JPS6257929B2 - - Google Patents
Info
- Publication number
- JPS6257929B2 JPS6257929B2 JP54105441A JP10544179A JPS6257929B2 JP S6257929 B2 JPS6257929 B2 JP S6257929B2 JP 54105441 A JP54105441 A JP 54105441A JP 10544179 A JP10544179 A JP 10544179A JP S6257929 B2 JPS6257929 B2 JP S6257929B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- manufacturing
- treatment
- shaped body
- disc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【発明の詳細な説明】
本発明は、例えば機械加工の位置決めの基本と
なる長さ、角度等を測定するための磁気スケール
の製造方法に関し、特に磁気ヘツドによる磁気格
子の検出がS/N比高く可能な、記録磁気格子の
磁束密度が大きい、例えば30〜50G前後程度以上
の残溜磁束密度を有し、かつ磁気格子の記録密度
を高密度化できると共に検出分解能の高い特性を
有する所望磁気スケール用の寸法、形状を備えた
スケール磁性材の製造方法に関するもので、磁気
スケールとしては、スケール表面をコの字状等の
リング形記録又は検出ヘツドが計測方向に相対的
に移動する該移動方向に磁気格子がN極、S極と
並設、形成記録されている従来通常形式のもの、
例えば特公昭40―467号公報記載の多重空隙磁気
ヘツド等も使用し得るものであるが、磁気スケー
ル用磁石または磁気材料板または膜のスケール計
測相対移動方向とは直角方向の言わば前記材料板
または膜の表裏方向に貫通する如く前記磁気格子
の磁化記録(垂直磁化)が行なわれ、従つて磁気
格子の検出または記録用磁気ヘツドとしては、リ
ング状ヘツドの磁気隙間(ギヤツプ)間に前記磁
石材料板または膜を挿入した状態で相対的に移動
させられる、例えば例えば特開昭49―65852号公
報記載の方式等が好適に適用できるものである
が、本発明によれば、前述の如く磁気スケールに
記録された磁気格子の磁束密度が大きい所から、
例えば特開昭50―91348号公報に記載言及されて
いるような磁電変換素子を用いた公知の検出用磁
気検出ヘツド等も利用可能なものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic scale for measuring length, angle, etc., which is the basis of positioning in machining, for example, and in particular, detection of a magnetic grating by a magnetic head reduces the S/N ratio. Desired magnetism that has a high magnetic flux density in the recording magnetic grating, for example, has a residual magnetic flux density of around 30 to 50 G or more, and has characteristics that allow the recording density of the magnetic grating to be high and have high detection resolution. This relates to a method for manufacturing a scale magnetic material having the dimensions and shape for a scale, and for a magnetic scale, a ring-shaped recording or detection head such as a U-shape on the scale surface moves relatively in the measurement direction. A conventional type in which a magnetic lattice is arranged and recorded in parallel with the north and south poles in the direction,
For example, a multi-gap magnetic head described in Japanese Patent Publication No. 40-467 can be used, but the magnetic scale magnet or magnetic material plate or film may be used in a direction perpendicular to the direction of scale measurement relative movement of the magnetic material plate or film. Magnetization recording (perpendicular magnetization) of the magnetic lattice is performed so as to penetrate in the front and back directions of the film.Therefore, as a magnetic head for detecting or recording the magnetic lattice, the magnetic material is placed between the magnetic gaps of the ring-shaped head. For example, the method described in JP-A-49-65852, in which a plate or membrane is inserted and relatively moved, can be suitably applied, but according to the present invention, as described above, the magnetic scale From the place where the magnetic flux density of the magnetic lattice recorded in is large,
For example, a known magnetic detection head using a magnetoelectric transducer as described in Japanese Patent Application Laid-open No. 50-91348 can also be used.
