[go: up one dir, main page]

JPS6365621B2 - - Google Patents

Info

Publication number
JPS6365621B2
JPS6365621B2 JP13721783A JP13721783A JPS6365621B2 JP S6365621 B2 JPS6365621 B2 JP S6365621B2 JP 13721783 A JP13721783 A JP 13721783A JP 13721783 A JP13721783 A JP 13721783A JP S6365621 B2 JPS6365621 B2 JP S6365621B2
Authority
JP
Japan
Prior art keywords
silicon oxide
substrate
oxide film
boric acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13721783A
Other languages
Japanese (ja)
Other versions
JPS6033233A (en
Inventor
Hideo Kawahara
Hirotsugu Nagayama
Hisao Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP13721783A priority Critical patent/JPS6033233A/en
Priority to DE19833332995 priority patent/DE3332995A1/en
Priority to FR8314651A priority patent/FR2549035A1/en
Priority to GB08324760A priority patent/GB2144733B/en
Priority to DD83254853A priority patent/DD215996A5/en
Priority to US06/538,289 priority patent/US4468420A/en
Publication of JPS6033233A publication Critical patent/JPS6033233A/en
Publication of JPS6365621B2 publication Critical patent/JPS6365621B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は基材の表面に酸化珪素被膜を形成させ
る方法に関する。 更に詳しくは、基材を、珪弗化水素酸の酸化珪
素飽和水溶液にホウ酸を添加した処理液に浸漬す
ることにより、該基材表面上に酸化珪素被膜を形
成させる方法の改善に関する。 今日、いろいろな材料の表面を酸化珪素膜で被
覆することが広く行なわれている。例えばガラス
表面に酸化チタン膜と酸化珪素の交互多層膜を形
成することにより、表面の反射効果を減じること
が古くから行なわれている。あるいは金属・合金
材料の保護膜としてその表面に酸化珪素被膜を形
成させることも広く行なわれている。更には、液
晶表示パネル、太陽電池用基板ガラスにソーダラ
イムガラスまたはホウ珪酸ガラスなどアルカリ含
有ガラスを用いる場合、ガラスからのアルカリ成
分の溶出を防止する目的で、これらガラスの表面
を酸化珪素膜で被覆することが行なわれる。特に
ガラスからのアルカリ成分の溶出防止は、液晶表
示あるいは太陽電池の寿命を維持する上で、欠く
ことのできない技術となつている。 ガラスの表面に酸化珪素被膜を形成させるに
は、従来より真空蒸着・スパツター・CVDある
いは浸漬塗布法(デイツピング法)等の方法が多
く用いられてきた。しかしながら、これらの方法
は装置あるいは付帯設備が高価であるため、酸化
珪素被覆に要するコストが高くなる他、小さなガ
ラスしか処理できないという欠点があつた。これ
ら従来の酸化珪素被膜形成方法の欠点に鑑み、珪
弗化水素酸の酸化珪素飽和水溶液にホウ酸を添加
した処理液を用いた新しい酸化珪素被膜形成方法
が提案されている(特開和57−196744)。 しかしながら、この方法では所要の装置は簡便
であり、かつ大きなガラスへの酸化珪素被膜形成
も可能であるが、該被膜の形成速度を高めるため
に処理液に添加するホウ酸量を増加すると、酸化
珪素被膜のヘイズ率が高くなるという欠点があつ
た。更には添加するホウ酸量が多いと処理液中に
酸化珪素から成る沈澱を生じ、前述被膜形成速度
が急速に低下することにより処理液の効能を失う
という問題もあつた。 本発明者らは、かかる問題点に鑑み鋭意研究の
結果、処理液を循環使用し、この間に濾過工程を
導入することでホウ酸量を増加しても、すなわち
酸化珪素被膜形成速度を高めても該被膜のヘイズ
率は高くならず、更には処理液中で沈澱が発生す
るのを防止できることを見出した。 すなわち本発明は、珪弗化水素酸の酸化珪素飽
和水溶液にホウ酸を添加した処理液に、基材を浸
漬することにより該基材表面に酸化珪素被膜を形
成させる方法において(イ)処理工程が、浸漬槽から
処理液を一定量づつ連続的に汲出した後フイルタ
ーで連続的に濾過し再び浸漬槽に戻すことから成
る連続式の処理工程であり、(ロ)この処理工程にお
いて、全処理液量に対する1分間当りの処理液循
環量の割合が3%以上であり、(ハ)かつ、必要なホ
ウ酸量を水溶液とし、処理液中に連続的に注入・
混合すること等を特徴とする。 この場合フイルターメツシユは1.5ミクロン径
以下が望ましく、これ以上では濾過の効果は目的
のヘイズ率を得るのが難かしい。また循環式連続
処理工程において全処理液量に対する1分間当り
の処理液循環量の割合は3%以上の範囲が効果的
である。この循還量の割合が小さすぎると、処理
液の一巡する間の時間が長くなる結果、この間で
処理液中に酸化珪素の沈澱を生じフイルターの目
づまりが容易に起る。すなわち連続処理が不能と
なる。このように珪弗化水素酸の酸化珪素飽和水
溶液はホウ酸を添加することにより酸化珪素を過
飽和に含んだ状態となり、従つて長時間の放置に
より処理液中に酸化珪素の沈澱を生ずる。このた
め処理液に適切な濾過間隔が必要となる。ホウ酸
の量は珪弗化水素酸1molに対して1.2×10-2〜2
×10-2molであることが望ましい。 また浸漬槽において処理液の流れが基材表面に
対し平行な層流であることが必要で、流れが乱流
になると酸化珪素被膜にムラムラした膜厚不均一
が発生するため好ましくない。更に、この場合基
材表面に対する処理液の流れの相対的な速度が、
速すぎても膜形成速度が低下するため、好ましく
ない。 なお、本発明において基材は単なるガラスの他
セラミツクス、金属(鉄板、シリコン基材他)、
あるいは有機材料(プラスチツク材)であつても
よい。 以下に本発明の実施例を説明する。 実施例 1 大きさが100(mm)×100(mm)の厚味1(mm)のソ
ーダライムガラスを0.5%濃度(重量%)のHF水
溶液中に10分間浸漬した後、十分に洗浄し乾燥し
た。次いで当該ガラスを図1に示す浸漬槽に浸漬
した。浸漬槽は外槽1と内槽2から成り、内槽と
外槽の間には水3が満してある。実験では、この
水の温度が35℃となるよう、水はヒーター4で加
熱され、かつ温度分布均一化のため撹拌器5で撹
拌されている。内槽は前部6、中部7、後部8か
ら成り、各部には酸化珪素を飽和した2.0mol/
濃度の珪弗化水素酸水溶液と0.5mol/濃度
のホウ酸水溶液を容量比で25:1で混合した処理
液が満してある。前述のHF処理したガラス9は
内槽中央部7に垂直状に浸漬・保持されている。
内槽後部8の処理液は循環ポンプ10により一定
量づつ汲出されフイルター11を経て、内槽前部
6へ戻される。この循環系において処理液の総量
は3であり、内槽後部には0.1ml/分の割合で
0.5mol/の濃度のホウ酸水溶液12を連続的
に滴下している。 この条件下において、フイルターメツシユを
0.6μ、1.2μ、1.5μ、2.5μ及びフイルターなし(す
なわち従来法)と使い分け、各フイルターごとに
処理液の循環量を60、90、120、240ml/分と変更
し、得られた酸化珪素被膜の形成速度及びヘイズ
率(%)を比較した。なお、ヘイズ率は酸化珪素
被膜の厚味を1400Åにそろえて測定・比較した。 結果は表1、表2の通りであり、フイルターメ
ツシユについては1.5ミクロン以下の大きさで、
循環流量の割合については90ml/分すなわち全処
理液量に対し1分間当りの循環量が3%以上の時
ヘイズ率(%)を0.5%以下にすることができる。
すなわち表1、表2に本発明の効果を見ることが
できる。
