[go: up one dir, main page]

JPS6363051B2 - - Google Patents

Info

Publication number
JPS6363051B2
JPS6363051B2 JP57063128A JP6312882A JPS6363051B2 JP S6363051 B2 JPS6363051 B2 JP S6363051B2 JP 57063128 A JP57063128 A JP 57063128A JP 6312882 A JP6312882 A JP 6312882A JP S6363051 B2 JPS6363051 B2 JP S6363051B2
Authority
JP
Japan
Prior art keywords
magnetic
groove
wire
metal wire
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57063128A
Other languages
Japanese (ja)
Other versions
JPS58179313A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6312882A priority Critical patent/JPS58179313A/en
Publication of JPS58179313A publication Critical patent/JPS58179313A/en
Publication of JPS6363051B2 publication Critical patent/JPS6363051B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は磁気スケールの製造方法に係る。[Detailed description of the invention] The present invention relates to a method for manufacturing a magnetic scale.

従来の磁気スケールは非磁性基板上にメツキ、
蒸着あるいはスパツター等で磁性層を被着形成す
るかあるいは磁性粉末を塗布あるいは板状等の磁
性材料を被着形成することによつて製造してい
た。
Conventional magnetic scales are plated on a non-magnetic substrate.
They were manufactured by depositing a magnetic layer by vapor deposition or sputtering, by applying magnetic powder, or by depositing a plate-like magnetic material.

そして検出器を磁性材料の平面部に沿つて移動
させ、位置検出あるいは長さ測定等を行つてい
た。
Then, the detector was moved along the flat surface of the magnetic material to detect the position or measure the length.

しかしながら、検出精度を向上させるために磁
性材料の平面部を精度良く加工することが必要で
そのために精密研磨等を行うと製造コストが高く
なる欠点があつた。また製造コストを低減のため
グラインダーで研削すると、非磁性基板上に被着
形成された薄板状の磁性材料は熱的影響を受けて
非磁性基板から遊離し、精度良く研削することが
不可能であつた。
However, in order to improve the detection accuracy, it is necessary to precisely process the flat part of the magnetic material, and if precision polishing or the like is performed for this purpose, the manufacturing cost increases. In addition, when grinding with a grinder to reduce manufacturing costs, the thin plate-shaped magnetic material formed on the non-magnetic substrate becomes separated from the non-magnetic substrate due to thermal effects, making it impossible to grind with high precision. It was hot.

一方、研削加工を可能にするために磁性材料の
太い丸棒あるいは角棒を用いると、高価をCo元
素を用いた磁気特性の良好なFe−Cr−Co系ある
いはFe−Co−Mn−C系合金の場合、材料費が高
価となり望ましくない。
On the other hand, if a thick round bar or square bar of magnetic material is used to enable grinding, it is possible to use Fe-Cr-Co system or Fe-Co-Mn-C system which uses Co element and has good magnetic properties. In the case of alloys, the material costs are high and are not desirable.

本発明は上記の欠点を改良し、安価な磁気スケ
ールの製造方法を提供するものである。
The present invention improves the above-mentioned drawbacks and provides an inexpensive method of manufacturing a magnetic scale.

本発明の磁気スケールの製造方法は長方体の非
磁性ステンレス材の長手方向に平行な面のその長
手方向に沿つて溝を形成し磁気的に硬い磁性金属
線材を溝中の設置し、圧延を施して該線材と非磁
性ステンレス材とを圧着結合させて磁性金属線材
埋込み面を平面研削することを特徴とする磁気ス
ケールの製造方法である。
The manufacturing method of the magnetic scale of the present invention is to form a groove along the longitudinal direction of a rectangular non-magnetic stainless steel material on a plane parallel to the longitudinal direction, place a magnetically hard magnetic metal wire in the groove, and roll it. This method of manufacturing a magnetic scale is characterized in that the wire rod and the non-magnetic stainless steel material are bonded together by pressure bonding, and the surface on which the magnetic metal wire is embedded is ground.

