JPH0134328B2 - - Google Patents
Info
- Publication number
- JPH0134328B2 JPH0134328B2 JP57063127A JP6312782A JPH0134328B2 JP H0134328 B2 JPH0134328 B2 JP H0134328B2 JP 57063127 A JP57063127 A JP 57063127A JP 6312782 A JP6312782 A JP 6312782A JP H0134328 B2 JPH0134328 B2 JP H0134328B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- metal wire
- groove
- magnetic metal
- scale
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【発明の詳細な説明】
本発明は磁気スケールおよびその製造方法に係
る。従来の磁気スケールは非磁性基体上にメツ
キ、蒸着あるいはスパツター等で磁性層を被着形
成、あるいは磁性粉末を塗布あるいは板状等の磁
性材料を被着形成されていた。そして検出器を磁
性材料の平面部に沿つて移動させ、位置検出ある
いは長さ測定等を行つていた。しかしながら、検
出精度を向上させるため磁性材料の平面部を精度
良く加工することが必要で、そのために精密研摩
を行うと製造コストが高くなる欠点があつた。ま
た製造コスト低減のためグラインダーで研削する
と、非磁性基体上に被着形成された薄板状の磁性
材料は熱的影響を受けて非磁性基体から遊離し、
精度良く研削することが不可能であつた。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic scale and a method for manufacturing the same. Conventional magnetic scales have been formed by depositing a magnetic layer on a non-magnetic substrate by plating, vapor deposition, sputtering, etc., by coating magnetic powder, or by depositing a plate-shaped magnetic material. Then, the detector was moved along the flat surface of the magnetic material to detect the position or measure the length. However, in order to improve the detection accuracy, it is necessary to precisely process the flat part of the magnetic material, and if precision polishing is performed for this purpose, the manufacturing cost increases. In addition, when grinding with a grinder to reduce manufacturing costs, the thin plate-shaped magnetic material deposited on the non-magnetic substrate is thermally affected and is separated from the non-magnetic substrate.
It was impossible to grind with high precision.
一方、研削加工を可能にするために磁性材料の
太い丸棒あるいは角棒を用いると、高価なCo元
素を用いた磁気特性の良好なFe−Cr−Ccあるい
はFe−Co−Mn−C系合金等の場合、材料費が高
価となり、望ましくない。 On the other hand, if a thick round bar or square bar of magnetic material is used to enable grinding, Fe-Cr-Cc or Fe-Co-Mn-C alloys with good magnetic properties using the expensive Co element can be used. In such cases, the material cost becomes high, which is not desirable.
本発明は安価な研削加工が可能で、しかも検出
器の移動のための軸も兼ねることのできる磁気ス
ケールとその製造方法を提供するものである。 The present invention provides a magnetic scale that can be ground at low cost and that can also serve as an axis for moving a detector, and a method for manufacturing the same.
本発明に係る磁気スケールはオーステナイト系
ステンレス鋼からなる長方体の長手方向に平行な
一面のその長手方向に沿つて形成された溝にFe
−Co−Mn−C系の磁気的に硬い磁性金属線材が
固定されている構造を特徴としている。 The magnetic scale according to the present invention has Fe in a groove formed along the longitudinal direction of one surface parallel to the longitudinal direction of a rectangular parallelepiped made of austenitic stainless steel.
It is characterized by a structure in which a magnetically hard magnetic metal wire of the -Co-Mn-C system is fixed.
さらに、その製造方法としては、Fe−Co−Mn
−C系の磁気的に硬い磁性金属線材がオーステナ
イト系ステンレス鋼からなる長方体の長手方向に
形成されている溝に埋め込み、溶接あるいはろう
付けで固定し、平面研削することを特徴とする磁
気スケールの製造方法で製造することにある。 Furthermore, the manufacturing method is Fe-Co-Mn
- Magnetism characterized in that a C-based magnetically hard magnetic metal wire is embedded in a groove formed in the longitudinal direction of a rectangular body made of austenitic stainless steel, fixed by welding or brazing, and then surface ground. It is manufactured using a scale manufacturing method.