The present invention relates to a method for forming a silicon oxide film on the surface of a substrate. More specifically, the present invention relates to an improvement in a method of forming a silicon oxide film on the surface of a substrate by immersing the substrate in a treatment solution prepared by adding boric acid to a saturated silicon oxide aqueous solution of hydrofluorosilicic acid. Nowadays, coating the surfaces of various materials with silicon oxide films is widely practiced. For example, it has long been practiced to reduce the reflection effect of the surface by forming alternating multilayer films of titanium oxide and silicon oxide on the glass surface. Alternatively, it is widely practiced to form a silicon oxide film on the surface of metal/alloy materials as a protective film. Furthermore, when alkali-containing glasses such as soda lime glass or borosilicate glass are used for substrate glass for liquid crystal display panels and solar cells, the surfaces of these glasses are coated with a silicon oxide film in order to prevent the elution of alkaline components from the glass. Coating is performed. In particular, preventing the elution of alkaline components from glass has become an indispensable technology for maintaining the lifespan of liquid crystal displays or solar cells. To form a silicon oxide film on the surface of glass, many methods such as vacuum evaporation, sputtering, CVD, and dip coating have been used. However, these methods have the disadvantage that the equipment or ancillary equipment is expensive, which increases the cost required for coating with silicon oxide, and that only small pieces of glass can be processed. In view of these shortcomings of conventional silicon oxide film forming methods, a new method for forming silicon oxide films has been proposed using a treatment solution in which boric acid is added to a silicon oxide saturated aqueous solution of hydrosilicofluoric acid (JP-A-57 −196744). However, although this method requires simple equipment and is capable of forming a silicon oxide film on large pieces of glass, increasing the amount of boric acid added to the processing solution to increase the rate of formation of the film causes oxidation. The drawback was that the haze rate of the silicon coating was high. Furthermore, if the amount of boric acid added is large, a precipitate of silicon oxide is formed in the treatment solution, which causes a rapid decrease in the rate of film formation, resulting in a loss of effectiveness of the treatment solution. In view of these problems, the present inventors conducted intensive research and found that by circulating the treatment liquid and introducing a filtration step during this period, even if the amount of boric acid was increased, that is, the rate of silicon oxide film formation could be increased. It has also been found that the haze rate of the coating does not increase, and furthermore, it is possible to prevent precipitation from occurring in the processing solution. That is, the present invention provides a method for forming a silicon oxide film on the surface of a substrate by immersing the substrate in a treatment solution in which boric acid is added to a saturated silicon oxide aqueous solution of hydrosilicofluoric acid, including (a) treatment step. This is a continuous processing process that consists of continuously pumping out a certain amount of the processing liquid from the immersion tank, filtering it continuously with a filter, and returning it to the immersion tank. The ratio of the amount of processing solution circulated per minute to the amount of solution is 3% or more, and (c) and the necessary amount of boric acid is made into an aqueous solution and continuously injected into the processing solution.
It is characterized by mixing. In this case, the filter mesh preferably has a diameter of 1.5 microns or less; if the diameter is larger than this, it is difficult to obtain the desired haze rate. In addition, in the continuous circulation treatment process, it is effective to set the ratio of the amount of circulating processing liquid per minute to the total amount of processing liquid in a range of 3% or more. If this rate of circulation is too small, the time it takes for the treatment liquid to circulate through one cycle becomes longer, and as a result, silicon oxide precipitates in the treatment liquid during this time, easily clogging the filter. In other words, continuous processing becomes impossible. Thus, by adding boric acid to a saturated silicon oxide aqueous solution of hydrosilicofluoric acid, the solution becomes supersaturated with silicon oxide, and therefore, when left for a long time, silicon oxide precipitates in the treatment solution. For this reason, appropriate filtration intervals are required for the processing liquid. The amount of boric acid is 1.2×10 -2 to 2 per mol of hydrosilicofluoric acid.