磁性金属線材を埋込む基体は非磁性体であれば
Al、Cuあるいは黄銅のようなものでもかまわな
いが、加工性、強度、耐摩耗性および耐蝕性等を
考慮するとステンレス鋼が望ましく、日本工業規
格におけるSUS303あるいは304材が望ましい。
If the substrate in which the magnetic metal wire is embedded is non-magnetic,
Materials such as Al, Cu, or brass may be used, but stainless steel is preferable in terms of workability, strength, wear resistance, corrosion resistance, etc., and SUS303 or 304 materials according to Japanese Industrial Standards are preferable.

非磁性基体に堀る溝の巾は埋込む磁性金属線材
の直径あるいは巾程度で、溝の深さは線材の直径
あるいは厚さの半分以上で線材の直径あるいは板
厚の90%を越えない程度が望ましく、埋込む線材
に対して溝の巾が広過ぎたり、深すぎたりすると
圧延による冷間圧接が不充分となりまた狭すぎた
り浅すぎたりすると、溝の外で圧接されたり非磁
性基体に変形が生じたりして、良好な磁気スケー
ルが得られない。
The width of the groove dug in the non-magnetic substrate is approximately the diameter or width of the magnetic metal wire to be embedded, and the depth of the groove is at least half the diameter or thickness of the wire and does not exceed 90% of the diameter or plate thickness of the wire. If the width of the groove is too wide or too deep for the wire to be embedded, the cold welding by rolling will be insufficient, and if it is too narrow or shallow, the wire will be welded outside the groove or the wire will stick to the non-magnetic substrate. Deformation may occur, making it impossible to obtain a good magnetic scale.

本発明に使用する磁性金属線材は外部磁場の影
響を受けないように保磁力が300エルステツド以
上が望ましく、残留磁束密度の高い材料であるこ
とが望ましい。検出に磁気ヘツドを使用する場合
は残留磁束密度がある程度低くても検出可能であ
るが、その場合磁気スケールと磁気ヘツドの位置
調整に多大な労力が費やされる。また磁気抵抗効
果素子を使用する場合はある程度高い残留磁束密
度を必要とする。時に高速で検出器を移動させ位
置検出等を行う場合は、磁気スケールと検出器は
接触しないことが望ましく、その場合、磁性金属
線材の残留磁束密度は高いことが必要である。従
つて、Fe−Cr−Co系合金、あるいはこの合金に
V、Ti、Mo、Si、Nb、Alの1種以上を含む合
金あるいはFe−Co−Mn−C系合金、あるいはこ
の合金にMo、W、Si、B、V、Cr、Tiの1種以
上を含む合金の磁性材料が望ましく、Cu−Ni−
Fe系磁性材料等は残留磁束密度が低いため望ま
しくない。
The magnetic metal wire used in the present invention preferably has a coercive force of 300 oersted or more so as not to be affected by external magnetic fields, and is preferably made of a material with a high residual magnetic flux density. When a magnetic head is used for detection, detection is possible even if the residual magnetic flux density is low to some extent, but in that case a great deal of effort is expended in positioning the magnetic scale and the magnetic head. Further, when using a magnetoresistive element, a somewhat high residual magnetic flux density is required. Sometimes, when the detector is moved at high speed to perform position detection, etc., it is desirable that the magnetic scale and the detector do not come into contact with each other, and in that case, the residual magnetic flux density of the magnetic metal wire needs to be high. Therefore, Fe-Cr-Co alloy, or alloy containing one or more of V, Ti, Mo, Si, Nb, and Al, or Fe-Co-Mn-C alloy, or this alloy containing Mo, An alloy magnetic material containing one or more of W, Si, B, V, Cr, and Ti is desirable, and Cu-Ni-
Fe-based magnetic materials are undesirable because of their low residual magnetic flux density.

冷間圧接を行うためには圧接面を充分洗浄して
汚れを取り除いておく必要がある。
In order to perform cold pressure welding, it is necessary to thoroughly clean the pressure welding surfaces to remove dirt.

冷間圧接した複合体は、磁性金属線材に良好な
磁気特性を発揮させるための熱処理を施した状態
で磁気スケールとして満足するが、その後磁性金
属線材埋込む面を研削して、より平滑な磁性材料
の平面にした方が望ましい。
The cold-welded composite is satisfactory as a magnetic scale when the magnetic metal wire is heat-treated to exhibit good magnetic properties, but the surface on which the magnetic metal wire is embedded is then ground to create a smoother magnetic scale. It is preferable to use a flat surface of the material.