磁性金属線材を埋め込む基体はたとえば熱膨張
係数が14ppm/℃以上で18ppm/℃以下のオース
テナイト系ステンレス鋼が望ましい。その理由
は、本発明者らが提案したFe−Co−Mn−C系磁
性合金線材の熱膨張係数がオーステナイト系ステ
ンレス鋼の熱膨張係数とよく一致しているため、
温度変化による磁気記録媒体と基体の相性がよく
分離することがないためである。 The substrate in which the magnetic metal wire is embedded is preferably austenitic stainless steel, for example, with a thermal expansion coefficient of 14 ppm/°C or more and 18 ppm/°C or less. The reason is that the thermal expansion coefficient of the Fe-Co-Mn-C magnetic alloy wire proposed by the present inventors closely matches that of austenitic stainless steel.
This is because the magnetic recording medium and the substrate are not well compatible with each other due to temperature changes and are not separated.
非磁性基体にあらかじめ堀る溝の巾は埋め込む
磁性金属線材の直径程度が望ましく、溝の巾が広
すぎて磁性金属線材が労せずはずれるようでは作
業性の点で望ましくない。また溝の巾が狭すぎて
埋め込みの際磁性金属線材あるいは非磁性基体が
変形するようでは良好な磁気スケールを得る上で
望ましくない。溝の深さは埋込む磁性金属線材の
直径の半分以下の長さでは、埋め込んだ磁性金属
線材が労せずはずれるため、作業の点で望ましく
ない。また埋め込む磁性金属線材の直径より長く
すると、磁性材料の平面を得るための研削量が多
くなり、高価な磁気スケールとなることは明確で
ある。したがつて、溝の深さは埋め込む磁性金属
線材の直径の半分を越えてその直径を越えない深
さであれば充分である。溝の底面は第1図のaの
ように平面であつても、bのように曲面であつて
もかまわず、本発明の磁気スケールを製造する上
で問題が起こらない。 The width of the groove pre-drilled in the non-magnetic substrate is preferably about the diameter of the magnetic metal wire to be embedded, and it is undesirable from the viewpoint of workability if the width of the groove is too wide and the magnetic metal wire can be easily removed. Furthermore, it is not desirable to obtain a good magnetic scale if the width of the groove is so narrow that the magnetic metal wire or nonmagnetic substrate is deformed during embedding. If the depth of the groove is less than half the diameter of the embedded magnetic metal wire, the embedded magnetic metal wire will come off without effort, which is undesirable from the viewpoint of work. It is clear that if the diameter is longer than the diameter of the magnetic metal wire to be embedded, the amount of grinding required to obtain a flat surface of the magnetic material increases, resulting in an expensive magnetic scale. Therefore, it is sufficient that the depth of the groove is more than half the diameter of the magnetic metal wire to be embedded, but not more than that diameter. The bottom surface of the groove may be a flat surface as shown in FIG.
本発明に使用する磁性金属線材は外部磁場の影
響を受けないように保磁力が300エルステツド以
上が望ましく、残留磁束密度の高い材料であるこ
とが望ましい。検出に磁気ヘツドを使用する場合
は残留磁束密度がある程度低くても検出可能であ
るが、その場合、磁気スケールと磁気ヘツドの位
置調整に多大な労力が費される。また磁気抵抗効
果素子を使用する場合はある程度高い残留磁束密
度を必要とする。特に高速で検出器を移動させ、
位置検出を行う場合は、磁気スケールと検出器は
接触しないことが望ましく、その場合磁性金属材
の残留磁束密度は高いことが必要である。また、
高分解能磁気スケールを製作するために、磁気記
録媒体は高密度のN−S極パターンが形成されな
ければならず、Cu−Ni−Fe合金は高密度のN−
S極パターンを形成するためには望ましくない。
従つて、本発明者らが提案しているFe−Co−Mn
−C系あるいは該合金にMo、W、Si、B、V、
Cr、Tiの一種以上を含む合金の磁性材料が望ま
しい。 The magnetic metal wire used in the present invention preferably has a coercive force of 300 oersted or more so as not to be affected by external magnetic fields, and is preferably made of a material with a high residual magnetic flux density. When a magnetic head is used for detection, detection is possible even if the residual magnetic flux density is low to some extent, but in that case, a great deal of effort is expended in positioning the magnetic scale and the magnetic head. Further, when using a magnetoresistive element, a somewhat high residual magnetic flux density is required. Moving the detector especially at high speeds,
When performing position detection, it is desirable that the magnetic scale and the detector do not come into contact with each other, and in that case, the residual magnetic flux density of the magnetic metal material needs to be high. Also,
In order to fabricate a high-resolution magnetic scale, the magnetic recording medium must be formed with a dense N-S pole pattern, and the Cu-Ni-Fe alloy has a dense N-S pole pattern.