上記の如き磁気スケール用磁気媒体の計測長手
方向、または計測長手面内方向の残溜磁気記録で
はなく、前記磁気媒体の表裏方向の磁気記録、即
ち垂直磁化を行ない、該記録媒体を計測用スケー
ルとして利用すること等は例えば実開昭54―7668
号公報、その他によつて既に知られている所であ
る。 Instead of residual magnetic recording in the measurement longitudinal direction or in the measurement longitudinal plane of the magnetic medium for magnetic scales as described above, magnetic recording is performed in the front and back directions of the magnetic medium, that is, perpendicular magnetization, and the recording medium is used as a measurement scale. For example, it can be used as
This is already known from the publication No. 1 and others.
しかして、斯種垂直磁化の磁気スケールは通常
残溜磁束密度を増大することにより、S/N比を
高く記録磁気格子を検出できるようにすることに
眼目が置かれている。 Therefore, in this type of perpendicular magnetization magnetic scale, the focus is usually on increasing the residual magnetic flux density to increase the S/N ratio so that the recorded magnetic grating can be detected.
従つて、残溜磁束密度の大きい磁石材料を使用
するとか、残溜磁束密度が大きくなる磁石製造方
法を適用し、或いは更に磁気記録媒体の貫通磁化
方向の板または膜厚、その他の寸法、形状等にも
考慮が払われたが、磁気格子の高密度(例えば50
〜100μm前後以内)記録及び検出分解能の点等
で問題があり、単に磁気格子の充分高密度記録が
できにくい、また磁気スケールからの検出に於て
分解能が良くなくなると言うだけでなく、このた
めに所望の充分大きな残溜磁束密度の磁気格子記
録ができないと言う結果を招来していた。即ち、
従来は前述のような垂直磁化用磁石材料又は磁気
スケール材として良好なものがなく、このため例
えば前述特開昭49―65852号公報に記載の如く、
円板2の周縁に沿つて、又は平板8の長さ方向に
沿つて等間隔を置いて規則正しく並べられた複数
個の着磁或いは消磁可能な磁石2を植設又は介設
させた構成の磁気スケールが考案されたが、磁気
格子(磁子2)の記録密度は明らかに著しく低い
もので分解能は低く、低精度でその製作も極めて
困難であつた。 Therefore, it is possible to use a magnet material with a high residual magnetic flux density, apply a magnet manufacturing method that increases the residual magnetic flux density, or further improve the thickness of the plate or film in the direction of through magnetization of the magnetic recording medium, and other dimensions and shapes. etc., but the high density of the magnetic grid (e.g. 50
(within around 100 μm) There are problems with recording and detection resolution, not only because it is difficult to record at a sufficiently high density with magnetic gratings, but also because the resolution is not good when detecting from a magnetic scale. This resulted in the inability to perform magnetic lattice recording with a desired sufficiently large residual magnetic flux density. That is,
Conventionally, there are no good magnetic materials or magnetic scale materials for perpendicular magnetization as described above, and therefore, for example, as described in the above-mentioned Japanese Patent Application Laid-Open No. 49-65852,
A magnetic structure in which a plurality of magnets 2 that can be magnetized or demagnetized are implanted or interposed, regularly arranged at equal intervals along the periphery of the disk 2 or along the length of the flat plate 8. Although a scale was devised, the recording density of the magnetic grating (magnet 2) was obviously extremely low, the resolution was low, the precision was low, and its manufacture was extremely difficult.
本発明の薄帯状、薄板または膜状、或いは薄円
板状等の磁気記録媒体から成る磁気スケールは、
その用途、用法、或いはその寸法、形状等からし
て、熱間または冷間の圧延により数mm厚以下0.3
mm厚程度以上の薄板または膜状とする必要がある
から磁気記録媒体としての磁石材料または磁性材
料としては、好ましくはより良好な圧延加工性を
有することが必要である。 The magnetic scale of the present invention made of a magnetic recording medium in the form of a ribbon, a thin plate, a film, or a thin disk has the following characteristics:
Due to its purpose, usage, size, shape, etc., the thickness of several mm or less is 0.3 mm or less due to hot or cold rolling.
Since it is necessary to form a thin plate or film with a thickness of approximately mm or more, the magnet material or magnetic material used as the magnetic recording medium must preferably have better rolling workability.
