膜82及び88をデポジ
ットし図のようにパタ゛−二ングする。82けTFTの
チャネル部及びソースドレイン電極となり、88はMO
日容量を作り込む念めの電極となる。次にゲート絶縁膜
83を形成し、その上にゲート電極を兼ねる走査線84
を形成する。その後選択的にイオン注入を行ない、82
をNチャネルT’FTとし、88をPチャネルのMO8
#ヤパシタとする。以後の工程は実施例1と同じで、8
5け眉間絶縁膜、86け画素電監87けデータ線である
The structure of the active matrix panel of this example will be explained using FIG. First, polysilicon or amorphous silicon thin films 82 and 88 are deposited on an insulating substrate 81 and patterned as shown in the figure. This becomes the channel part and source/drain electrode of 82 TFTs, and 88 is the MO
It serves as a precautionary electrode to build up daily capacity. Next, a gate insulating film 83 is formed, and a scanning line 84 that also serves as a gate electrode is formed thereon.
form. After that, selective ion implantation is performed, 82
is an N-channel T'FT, and 88 is a P-channel MO8.
#Yapashita. The subsequent steps are the same as in Example 1.
There are 5 glabellar insulation films, 86 pixel electrodes, and 87 data lines.

本実施例において#−1tT’FTとMotif容量の
導電m ht aなりている。PチャネルのMOBJ?
+パシタのゲート電圧依存性は第3図のNチャネルの場
合と対称で、yo (V tんでCo 、 Wa ) 
V tんでa gso  となる。従りてTFTのOF
Fする通常の状態では、vo<VtPL−t’あるから
、電極88と走査@84の重なっ比面積がすべて容量の
電極として働き、°本来のMO日容fcoが付加される
ことになる。この容1の犬弾さけ、画素電極86によっ
て駆動される液晶の容量の100〜200チ程度となり
、第1や第2の実施例に比べてけるかに大きい。従りて
その効果も大きくなる。ま九、前段の走査線が選択され
る期間は、MO日容量はOFF して重なり容量0g5
oの入となる友め、走査線の波形をなまらせることもな
く、容量を付加したことくよって駆動状態は変化しない
In this embodiment, the conductivity m ht a of #-1tT'FT and Motif capacitance is used. P channel MOBJ?
The gate voltage dependence of the + pacitor is symmetrical to that of the N channel shown in Figure 3, and is yo (Co, Wa at Vt).
V t becomes a gso. Therefore, the OF of TFT
In the normal state of F, since vo<VtPL-t', the overlapping specific area of the electrode 88 and the scan@84 all acts as a capacitance electrode, and the original MO daily volume fco is added. This capacitance of 1 is about 100 to 200 inches of the capacitance of the liquid crystal driven by the pixel electrode 86, which is much larger than that of the first and second embodiments. Therefore, the effect becomes greater. 9. During the period when the previous scanning line is selected, the MO daily capacity is OFF and the overlap capacity is 0g5.
As a friend of o, the waveform of the scanning line is not blunted, and the driving state does not change due to the addition of capacitance.

〔発明の効果〕〔Effect of the invention〕

以上述べ比ようK、本発明によるアクティブマトリクス
パネルは工程を増やすことなく、画素に容量を作り込む
ことができる。容量を付加することkより、コントラス
ト比が増大し、フリッカ−は減少し、広い温習範囲で再
現性のよい画面を得ることができる。ま几、データ線と
画素電極の容置結合によるクロストークや1画面内での
絵素のバッツ千をおさえる効果もあり、総合的に画質は
向上する。
As stated above, the active matrix panel according to the present invention allows capacitance to be built into pixels without increasing the number of steps. By adding capacitance, the contrast ratio increases, flicker decreases, and a screen with good reproducibility can be obtained over a wide training range. This also has the effect of suppressing crosstalk due to the capacitive coupling of the data line and pixel electrode, and suppressing the number of pixels in one screen, improving the overall image quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α)け7クテイプマトリクスパネルの構造を示
す平面図、第1図の)、(c)はそのか方図。 第2図は従来の7クテイプマトリクスパネルの構造を示
す平面図。 第3図はNチャネルのMO8容量のゲート電圧依存性を
示す図。 第4図は7クテイプマトリクスパネルの各部の電位を示
す図。 第5 図b)、第6図社)はアクティブマトリクスパネ
ルの構造を示す平百図、第5図(6)、 (c)、第6
図のL(c)はその断面図。 2.62.82・・・・・・・・ポリシリコーンまたは
アモルファスシリコン薄膜 3.63.85・・・・・・・・ゲート絶縁膜4.64
.84・・・・・・・・走査線取  上 出頓人 セイコーエプソン株式会社 (b) 第1図 茅2図 ツ―卜を五− 第3図 第4図 (a)(す (b) 第5図 (び) (c) dノ 第6図
FIG. 1(α) is a plan view showing the structure of a cut-tape matrix panel, and FIG. 1) and (c) are side views thereof. FIG. 2 is a plan view showing the structure of a conventional seven-tape matrix panel. FIG. 3 is a diagram showing the dependence of N-channel MO8 capacitance on gate voltage. FIG. 4 is a diagram showing the potential of each part of the 7-cut tape matrix panel. Figure 5 (b), Figure 6) show the structure of the active matrix panel, Figure 5 (6), (c), 6
L(c) in the figure is a cross-sectional view. 2.62.82...Polysilicon or amorphous silicon thin film 3.63.85...Gate insulating film 4.64
.. 84......Scanning line control Seiko Epson Co., Ltd. (b) Figure 5 (bi) (c) Figure 6 of d