This is not desirable for forming an S-pole pattern.
Therefore, the Fe-Co-Mn proposed by the present inventors
-C system or the alloy including Mo, W, Si, B, V,
An alloy magnetic material containing one or more of Cr and Ti is desirable.
溝の中に設置した磁性金属線材を固定するため
には、溶接あるいはろう付けで固定することが望
ましい。溶接の場合は溶接時の発熱による溶融部
分が広くならないように電力量を調整する必要が
ある。 In order to fix the magnetic metal wire installed in the groove, it is desirable to fix it by welding or brazing. In the case of welding, it is necessary to adjust the amount of electric power so that the melted area does not become large due to the heat generated during welding.
ろう付けの場合は、ろう付けを最終熱処理の前
後のどちらかに行うかによつて、ろう材の選定を
行う必要がある。即ち、ろう付けを最終熱処理前
に行う場合は、その熱処理温度より高い融点のろ
う材を用いる必要があり、最終熱処理後に行う場
合はその熱処理温度より低い融点のろう材を用い
る必要がある。以上のような溶接あるいはろう付
けにより磁性金属線材を溝の中に固定せず、ただ
磁性金属線材を溝の中に埋め込むだけの状態で固
定しただけでは、温度サイクルを与えると磁性金
属線材が基体の溝から飛び出して磁気スケールの
ロツドとしての役割を果たさなくなつた。しかし
ながら、溶接あるいはろう付けにより磁性金属線
材を固定すると、前記サイクルの温度履歴を与え
ても磁性金属線材が溝の中から飛び出してくるこ
とはなかつた。 In the case of brazing, it is necessary to select a brazing material depending on whether brazing is to be performed before or after final heat treatment. That is, when brazing is performed before the final heat treatment, it is necessary to use a brazing material with a melting point higher than the heat treatment temperature, and when brazing is performed after the final heat treatment, it is necessary to use a brazing material with a melting point lower than the heat treatment temperature. If the magnetic metal wire is not fixed in the groove by welding or brazing as described above, but is simply embedded in the groove, the magnetic metal wire will break away from the base when subjected to temperature cycles. It jumped out of the groove of the magnetic scale and stopped playing its role as a rod for the magnetic scale. However, when the magnetic metal wire was fixed by welding or brazing, the magnetic metal wire did not jump out of the groove even if the temperature history of the cycle was applied.
前記した最終熱処理は磁性金属線材の磁気特性
を磁気スケールとして最適にすることを目的とし
ているが、その最終熱処理は、非磁性基体の溝の
中に埋め込む作業の前後どちらで施してもかまわ
ないことは明白である。 The purpose of the final heat treatment described above is to optimize the magnetic properties of the magnetic metal wire as a magnetic scale, but the final heat treatment may be performed either before or after embedding it in the groove of the non-magnetic substrate. is obvious.
以上のようにして得られた磁気スケールは非磁
性基体を検出器を移動させる案内軸として使用す
ると、一体物で磁気スケールと案内軸の役割を果
すことができ、部品の節約あるいは構造の簡単化
に役立ち、装置としての価格の低減に効果を発揮
することも明白である。 When the magnetic scale obtained as described above is used as a guide shaft for moving the detector using a non-magnetic substrate, it can function as both a magnetic scale and a guide shaft in one piece, thereby saving parts and simplifying the structure. It is also clear that this method is useful in reducing the cost of the device.
使用するFe−Co−Mn−C系の磁性金属線材の
直径は、一般の検出ヘツドあるいは磁気抵抗効果
素子を使用した場合、0.5mmφ以上であれば充分
であり、また太すぎると高価なCo元素を用いた
磁性金属線材は高価となり、3mmφを越えない磁
性金属線材が適当である。 When using a general detection head or magnetoresistive element, the diameter of the Fe-Co-Mn-C magnetic metal wire used is sufficient if it is 0.5 mm or more, and if it is too thick, the expensive Co element Magnetic metal wires using these materials are expensive, and magnetic metal wires with a diameter not exceeding 3 mmφ are appropriate.