It is desirable that the amount is ×10 -2 mol. In addition, the flow of the treatment liquid in the immersion tank must be a laminar flow parallel to the surface of the substrate, and turbulent flow is not preferable because it will cause unevenness and uneven thickness of the silicon oxide coating. Furthermore, in this case, the relative speed of the flow of the treatment liquid to the substrate surface is
If the speed is too high, the film formation rate decreases, which is not preferable. In addition, in the present invention, the base material is not only glass but also ceramics, metals (iron plate, silicon base material, etc.),
Alternatively, it may be an organic material (plastic material). Examples of the present invention will be described below. Example 1 A soda lime glass with a size of 100 (mm) x 100 (mm) and a thickness of 1 (mm) was immersed in a 0.5% concentration (wt%) HF aqueous solution for 10 minutes, then thoroughly washed and dried. did. Next, the glass was immersed in the immersion bath shown in FIG. The immersion tank consists of an outer tank 1 and an inner tank 2, and water 3 is filled between the inner tank and the outer tank. In the experiment, the water was heated with a heater 4 so that the temperature of this water was 35° C., and was stirred with a stirrer 5 to make the temperature distribution uniform. The inner tank consists of a front part 6, a middle part 7, and a rear part 8, and each part is filled with 2.0mol/silicon oxide.
It is filled with a treatment solution prepared by mixing a concentrated aqueous solution of hydrosilicic fluoric acid and an aqueous solution of boric acid with a concentration of 0.5 mol/concentration in a volume ratio of 25:1. The aforementioned HF-treated glass 9 is vertically immersed and held in the center portion 7 of the inner tank.
The processing liquid in the rear part 8 of the inner tank is pumped out in fixed amounts by a circulation pump 10, passed through a filter 11, and returned to the front part 6 of the inner tank. In this circulation system, the total amount of processing liquid is 3, and at the rear of the inner tank is pumped at a rate of 0.1ml/min.
A boric acid aqueous solution 12 with a concentration of 0.5 mol/min is continuously added dropwise. Under these conditions, the filter mesh
The silicon oxide obtained by using 0.6μ, 1.2μ, 1.5μ, 2.5μ and no filter (i.e. conventional method) and changing the circulation rate of the treatment liquid to 60, 90, 120, 240ml/min for each filter. The film formation speed and haze rate (%) were compared. The haze ratio was measured and compared with the thickness of the silicon oxide film being set to 1400 Å. The results are shown in Tables 1 and 2, and the size of the filter mesh is 1.5 microns or less.
Regarding the rate of circulation flow rate, when the circulation rate is 90 ml/min, that is, the circulation rate per minute is 3% or more of the total amount of treated liquid, the haze rate (%) can be reduced to 0.5% or less.
That is, the effects of the present invention can be seen in Tables 1 and 2.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明の実施例を示す循環系統説明
図である。 1……外槽、2……内槽、3……水、4……ヒ
ーター、5……撹拌器、6……内槽前部、7……
内槽中央部、8……内槽後部、9……ガラス、1
0……循環ポンプ、11……フイルター、12…
…ホウ酸水溶液。
FIG. 1 is an explanatory diagram of a circulation system showing an embodiment of the present invention. 1... Outer tank, 2... Inner tank, 3... Water, 4... Heater, 5... Stirrer, 6... Inner tank front, 7...
Center part of inner tank, 8...Rear part of inner tank, 9...Glass, 1
0...Circulation pump, 11...Filter, 12...
...boric acid aqueous solution.