以上のようにして得られた磁気スケールは非磁
性基体を検出器を移動させる案内軸として使用す
ると、一体物で磁気スケールと案内軸の役割を果
すことができ、部品の節約あるいは構造の簡単化
に役立ち、装置としての価格の低減を発揮するこ
とも明白である。
When the magnetic scale obtained as described above is used as a guide shaft for moving the detector using a non-magnetic substrate, it can function as both a magnetic scale and a guide shaft in one piece, thereby saving parts and simplifying the structure. It is also clear that the present invention is useful and reduces the cost of the device.

使用するFe−Cr−Co系あるいはFe−Co−Mn
−C系の磁性金属線材の直径は、一般の検出ヘツ
ドあるいは磁気抵抗効果素子を使用した場合、
0.5mmφ以上であれば充分であり、また太すぎる
と高価なCo元素を用いた磁性金属線材は高価と
なり、3mmφを越えない磁性金属線材が適当であ
る。
Fe-Cr-Co system or Fe-Co-Mn used
- The diameter of the C-based magnetic metal wire is as follows when using a general detection head or magnetoresistive element:
A diameter of 0.5 mm or more is sufficient; if it is too thick, a magnetic metal wire using the expensive Co element becomes expensive, so a magnetic metal wire that does not exceed 3 mm is appropriate.

次に本発明の磁気スケールおよびその製造方法
について実施例によつて説明する。
Next, the magnetic scale of the present invention and its manufacturing method will be explained by way of examples.

実施例 1 20mm□、長さ1000mmのSUS300材の長方体の一
面に巾3mm、深さ2mmの第1図aのような溝を直
線状に堀つた。その溝の内部と巾3mm、厚さ3mm
の重量比で21%Cr−15%Co−1.5%Ti−2%V−
残りFeからなる線材を充分に洗浄し、汚れが溝
の内部と線材に付着しない環境で、線材を溝の中
に埋め込み、冷間圧接圧延を施して複合体とした
後水素雰囲気中で620℃から500℃の間を20℃/時
間の速度で徐々に冷却しつつ熱処理を施した。熱
処理された複合体は溝の部分を上方に向けて固定
され、液体冷却しながら精密研削用グラインダー
で線材埋め込む面を第2図aでH=19.5mmとなる
ように平面に研削した。埋め込まれた磁性金属線
材は溝から遊離することなく、良好な磁性材料の
平面が得られた。
Example 1 A groove as shown in Fig. 1a, 3 mm wide and 2 mm deep, was dug in a straight line on one side of a rectangular SUS300 material measuring 20 mm square and 1000 mm long. The inside of the groove is 3mm wide and 3mm thick.
21%Cr-15%Co-1.5%Ti-2%V-
The remaining Fe wire was thoroughly cleaned, the wire was embedded in the groove in an environment where dirt would not adhere to the inside of the groove and the wire, and after cold welding and rolling to form a composite, it was heated at 620°C in a hydrogen atmosphere. The heat treatment was carried out between 500°C and 500°C with gradual cooling at a rate of 20°C/hour. The heat-treated composite was fixed with the groove facing upward, and while being cooled with liquid, the surface on which the wire was to be embedded was ground using a precision grinder to a flat surface with H = 19.5 mm as shown in Figure 2a. The embedded magnetic metal wire did not come loose from the groove, and a good flat surface of the magnetic material was obtained.