しかして、磁石材料には磁気的に等方性のもの
と異方性のものとがあり、前者等方性のものは磁
石材料自体に磁化容易方向とか磁化困難方向とか
が何れの方向(例えば〔100〕、〔010〕、〔001〕…
…方向)にもなく、従つて何れの方向に磁化して
も形状効果を除けばほゞ同一の磁気特性を磁化方
向に有するもので、之に対して異方性のものは、
磁石材料に磁化容易方向とか磁化困難方向とが画
然としてあり、磁化困難方向に対して磁化容易方
向に磁化着磁するときは著しく磁気特性に差異が
あつて後者の方が格段優れている。 There are two types of magnet materials: magnetically isotropic and anisotropic.The former isotropic has an easy magnetization direction or a difficult magnetization direction in the magnet material itself (e.g. [100], [010], [001]…
...direction), and therefore, no matter which direction it is magnetized, it has almost the same magnetic properties in the magnetization direction, except for the shape effect.
Magnet materials clearly have an easy magnetization direction and a difficult magnetization direction, and when magnetized in the easy magnetization direction versus the difficult magnetization direction, there is a marked difference in magnetic properties, and the latter is much better.
また、等方性のものは熱処理機械加工等の製造
工程に於て、磁場処理(磁場中熱処理)または圧
延加工等の塑性機械加工、即ち磁気異方性化加工
または、処理を施せば後者異方性となる物と、前
記磁気異方性化加工の如何にかゝわらず等方性の
物とがあるのに対し、磁気異方性のものは前記磁
気異方性化加工により異方性を有するようになつ
たのである。 In addition, isotropic materials can be subjected to magnetic field treatment (heat treatment in a magnetic field) or plastic machining such as rolling in the manufacturing process such as heat treatment machining, that is, magnetic anisotropy processing, or if processing is performed, the latter will change. There are objects that become anisotropic and objects that remain isotropic regardless of the magnetic anisotropy process, whereas magnetically anisotropic objects become anisotropic due to the magnetic anisotropy process. It has come to have a sexual nature.
そして、前記磁気異方性は、磁場中熱処理の場
合は、該磁場中熱処理の印加磁場の方向または之
と平行な方向が磁化容易方向で、之と直角方向が
磁化困難方向となるのが普通であり、また圧延等
の機械的塑性加工を付与した場合には、該圧延加
工方向または之と平行な方向が磁化容易方向で、
之と直角方向が磁化困難方向となるのが通常であ
る。 In the case of heat treatment in a magnetic field, the magnetic anisotropy is such that the direction of the magnetic field applied during the heat treatment in the magnetic field or a direction parallel to the same is the direction of easy magnetization, and the direction perpendicular thereto is the direction of difficult magnetization. In addition, when mechanical plastic processing such as rolling is applied, the direction of the rolling process or a direction parallel to this is the direction of easy magnetization,
Normally, the direction perpendicular to this direction is the direction in which magnetization is difficult.
従つて、単に機械的に塑性加工性を有すると言
う観点より磁石材料を選定し、圧延により薄板化
して磁気スケールを製造すると、磁気的に等方性
の磁気スケールと圧延による異方性の磁気スケー
ルとが得られるが、前者等方性の磁気スケールで
は前述の如く本発明の目的とする特性の垂直磁化
磁気スケールは得難いものであり、また折角後者
異方性の磁気スケールでは圧延加工による磁気異
方性が製造された磁気スケール薄板の面と平行な
方向に形成され、磁気格子を記録する板面と直角
方向は磁化困難方向となつているから、垂直磁化
によつては高い残溜磁束密度の磁気格子が形成で
きず、また磁気格子を高密度で狭い間隔に磁化記
録できないことは勿論のこと、検出分解能もかえ
つて低いものとならざるを得なかつたのである。 Therefore, if a magnetic scale is manufactured by selecting a magnet material simply from the viewpoint of having mechanical plastic workability and rolling it into a thin plate, it is possible to produce a magnetic scale that is magnetically isotropic and an anisotropic magnetic scale due to rolling. However, with the former isotropic magnetic scale, it is difficult to obtain the perpendicular magnetization magnetic scale with the characteristics targeted by the present invention, and with the latter anisotropic magnetic scale, it is difficult to obtain the perpendicular magnetization magnetic scale with the characteristics aimed at by the present invention. Anisotropy is formed in the direction parallel to the surface of the manufactured magnetic scale thin plate, and the direction perpendicular to the plate surface where the magnetic lattice is recorded is the direction in which magnetization is difficult, so depending on perpendicular magnetization, high residual magnetic flux may occur. It goes without saying that it is not possible to form a high-density magnetic grating, and it is not possible to record magnetization on the magnetic grating at high density and narrow intervals, and the detection resolution is also inevitably low.