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁基板上に設けられた、走査線群、データ線群
、及び前記走査線とデータ線の支点に設けられた薄膜ト
ランジスタ(以下、TFTと略記)アレイによって画素
電極を駆動し、前記画素電極と対向電極との間の電界で
液晶を駆動して成るアクティブマトリクスパネルにおい
て、前記画素電極の前段の走査線の上部または下部にT
FTのチャネル部と同じ導電膜をゲート絶縁膜を介して
配置し、前記導電膜が前記画素電極に接続されていろこ
とを特徴とするアクティブマトリクスパネル。
(1) A pixel electrode is driven by a scanning line group, a data line group, and a thin film transistor (hereinafter abbreviated as TFT) array provided at the fulcrum of the scanning line and data line, which are provided on an insulating substrate, and the pixel electrode is driven. In an active matrix panel in which a liquid crystal is driven by an electric field between an electrode and a counter electrode, a T is provided above or below the scanning line in front of the pixel electrode.
An active matrix panel characterized in that a conductive film similar to that of a channel portion of an FT is disposed via a gate insulating film, and the conductive film is connected to the pixel electrode.
(2)前記導電膜の導電型が前記TFTと同じであるこ
とを特徴とする特許請求の範囲第1項記載のアクティブ
マトリクスパネル。
(2) The active matrix panel according to claim 1, wherein the conductivity type of the conductive film is the same as that of the TFT.
(3)前記データ線と前記画素電極の間のすき間の一部
を前記導電膜または走査線の一部を用いて覆うような配
置としたことを特徴とする特許請求の範囲第2項記載の
アクティブマトリクスパネル。
(3) The arrangement is such that a part of the gap between the data line and the pixel electrode is covered using a part of the conductive film or the scanning line. active matrix panel.
(4)前記導電膜の導電型が前記TFTと異なることを
特徴とする特許請求の範囲第1項記載のアクティブマト
リクスパネル。
(4) The active matrix panel according to claim 1, wherein the conductivity type of the conductive film is different from that of the TFT.
JP61215418A 1986-09-12 1986-09-12 Liquid crystal display Expired - Lifetime JPH0823640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215418A JPH0823640B2 (en) 1986-09-12 1986-09-12 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215418A JPH0823640B2 (en) 1986-09-12 1986-09-12 Liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23270795A Division JP2626638B2 (en) 1995-09-11 1995-09-11 Active matrix panel

Publications (2)

Publication Number Publication Date
JPS6370832A true JPS6370832A (en) 1988-03-31
JPH0823640B2 JPH0823640B2 (en) 1996-03-06

Family

ID=16672007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215418A Expired - Lifetime JPH0823640B2 (en) 1986-09-12 1986-09-12 Liquid crystal display

Country Status (1)

Country Link
JP (1) JPH0823640B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227129A (en) * 1988-03-08 1989-09-11 Matsushita Electron Corp Picture display device
JPH01300225A (en) * 1988-05-27 1989-12-04 Seiko Instr Inc Thin film semiconductor device
JPH0244317A (en) * 1988-08-05 1990-02-14 Hitachi Ltd Liquid crystal display device with auxiliary capacity
JPH02176725A (en) * 1988-12-28 1990-07-09 Sony Corp Liquid crystal display device
JPH02245740A (en) * 1989-03-20 1990-10-01 Hitachi Ltd liquid crystal display device
JPH0389324A (en) * 1989-09-01 1991-04-15 Matsushita Electron Corp Image display device
EP0434161A2 (en) * 1989-12-22 1991-06-26 Koninklijke Philips Electronics N.V. Active matrix electro-optic display device with storage capacitors and projection color apparatus employing same
JPH04335617A (en) * 1991-05-13 1992-11-24 Sharp Corp Active matrix substrate
US5305128A (en) * 1989-12-22 1994-04-19 North American Philips Corporation Active matrix electro-optic display device with storage capacitors and projection color apparatus employing same
EP0664473A1 (en) * 1993-12-24 1995-07-26 Kabushiki Kaisha Toshiba Active matrix type display device and manufacturing method thereof
JPH07281211A (en) * 1994-04-11 1995-10-27 Furontetsuku:Kk Electro-optic element
US5546204A (en) * 1994-05-26 1996-08-13 Honeywell Inc. TFT matrix liquid crystal device having data source lines and drain means of etched and doped single crystal silicon
US5615026A (en) * 1992-01-17 1997-03-25 Sharp Kabushiki Kaisha Method of driving antiferroelectric liquid crystal device
US5917225A (en) * 1992-03-05 1999-06-29 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor having specific dielectric structures
US5962870A (en) * 1991-08-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
US6147375A (en) * 1992-02-05 2000-11-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
JP2001281704A (en) * 2000-01-26 2001-10-10 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
JP2008026908A (en) * 2006-07-24 2008-02-07 Samsung Electronics Co Ltd Liquid crystal display
US8017456B2 (en) 2000-01-26 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2019047135A (en) * 2000-02-22 2019-03-22 株式会社半導体エネルギー研究所 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895383A (en) * 1981-11-30 1983-06-06 株式会社東芝 Matrix type display
JPS6236687A (en) * 1985-08-12 1987-02-17 松下電器産業株式会社 Display unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895383A (en) * 1981-11-30 1983-06-06 株式会社東芝 Matrix type display
JPS6236687A (en) * 1985-08-12 1987-02-17 松下電器産業株式会社 Display unit