次に本発明の磁気スケールおよびその製造方法
について実施例によつて説明する。 Next, the magnetic scale of the present invention and its manufacturing method will be explained by way of examples.
実施例
6mm□、長さ1000mmのSUS303材の長方体の一
面に巾0.5mm、深さ0.5mmの第1図aのような溝を
直線状に堀つた。その溝に直径0.5mmの重量比で
38.025%Co−19.512%Mn−0.585%C−1.366%Si
−0.488%V−残りFeからなる冷間伸線加工され
た合金線材を470℃の融点のろう材が溶融してい
るSUS303材の溝の中に埋め込み、素早く冷却し
て線材を固定し複合体とした。その複合体を450
℃で30分間、水素雰囲気中で熱処理した。熱処理
された複合体は溝の部分を上方に向けて固定さ
れ、液体冷却しながら精密研削用グラインダーで
線材埋め込み面を第2図でH=5.83mmとなるよう
に平面に研削した。埋め込まれた磁性金属線材は
溝から遊離することなく良好な磁性材料の平面が
得られた。またこの磁性金属線材を用いて溶接に
より複合体を作製し、研削することにより、該線
材が溝から遊離することのない良好な平面が得ら
れた。Example A groove as shown in Fig. 1a, 0.5 mm wide and 0.5 mm deep, was dug in a straight line on one side of a rectangular SUS303 material measuring 6 mm square and 1000 mm long. At a weight ratio of 0.5 mm in diameter to that groove
38.025%Co-19.512%Mn-0.585%C-1.366%Si
-0.488%V - A cold-drawn alloy wire made of residual Fe is embedded in a groove of SUS303 material in which a brazing filler metal with a melting point of 470°C is molten, and the wire is quickly cooled and fixed to form a composite. And so. 450 that complex
Heat treatment was performed at °C for 30 minutes in a hydrogen atmosphere. The heat-treated composite was fixed with the groove portion facing upward, and while being cooled with liquid, the wire embedded surface was ground into a flat surface with a precision grinder so that H = 5.83 mm as shown in Figure 2. The embedded magnetic metal wire did not come loose from the groove, and a good flat surface of the magnetic material was obtained. Moreover, by producing a composite body by welding using this magnetic metal wire and grinding it, a good flat surface was obtained in which the wire did not come loose from the groove.
実施例で製造した磁気スケールは一定間隔で磁
気書き込みを施して、検出用磁気ヘツドあるいは
磁気抵抗効果素子を用いて読み取ると書き込み間
隔と同じ間隔で検出信号が得られた。 When magnetic writing was performed on the magnetic scale manufactured in the example at regular intervals and read using a detection magnetic head or a magnetoresistive element, detection signals were obtained at the same intervals as the writing intervals.
なお実施例において示した熱処理の条件はこれ
に限られることはなく、使用する材料その他の種
種の条件によつて適時変更されうる。 Note that the heat treatment conditions shown in the examples are not limited to these, and may be changed as appropriate depending on the materials used and other various conditions.
第1図aおよびbは本発明のステンレスの非磁
性基体に堀つた溝の形状で、Wは溝の巾、hは深
さを示す。
第2図は実施例1〜3で製造した磁気スケール
の断面を示す。Hは非磁性基体の寸法を示す。
図において1は非磁性基体に形成された溝、2
は溝に固定された磁性金属線材、W,hは溝の幅
および深さである。
Figures 1a and 1b show the shapes of grooves dug in the stainless steel non-magnetic substrate of the present invention, where W indicates the width of the groove and h indicates the depth. FIG. 2 shows a cross section of the magnetic scale manufactured in Examples 1 to 3. H indicates the dimensions of the nonmagnetic substrate. In the figure, 1 is a groove formed in a non-magnetic substrate, 2
is the magnetic metal wire fixed in the groove, and W and h are the width and depth of the groove.