本発明はかゝる点に着目して発明された垂直磁
化に適した磁気スケールの製造方法に係るもの
で、帯状体の板面に、又は円板状体の外周縁面に
検出用磁気ヘツドを対接配置すると共に、前記帯
状体と磁気ヘツドとを帯状体の長尺軸方向に相対
的に移動させるか、又は前記円板状体を軸の周り
に回転または前記磁気ヘツドを前記外周縁に沿つ
て移動回転させる帯状体または円板状体の磁気ス
ケールの製造方法に於て、機械的に塑性加工が可
能で、かつ磁気異方性化加工処理が可能な永久磁
石材料を用い、該永久磁石材料の鋳造成形体を冷
間または適宜の温度の熱間で圧延加工することに
より1mm厚前後の薄板状に圧延成形し、該圧延成
形薄板より所望の長さ及び幅の帯状体または所望
径の円板状体をプレス切断して切り出し、該切り
出し後または前記圧延成形後に加熱溶体化処理を
行ない、次いで前記圧延成形薄板または帯状もし
くは円板状体の板面方向と直角方向に磁場を作用
せしめた状態で加熱処理する磁気異方性化処理を
行ない、更に該磁場処理後時効、好ましくは多段
時効を行なつて後、前記帯状体の長尺軸方向また
は円板状体外周縁円周方向に所定のピツチで間歇
的な、かつ板厚方向の表裏に貫通する磁気格子の
着磁を順次に行なうことを特徴とする。 The present invention is directed to a method of manufacturing a magnetic scale suitable for perpendicular magnetization, which was invented with such a point in mind. are arranged facing each other, and the strip-shaped body and the magnetic head are moved relative to each other in the longitudinal axis direction of the strip-shaped body, or the disc-shaped body is rotated around the axis, or the magnetic head is moved along the outer periphery. In the manufacturing method of a magnetic scale in the form of a strip or disk that moves and rotates along the A cast molded body of a permanent magnet material is rolled into a thin plate shape of approximately 1 mm in thickness by cold rolling or hot rolling at an appropriate temperature, and from the rolled thin plate, a belt-shaped body of a desired length and width or a desired width is formed. A disc-shaped body of the same diameter is cut out by press cutting, and after the cutting or the roll-forming, a heating solution treatment is performed, and then a magnetic field is applied in a direction perpendicular to the plate surface direction of the roll-formed thin plate, band-shaped, or disc-shaped body. A magnetic anisotropy treatment is carried out by heat treatment in a state in which the magnetic anisotropy is applied, and after the magnetic field treatment, aging is performed, preferably multi-stage aging, and then the magnetic anisotropy treatment is carried out in the longitudinal axis direction of the band-shaped body or the outer periphery of the disk-shaped body. It is characterized by sequentially magnetizing a magnetic grating that penetrates the front and back sides of the plate in the thickness direction, intermittently at a predetermined pitch in the direction of the plate.