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227129A (en) * 1988-03-08 1989-09-11 Matsushita Electron Corp Picture display device
JPH01300225A (en) * 1988-05-27 1989-12-04 Seiko Instr Inc Thin film semiconductor device
JPH0244317A (en) * 1988-08-05 1990-02-14 Hitachi Ltd Liquid crystal display device with auxiliary capacity
JPH02176725A (en) * 1988-12-28 1990-07-09 Sony Corp Liquid crystal display device
JPH02245740A (en) * 1989-03-20 1990-10-01 Hitachi Ltd liquid crystal display device
JPH0389324A (en) * 1989-09-01 1991-04-15 Matsushita Electron Corp Image display device
US6235546B1 (en) 1989-12-22 2001-05-22 North American Philips Corporation Method of forming an active matrix electro-optic display device with storage capacitors
US5305128A (en) * 1989-12-22 1994-04-19 North American Philips Corporation Active matrix electro-optic display device with storage capacitors and projection color apparatus employing same
EP0434161A2 (en) * 1989-12-22 1991-06-26 Koninklijke Philips Electronics N.V. Active matrix electro-optic display device with storage capacitors and projection color apparatus employing same
US5929463A (en) * 1989-12-22 1999-07-27 North American Philips Corporation Active matrix electro-optic display device with storage capacitors and projection color apparatus employing same
JPH04335617A (en) * 1991-05-13 1992-11-24 Sharp Corp Active matrix substrate
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US5962870A (en) * 1991-08-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices
US5615026A (en) * 1992-01-17 1997-03-25 Sharp Kabushiki Kaisha Method of driving antiferroelectric liquid crystal device
US6147375A (en) * 1992-02-05 2000-11-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US6476447B1 (en) 1992-02-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device including a transistor
US5917225A (en) * 1992-03-05 1999-06-29 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor having specific dielectric structures
EP0664473A1 (en) * 1993-12-24 1995-07-26 Kabushiki Kaisha Toshiba Active matrix type display device and manufacturing method thereof
JPH07281211A (en) * 1994-04-11 1995-10-27 Furontetsuku:Kk Electro-optic element
US5546204A (en) * 1994-05-26 1996-08-13 Honeywell Inc. TFT matrix liquid crystal device having data source lines and drain means of etched and doped single crystal silicon
JP2001281704A (en) * 2000-01-26 2001-10-10 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
US8017456B2 (en) 2000-01-26 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2019047135A (en) * 2000-02-22 2019-03-22 株式会社半導体エネルギー研究所 Semiconductor device
JP2008026908A (en) * 2006-07-24 2008-02-07 Samsung Electronics Co Ltd Liquid crystal display
KR101358827B1 (en) * 2006-07-24 2014-02-06 삼성디스플레이 주식회사 Liquid crystal display

Also Published As

Publication number Publication date
JPH0823640B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JPS6370832A (en) liquid crystal display device
US7116302B2 (en) Process of operating active matrix display device having thin film transistors
US6075580A (en) Active matrix type liquid crystal display apparatus with conductive light shield element
US6693301B2 (en) Electro-optical device and method of driving and manufacturing the same
US4486748A (en) Segmented type liquid crystal display and driving method thereof
JP2001133808A (en) Liquid crystal display device and driving method thereof
US7071910B1 (en) Electrooptical device and method of driving and manufacturing the same
JPH09113933A (en) Thin-film transistor liquid crystal display element
US7253440B1 (en) Semiconductor device having at least first and second thin film transistors
JPH0473929B2 (en)
JPS62218987A (en) matrix panel
JP2755683B2 (en) Active matrix liquid crystal display
JPS6214152B2 (en)
JP2663941B2 (en) Active matrix panel
JPS61235820A (en) Active matrix panel
JP2626650B2 (en) Active matrix panel manufacturing method
JP2626638B2 (en) Active matrix panel
JP2737757B2 (en) Liquid crystal device
JPS623408B2 (en)
JP2003315768A (en) Liquid crystal device driving method and display system
JP2003337576A (en) Liquid crystal device, driving method thereof and display system
JP2551343B2 (en) Liquid crystal display
JPH07234420A (en) Active matrix liquid crystal display device
JPS6225731A (en) Driving method of liquid crystal display device
JPH08248444A (en) Display panel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term