Claims (1)

【特許請求の範囲】 1 基材を珪弗化水素酸の酸化珪素飽和水溶液に
ホウ酸を添加した処理液に浸漬することにより該
基材表面上に酸化珪素被膜を製造する方法におい
て、 (イ) ホウ酸水溶液を該処理液中に連続的に注入し
混合させ、 (ロ) 毎分処理液全量の3%以上の処理液をフイル
ターで連続的に炉過し再び処理液に戻すことを
特徴とする酸化珪素被膜の製造方法。 2 基材を処理液に浸漬する浸漬槽中の処理液
が、浸漬された基材表面に対して平行な層流とな
つて流れている特許請求の範囲第1項記載の酸化
珪素被膜の製造方法。
[Scope of Claims] 1. A method for producing a silicon oxide film on the surface of a substrate by immersing the substrate in a treatment solution in which boric acid is added to a saturated silicon oxide aqueous solution of hydrosilicofluoric acid. ) A boric acid aqueous solution is continuously injected and mixed into the processing liquid, and (b) 3% or more of the total amount of processing liquid is continuously filtered through a filter every minute and returned to the processing liquid. A method for producing a silicon oxide film. 2. Production of a silicon oxide film according to claim 1, wherein the treatment liquid in the immersion tank in which the substrate is immersed in the treatment liquid flows in a laminar flow parallel to the surface of the immersed substrate. Method.
JP13721783A 1983-07-14 1983-07-27 Preparation of glass coated with silicon oxide Granted JPS6033233A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13721783A JPS6033233A (en) 1983-07-27 1983-07-27 Preparation of glass coated with silicon oxide
DE19833332995 DE3332995A1 (en) 1983-07-14 1983-09-13 METHOD FOR PRODUCING A SILICON DIOXIDE COATING
FR8314651A FR2549035A1 (en) 1983-07-14 1983-09-14 Process for producing a silica coating on the surface of a substrate such as a sheet of glass containing an alkali metal
GB08324760A GB2144733B (en) 1983-07-14 1983-09-15 Methods of making silicon dioxide coatings
DD83254853A DD215996A5 (en) 1983-07-14 1983-09-15 METHOD FOR PRODUCING A SILICON DIOXIDE COATING
US06/538,289 US4468420A (en) 1983-07-14 1983-10-03 Method for making a silicon dioxide coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13721783A JPS6033233A (en) 1983-07-27 1983-07-27 Preparation of glass coated with silicon oxide