即ち本発明は、磁気格子を垂直磁化により記録
形成する永久磁石材から成る帯状体や円板状体が
前記垂直磁化(板面表裏)方向に磁気異方性を有
することによつて使用する永久磁石材料の種類や
組成等にもよるが、例えば好ましくは30〜50G程
度前後以上の残溜磁束密度を有する磁気格子を形
成させることができ、かつ前記形成磁気格子は垂
直磁化方向以外の方向の残溜磁束密度は殆んど無
いか極めて小さくなり、また形成磁気格子のピツ
チ方向の幅は着磁磁気ヘツドの寸法、形状、及び
着磁方法等にもよるが従来の斯種磁気スケールに
比して、例えば前述50μm〜100μm程度又はそ
れ以下と容易に狭くすることができ、このため磁
気格子の記録密度を増すことができ、他方上記の
ことから明らかなように磁気ヘツドによる検出分
解能が高くなるのである。 That is, the present invention provides a permanent magnet that is used when a strip or disc-shaped body made of a permanent magnet material that records and forms a magnetic grating by perpendicular magnetization has magnetic anisotropy in the perpendicular magnetization direction (front and back of the plate surface). Although it depends on the type and composition of the magnet material, it is possible to form a magnetic lattice having a residual magnetic flux density of preferably about 30 to 50 G or more, and the formed magnetic lattice has a magnetic lattice in a direction other than the perpendicular magnetization direction. The residual magnetic flux density is almost nonexistent or extremely small, and the width of the formed magnetic grating in the pitch direction is compared to conventional magnetic scales of this type, although it depends on the dimensions, shape, and magnetization method of the magnetized magnetic head. For example, it can be easily narrowed to about 50 μm to 100 μm or less, which increases the recording density of the magnetic grating, and on the other hand, as is clear from the above, the detection resolution of the magnetic head is high. It will become.
このような垂直磁化用の帯状体や円板状体の磁
気スケールとしては、形状、寸法、重量、価格、
記録、検出精度等その他の理由により(例えば板
厚に応じ磁気格子の幅を狭く保ちにくゝ検出精度
が低下する可能性がある等)、その板厚を或る程
度以上薄く、例えば約1〜3mm厚前後以下0.3mm
厚等に製作することが殆んど必須の条件となるも
のであるが、上記の如き薄板状に形成するには冷
間または適宜の熱間でゞも充分良好な機械的塑性
加工性、即ち圧延性を有することが必要である。 The magnetic scale for such perpendicular magnetization strips and discs has different shapes, dimensions, weight, price,
For other reasons such as recording and detection accuracy (for example, it is difficult to keep the width of the magnetic grid narrow depending on the plate thickness, which may reduce the detection accuracy), the plate thickness may be reduced to a certain level, for example, approximately 1. ~3mm thickness around 0.3mm or less
Although it is almost an essential condition to manufacture it to a thickness, etc., to form it into a thin plate shape as mentioned above, it must have sufficiently good mechanical plastic workability, i.e., cold work or appropriate hot work. It is necessary to have rollability.
そして、また上記の如き圧延成形により薄板化
されたものが、板の表裏方向に磁気異方性を有す
るためには、後述の特別な製作方法の場合を除き
磁場中熱処理に依らざるを得ないのである。 In addition, in order for a plate made thin by rolling as described above to have magnetic anisotropy in the front and back directions of the plate, it must be subjected to heat treatment in a magnetic field, except in the case of a special manufacturing method described below. It is.