実施例 2 6mm□、長さ1000mmのSUS304材の長方体の一
面に巾0.5mm、深さ0.3mmの第1図bのような溝を
直線状に堀つた。その溝の内部と直径0.5mmの重
量比で38.025%Co−19.512%Mn−0.585%C−
1.366%Si−0.488%V−残りFeからなる線材を充
分に洗浄し、汚れが溝の内部と線材に付着しない
環境で、線材を溝の中に埋め込み、冷間圧接圧延
を施して複合体とした後、水素雰囲気中で450℃
で30分間熱処理を施した。この後精密研削用グラ
インダーで線材埋め込み面を第2図bのように平
面に研削した磁性金属線材の圧延面はSUS304材
の平面とほぼ同一平面内にあり、しかも平面の平
滑さも良好で磁気スケールとして充分であつた。
Example 2 A groove 0.5 mm wide and 0.3 mm deep as shown in Fig. 1b was dug linearly on one side of a rectangular SUS304 material measuring 6 mm square and 1000 mm long. The weight ratio of the inside of the groove and the diameter of 0.5 mm is 38.025%Co-19.512%Mn-0.585%C-
The wire consisting of 1.366%Si-0.488%V-remaining Fe is thoroughly cleaned, and in an environment where dirt does not adhere to the inside of the groove and the wire, the wire is embedded in the groove and subjected to cold welding rolling to form a composite. After that, heat at 450℃ in hydrogen atmosphere.
Heat treatment was performed for 30 minutes. After that, the wire embedded surface was ground to a flat surface as shown in Figure 2b using a precision grinder.The rolled surface of the magnetic metal wire was almost in the same plane as the SUS304 material, and the surface smoothness was also good and the magnetic scale It was sufficient.

実施例 3 10mm□、長さ1000mmのSUS303材の長方体の一
面に巾1.5mm、深さ1.2mmの第1図aのような溝を
直線状に堀つた。その溝の内部と巾1.5mm、厚さ
1.5mmの実施例(2)で用いた磁性金属線材と同組成
の線材を充分に洗浄し、汚れが溝の内部と線材に
付着しない環境で線材を溝の中に埋め込み、冷間
圧接圧延を施して複合体とした後、水素雰囲気中
で450℃で30分間熱処理を施した。磁性金属線材
の圧延面はSUS300材の平面とほぼ同一平面にあ
り、しかも平面の平滑さも良好であつた。しかし
ながら、さらに良好な平面を得るために溝の部分
を上方に向けて固定し、液体冷却しながら精密研
削用グラインダーで線材埋め込み面を第2図aで
H=9.9mmとなるように平面に研削した。埋め込
まれた磁性金属線材は溝から遊離することなく良
好な磁性材料の平面が得られた。
Example 3 A groove as shown in Figure 1a, 1.5 mm wide and 1.2 mm deep, was dug in a straight line on one side of a rectangular SUS303 material measuring 10 mm square and 1000 mm long. Inside the groove, width 1.5mm, thickness
A wire with the same composition as the magnetic metal wire used in Example (2) of 1.5 mm was thoroughly cleaned, the wire was embedded in the groove in an environment where dirt would not adhere to the inside of the groove and the wire, and cold welding was carried out. After applying heat treatment to form a composite, heat treatment was performed at 450°C for 30 minutes in a hydrogen atmosphere. The rolled surface of the magnetic metal wire was almost on the same plane as the SUS300 material, and the plane had good smoothness. However, in order to obtain an even better flat surface, the groove part was fixed facing upward, and the surface where the wire was embedded was ground using a precision grinder while being cooled with liquid so that H = 9.9 mm as shown in Figure 2 a. did. The embedded magnetic metal wire did not come loose from the groove, and a good flat surface of the magnetic material was obtained.

実施例1〜3で製造した磁気スケールは一定間
隔で磁気書き込みを施して、検出用磁気ヘツドあ
るいは磁気抵抗効果素子を用いて読み取ると、書
き込み間隔と同じ間隔で検出信号が得られた。
When the magnetic scales manufactured in Examples 1 to 3 were magnetically written at regular intervals and read using a detection magnetic head or a magnetoresistive element, detection signals were obtained at the same intervals as the writing intervals.