Publications (2)

Publication Number Publication Date
JPS6033233A JPS6033233A (en) 1985-02-20
JPS6365621B2 true JPS6365621B2 (en) 1988-12-16

Family

ID=15193519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13721783A Granted JPS6033233A (en) 1983-07-14 1983-07-27 Preparation of glass coated with silicon oxide

Country Status (1)

Country Link
JP (1) JPS6033233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105920U (en) * 1989-02-07 1990-08-23

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648296A (en) * 1987-06-30 1989-01-12 Nippon Sheet Glass Co Ltd Production of silicon dioxide film
JPS6417871A (en) * 1987-07-13 1989-01-20 Nippon Sheet Glass Co Ltd Production of silicon dioxide coated film
JPS6436770A (en) * 1987-07-30 1989-02-07 Nippon Sheet Glass Co Ltd Production of silicon dioxide film containing phosphorus
JPS6483670A (en) * 1987-09-28 1989-03-29 Nippon Sheet Glass Co Ltd Production of oxide film
JP2803355B2 (en) * 1990-09-29 1998-09-24 日本板硝子株式会社 Method for producing silicon dioxide coating
US5326720A (en) * 1990-10-25 1994-07-05 Nippon Sheet Glass Co., Ltd. Method for producing silicon dioxide film which prevents escape of Si component to the environment
JP2912457B2 (en) * 1991-02-01 1999-06-28 日本板硝子株式会社 Thin film capacitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105920U (en) * 1989-02-07 1990-08-23

Also Published As

Publication number Publication date
JPS6033233A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
DE2947821C2 (en)
DE1069847C2 (en) Reflective, translucent, conductive coatings on objects made of electrically non-conductive materials
DE3332995A1 (en) METHOD FOR PRODUCING A SILICON DIOXIDE COATING
US5132140A (en) Process for depositing silicon dioxide films
JPS6365621B2 (en)
US2168909A (en) Producing etched surfaces on aluminum
DE1931936A1 (en) Heat reflective glass and method of making the same
EP0510191A1 (en) Process for preparing silicon dioxide coating
JP2730249B2 (en) Method for producing silicon dioxide coating
JPH058274B2 (en)
JPH0367978B2 (en)
JPH03122030A (en) Surface treatment of glass
DE1496625C (en) Process for the production of slightly reflective surfaces on glass objects had good optical resolution
SU1315407A1 (en) Method for metal deposition on dielectric articles
JP3010239B2 (en) Method for selectively forming silicon dioxide film on plastic molding
JPS6231186Y2 (en)
SU1130619A1 (en) Solution for pretreatment of plastic surfaces before chemical copper cladding
JPH03112806A (en) Production of coating film of silicon dioxide and device therefor
JPH01178529A (en) Surface treatment of polyester
JPH0567709B2 (en)
KR19990003413A (en) Method of strengthening the front glass of cathode ray tube
DE2154606C3 (en) Phosphating solution for magnesium
JPH0762087B2 (en) Method for producing molded body of silicon dioxide-coated polycarbonate
JPS6125663B2 (en)
JPH0694368B2 (en) Method for producing silicon dioxide film