従つて、本発明磁気スケールを製造するに当つ
て、その材料としての磁性材料(好ましくは磁石
特性の優れた、特に残溜磁束密度が大きく、また
抗磁力が大きくて耐経年変化性に優れた、従つて
通常は永久、即ち硬質磁石材であるが、場合によ
つては半硬質磁石材で良い場合もある。)は、上
記の如き良好な機械的塑性加工性を有し、かつ磁
場中熱処理によりより大きな磁気異方性を有する
磁性材料に限られるので、例えば良好圧延加工性
は有するがそのような機械加工によつてしか磁気
異方性が生成しない、例えばCunife、Cunico等
の磁石材料、また逆に磁場中熱処理により充分な
磁気異方性を生成するが、圧延等の機械加工性を
殆んど有しない、例えば所謂Alnico系磁石材料
や、稀土類―コバルト合金系磁石材料等は対象と
ならないこと明らかである。 Therefore, in manufacturing the magnetic scale of the present invention, a magnetic material (preferably one with excellent magnetic properties, particularly one with a large residual magnetic flux density, a large coercive force, and excellent aging resistance) is used as the material. (Therefore, it is usually a permanent, i.e., hard magnetic material, but in some cases, a semi-hard magnetic material may be sufficient.) has good mechanical plastic workability as described above and can be used in a magnetic field. This is limited to magnetic materials that have greater magnetic anisotropy through heat treatment, such as Cunife, Cunico, etc., which have good rolling workability but generate magnetic anisotropy only through such machining. On the other hand, materials such as so-called Alnico magnet materials and rare earth-cobalt alloy magnet materials, which generate sufficient magnetic anisotropy by heat treatment in a magnetic field, but have almost no machinability such as rolling, etc. It is clear that this is not the case.
また、磁場中熱処理によることなく、通常の熱
処理で磁気異方性を生ずるPt―Co系磁石材料
は、塑性加工性には富んでいるものゝ、上記磁気
異方性は当該Pt―Co系合金に特有のものである
から、かゝる合金は、直ちには本発明の対象磁性
材料とはし難い。 In addition, Pt-Co magnet materials that produce magnetic anisotropy through ordinary heat treatment without heat treatment in a magnetic field have excellent plastic workability. Since such alloys are unique to magnetic materials, it is difficult to immediately consider such alloys as magnetic materials subject to the present invention.
しかして、本発明磁気スケール製造に当つて用
いられる磁気材料として適格性を備えているもの
としては、本発明者等が先に硬質または半硬質磁
石材として提案しているFe―Cr―Co系の磁石合
金があり、この系統の磁石合金には下記の如く
種々広範囲の組成及び1種以上の各種添加元素を
有するものが多数あるが、特殊な組成範囲を除け
ば、上述の如く本発明の磁性材料として有用適格
なものである。 However, the Fe-Cr-Co-based material, which the present inventors have previously proposed as a hard or semi-hard magnetic material, is suitable as a magnetic material to be used in manufacturing the magnetic scale of the present invention. There are many types of magnetic alloys in this series that have a wide range of compositions and one or more various additive elements, as shown below. It is suitable for use as a magnetic material.
特公昭49―20451号公報には、重量百分比で15
〜35%Co、3〜50%Cr、残部不純物を除きFeか
ら成る合金組成の良好な機械的塑性加工性と、磁
場中熱処理により磁気異方性を有するFe―Cr―
Co系合金について記載されており、その後の研
究によれば、Coの必須最低量を他元素を添加す
ることによりまたは添加することなく3〜5%
Coと言う低Co領域迄拡大できる。 Special Publication No. 49-20451 states that the weight percentage is 15.
The alloy composition consists of ~35% Co, 3~50% Cr, and Fe excluding the remaining impurities, and has good mechanical plastic workability and magnetic anisotropy due to heat treatment in a magnetic field.Fe-Cr-
Co-based alloys have been described, and subsequent studies have shown that the essential minimum amount of Co can be reduced by 3-5% with or without the addition of other elements.
It can be expanded to the low Co region.