なお、実施例に示した熱処理条件は、これに限
られることはなく、使用する材料その他の種々の
条件によつて適時変更されうる。
Note that the heat treatment conditions shown in the examples are not limited to these, and may be changed as appropriate depending on the materials used and various other conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aおよびbは本発明のステンレスの非磁
性基体に堀つた溝の形状で、Wは溝の巾、hは深
さを示す。第2図aおよびbは実施例1〜3で製
造した磁気スケールの断面図。 なお図中の1は非磁性基体に形成された溝、2
は溝に固定された磁性金属線材、W,hは溝の幅
および深さである。
Figures 1a and 1b show the shapes of grooves dug in the stainless steel non-magnetic substrate of the present invention, where W indicates the width of the groove and h indicates the depth. FIGS. 2a and 2b are cross-sectional views of the magnetic scales manufactured in Examples 1 to 3. Note that 1 in the figure indicates a groove formed in the non-magnetic substrate, and 2
is the magnetic metal wire fixed in the groove, and W and h are the width and depth of the groove.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気的に硬い磁性金属線材を長方体の非磁性
ステンレス材の長手方向に平行な面のその長手方
向に沿つて形成した溝の中に設置し、圧延を施し
て前記線材と非磁性ステンレス材とを圧着結合さ
せ熱処理を行なつた後磁性金属線材埋込み面を平
面研削することを特徴とする磁気スケールの製造
方法。
1. A magnetically hard magnetic metal wire is placed in a groove formed along the longitudinal direction of a rectangular non-magnetic stainless steel material in a plane parallel to its longitudinal direction, and rolled to separate the wire and non-magnetic stainless steel. 1. A method for manufacturing a magnetic scale, which comprises crimping and bonding a magnetic metal wire to a metal wire, subjecting it to heat treatment, and then surface-grinding the surface on which the magnetic metal wire is embedded.
JP6312882A 1982-04-15 1982-04-15 Production of magnetic scale Granted JPS58179313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6312882A JPS58179313A (en) 1982-04-15 1982-04-15 Production of magnetic scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6312882A JPS58179313A (en) 1982-04-15 1982-04-15 Production of magnetic scale

Publications (2)

Publication Number Publication Date
JPS58179313A JPS58179313A (en) 1983-10-20
JPS6363051B2 true JPS6363051B2 (en) 1988-12-06

Family

ID=13220321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6312882A Granted JPS58179313A (en) 1982-04-15 1982-04-15 Production of magnetic scale

Country Status (1)

Country Link
JP (1) JPS58179313A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196620A (en) * 1984-03-21 1985-10-05 Nec Corp Rotary magnetic scale
JP4929935B2 (en) * 2006-03-24 2012-05-09 ヤマハ株式会社 Magnetic scale body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222285U (en) * 1975-08-05 1977-02-17
JPS53123167A (en) * 1977-04-02 1978-10-27 Sony Corp Magnetic scaler
JPS5565349A (en) * 1978-11-06 1980-05-16 Hiroshi Kimura Magnetic alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222285U (en) * 1975-08-05 1977-02-17
JPS53123167A (en) * 1977-04-02 1978-10-27 Sony Corp Magnetic scaler
JPS5565349A (en) * 1978-11-06 1980-05-16 Hiroshi Kimura Magnetic alloy

Also Published As

Publication number Publication date
JPS58179313A (en) 1983-10-20

Similar Documents

Publication Publication Date Title
CN102576800A (en) Magnetostrictive film, magnetostrictive element, torque sensor, force sensor, pressure sensor, and process for production of magnetostrictive film
CN1405954A (en) Iron-alloy band material for voice-coil motor magnetic circuit
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
JPS6363051B2 (en)
Skulkina et al. Magnetization processes in ribbons of soft magnetic amorphous alloys
JPH0230375B2 (en)
JPH0131570B2 (en)
Uetz et al. Investigations of the effect of surface temperatures in sliding contact
US4735853A (en) Magnetic recording medium having an amorphous, nonmagnetic nickel-tungston-phosphorus underlayer
EP0212863B1 (en) Fine amorphous metallic wires
Ikeda et al. Write heads with pole tip consisting of high-Bs FeCoAlO films
JP3237138B2 (en) Magnetic scale steel bar
JPH10176966A (en) Magnetostriction-detecting body for torque sensor
JPH0134328B2 (en)
Wun‐Fogle et al. Magnetoelastic effects in amorphous wires and amorphous ribbons with nonmagnetic thin‐film coatings
JPS62206421A (en) Torque sensor
US4981741A (en) Coating alloy
JP3024817B2 (en) Magnetostrictive detector for magnetostrictive torque sensor and method of manufacturing the same
JPH0643627B2 (en) Amorphous metal wire
US5076862A (en) Method of manufacturing heat resisting magnetic scale
JPS6257929B2 (en)
US5100692A (en) Method of forming a magnetically modified portion
Li et al. Wear resistance of amorphous cobalt-based alloys
JPS60323A (en) Magnetic scale and its manufacture
JPH0344249B2 (en)