Claims (1)
線材がオーステナイト系ステンレス鋼からなる長
方体に沿つて形成された溝に埋め込まれた構造を
特徴とする磁気スケール。 2 Fe−Co−Mn−C系の磁気的に硬い磁性金属
線材をオーステナイト系ステンレス鋼からなる長
方体の長手方向に沿つて形成された溝に埋め込
み、溶接あるいはろう付けで磁性金属線材を長方
体の溝に固定し、該磁性金属線材埋め込み面と平
面研削することを特徴とする磁気スケールの製造
方法。[Claims] 1. A magnetic device characterized by a structure in which a Fe-Co-Mn-C-based magnetically hard magnetic metal wire is embedded in a groove formed along a rectangular parallelepiped made of austenitic stainless steel. scale. 2. Embed a Fe-Co-Mn-C magnetically hard magnetic metal wire in a groove formed along the longitudinal direction of a rectangular body made of austenitic stainless steel, and lengthen the magnetic metal wire by welding or brazing. 1. A method for manufacturing a magnetic scale, which comprises fixing it in a groove of a rectangular shape and grinding the surface of the magnetic metal wire embedded therein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6312782A JPS58179312A (en) | 1982-04-15 | 1982-04-15 | Magnetic scale and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6312782A JPS58179312A (en) | 1982-04-15 | 1982-04-15 | Magnetic scale and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58179312A JPS58179312A (en) | 1983-10-20 |
JPH0134328B2 true JPH0134328B2 (en) | 1989-07-19 |
Family
ID=13220294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6312782A Granted JPS58179312A (en) | 1982-04-15 | 1982-04-15 | Magnetic scale and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58179312A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2681048B2 (en) * | 1985-07-04 | 1997-11-19 | 株式会社ソキア | Magnetic scale material |
DE102004063462B3 (en) * | 2004-12-23 | 2006-03-23 | Märzhäuser Senso Tech GmbH | Scale carrier for magnetic length or angle measurement, is formed by filling a groove with a magnetic powder paste, hardening the paste and then magnetically coding the material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS528997A (en) * | 1975-07-14 | 1977-01-24 | Kureha Chem Ind Co Ltd | Novel cation exchange membrane and process for producing thereof |
JPS554248A (en) * | 1978-06-27 | 1980-01-12 | Takata Kk | Belt guide |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4963973U (en) * | 1972-09-15 | 1974-06-05 |
-
1982
- 1982-04-15 JP JP6312782A patent/JPS58179312A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS528997A (en) * | 1975-07-14 | 1977-01-24 | Kureha Chem Ind Co Ltd | Novel cation exchange membrane and process for producing thereof |
JPS554248A (en) * | 1978-06-27 | 1980-01-12 | Takata Kk | Belt guide |
Also Published As
Publication number | Publication date |
---|---|
JPS58179312A (en) | 1983-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101835139B1 (en) | Austenitic iron/nickel/chromium/copper alloy | |
KR19990023947A (en) | A magnetic impedance effect element and a magnetic head using the same, a thin film magnetic head, an orientation sensor and an auto- | |
Luborsky et al. | The role of amorphous materials in the magnetics industry | |
JP2007299505A (en) | Soft magnetic underlayer in magnetic medium and soft magnetic alloy based sputter target | |
Oikawa et al. | Diffusion behavior of creep-resistant steels | |
JPH0134328B2 (en) | ||
JPH0131570B2 (en) | ||
EP0212863B1 (en) | Fine amorphous metallic wires | |
EP0441581A2 (en) | Method for producing magnetic structure | |
JPH0643627B2 (en) | Amorphous metal wire | |
Russew et al. | Properties and applications of amorphous metallic alloys | |
JPS6261662B2 (en) | ||
JPS59158574A (en) | Control element for minute displacement | |
JPS6363051B2 (en) | ||
US6638596B1 (en) | Thin film magnetic head using soft magnetic film having soft magnetic characteristics of high resistivity, low coercive force, and high saturation magnetic flux density | |
US4935070A (en) | Method of manufacturing heat resisting magnetic scale | |
JPH076329A (en) | Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same | |
JPS60323A (en) | Magnetic scale and its manufacture | |
US5076862A (en) | Method of manufacturing heat resisting magnetic scale | |
JPS61165604A (en) | Magnetic scale | |
Mitra et al. | Comparative study of stress-dependent magnetic properties of ribbon and wire-shaped amorphous Fe81B13. 5Si3. 5C2 alloy | |
JPH0651900B2 (en) | Amorphous metal wire | |
Švec et al. | Preparation, processing and selected properties of modern melt-quenched alloys | |
EP0881503A2 (en) | Magneto-impedance effect element and magnetic head, electronic compass and autocanceller using the element | |
Greneche | Metallic glasses: Mössbauer contribution, physical properties and applications |