そして、特公昭50―23649号公報には、上記Fe
―Cr―Co系合金の改良として、1〜20%W、ま
たは1〜10%W及び0.5〜50%Moを添加した合金
が、特公昭51―10570号公報には、Fe―Cr―Co
系合金に1〜12%Siを添加した合金が、特公昭50
―37011号公報には、上記各種のFe―Cr―Co系
合金の磁気特性向上のために磁場中熱処理及び冷
間加工の併用により磁気異方性を付与する製造方
法が、特開昭50―101218号公報には、上記Fe―
Cr―Co系合金の低Co化を計つた3〜15%Co、15
〜40%Cr、0.2〜5%Cu、0.2〜12%Si、及び残部
Feから成る合金が、特開昭50―142416号公報に
は低CoのFe―Cr―Coの三元合金に0.2〜5%Nb
またはTaの一方または両方を添加した合金、及
び更に0.5〜5%Alを添加しれ合金が、特開昭52
―98613号公報には、Vを有効成分とした3〜30
%Co、10〜40%Cr、0.1〜15%V、及び残部がFe
から成る合金が、特公昭51―5612号公報には、上
記15〜35%CoのFe―Cr―Co系合金に0.1〜2%
Alを添加した合金が、特公昭51―5613号公報に
は同じくMn、Ni、Cuの1種または2種以上を
0.1〜6%添加した合金が、特開昭51―32416号公
報にはLa、Ce、Smおよびセリウムミツシユメタ
ルの1種または2種以上を0.1〜3%添加した合
金が、特公昭51―29859号公報には、Tiを有効成
分とする10〜20%Co、20〜35%Cr、0.3〜3%
Ti、及び残部がFeから成る半硬質磁石合金が、
また、特開昭50―144099号公報には、0.05〜1.5
%Zrを有効成分として含有するFe―Cr―Co系合
金が夫々記載されており、上記各種組成の合金の
製造方法についても既に種々提案されている所で
あるが、之等Fe―Cr―Co系合金の特徴は、その
合金組成にも依るが、例えばAlnicoVと同程度の
良好な磁石特性を有し、かつ既述の如く極めて良
好な機械的塑性加工性を有し、他方磁気特性改善
のために磁場中熱処理による磁気異方性付与の加
工処理が有効であると言うことである。 And, in Special Publication No. 50-23649, the above-mentioned Fe
- As improvements to Cr-Co alloys, alloys with 1 to 20% W, or 1 to 10% W and 0.5 to 50% Mo added are described in Japanese Patent Publication No. 10570/1986 as Fe-Cr-Co alloys.
Alloys with 1 to 12% Si added to the system alloys were
Publication No. 37011 describes a manufacturing method for imparting magnetic anisotropy through a combination of heat treatment in a magnetic field and cold working to improve the magnetic properties of the various Fe-Cr-Co alloys mentioned above. Publication No. 101218 describes the above Fe―
3 to 15% Co to reduce Co in Cr-Co alloy, 15
~40%Cr, 0.2~5%Cu, 0.2~12%Si, and balance
An alloy consisting of Fe is disclosed in JP-A No. 142416/1983, in which a low Co ternary alloy of Fe-Cr-Co is combined with 0.2 to 5% Nb.
Also, alloys with one or both of Ta added, and alloys with 0.5 to 5% Al added are disclosed in JP-A-52
- Publication No. 98613 describes 3 to 30 containing V as an active ingredient.
%Co, 10~40%Cr, 0.1~15%V, and the balance is Fe
In Japanese Patent Publication No. 51-5612, an alloy consisting of 0.1 to 2% Co is added to the above 15 to 35% Co Fe-Cr-Co alloy.
In Japanese Patent Publication No. 51-5613, alloys containing Al contain one or more of Mn, Ni, and Cu.
JP-A No. 51-32416 discloses an alloy in which 0.1-6% of one or more of La, Ce, Sm, and cerium metal is added in an amount of 0.1-3%. Publication No. 29859 describes 10 to 20% Co, 20 to 35% Cr, and 0.3 to 3% Ti as an active ingredient.
A semi-hard magnetic alloy consisting of Ti and the balance Fe,
In addition, 0.05 to 1.5
Fe-Cr-Co alloys containing % Zr as an active ingredient have been described, and various methods for producing alloys with the various compositions mentioned above have already been proposed. The characteristics of the series alloy depend on its alloy composition, but for example, it has good magnetic properties comparable to AlnicoV, and as mentioned above, it has extremely good mechanical plastic workability. Therefore, processing for imparting magnetic anisotropy by heat treatment in a magnetic field is effective.
本発明製造方法を実施例により説明すると、重
量百分比で2%Ti―3%V―15%Co―21%Cr―
残部Feから成る組成の合金を高周波炉で、アル
ゴンガス中等の不活性雰囲気、または水素等を含
む弱還元性雰囲気中で溶製し、後適宜の形状、寸
法に鋳造する。 To explain the manufacturing method of the present invention with examples, the weight percentage is 2% Ti - 3% V - 15% Co - 21% Cr -
An alloy having a composition with the balance consisting of Fe is melted in a high frequency furnace in an inert atmosphere such as argon gas or a weakly reducing atmosphere containing hydrogen, etc., and then cast into an appropriate shape and size.
次いで鋳造成形体を調質、溶体化処理のために
約1000〜1300゜に約30分前後加熱する。 Next, the cast molded body is heated to about 1000 to 1300° for about 30 minutes for tempering and solution treatment.
この加熱温度は合金のCo、Cr、特にCoの含有
量によつてほゞ比例的に変化し、例えば10%Co
前後では1000℃以下と低くすることができるが35
%Co程度では1350℃位とすることが必要であ
る。 This heating temperature changes approximately proportionally depending on the Co, Cr, especially Co content of the alloy; for example, 10% Co
It is possible to lower the temperature to below 1000℃ at around 35
%Co, it is necessary to set the temperature to about 1350°C.
この調質溶体化処理後、一旦水冷または油冷等
により焼入れすることが望ましいが、次の圧延加
工温度迄自然冷却させるようにしても良い。 After this tempering solution treatment, it is desirable to once quench the material by water cooling or oil cooling, but it may also be allowed to cool naturally to the next rolling temperature.
次に圧延加工する訳であるが、圧延の最終仕上
げ加工は、60〜80%以内20%位迄の加工率の冷間
加工によつて仕上げすることが好ましいが、その
前の圧延加工は冷間加工のみによれば60〜80%程
度以上の加工率に達する毎に焼鈍が必要となるか
ら、例えば300℃前後またはそれ以上の熱間で荒
圧延をし、圧延加工の簡易化、効率化を計つた方
が良い。 Next, rolling is performed, and the final finishing process of rolling is preferably cold working with a working rate of 20% within 60 to 80%, but the rolling process before that is cold working. If only partial working is used, annealing will be required every time a working rate of 60 to 80% or higher is reached, so rough rolling is performed at a temperature of around 300°C or higher, for example, to simplify and improve the efficiency of rolling. It is better to measure
所定の板厚、例えば1mm厚に圧延が完了する
と、所定のスケールの寸法、形状に切断またはプ
レス打ち抜くか、またはその前に前述の調質、溶
体化処理を行なう。 When rolling to a predetermined thickness, for example 1 mm, is completed, the plate is cut or press punched into a predetermined scale size and shape, or the above-mentioned tempering and solution treatment are performed before that.
即ち、圧延により板は板面(圧延)方向に磁気
異方性が形成されているからで、この磁気異方性
を調質、溶体化処理により消去するのであり、こ
の溶体化処理の工程では好ましくは水冷、または
油冷焼入を行なうが、次の磁気異方性付与のため
の磁場中熱処理温度迄自然または強制冷却するよ
うにしても良い。 In other words, magnetic anisotropy is formed in the plate surface (rolling) direction due to rolling, and this magnetic anisotropy is erased by tempering and solution treatment. Water-cooling or oil-cooling quenching is preferably performed, but natural or forced cooling may be performed to the temperature of the subsequent heat treatment in a magnetic field for imparting magnetic anisotropy.
そして、上記磁場中熱処理は板面と直角方向に
磁束を作用させるよう、例えば磁気ヨーク間に板
を挾着するようにして約3000〜4000Oeの磁場を
かけ630〜690℃に30〜60分加熱処理するが、加熱
温度、及び時間は合金組成によるもので、上記組
成の場合には670℃、30分前後が良い。 Then, in the magnetic field heat treatment, a magnetic field of about 3000 to 4000 Oe is applied to apply magnetic flux perpendicular to the plate surface, for example by sandwiching the plate between magnetic yokes, and the temperature is heated to 630 to 690°C for 30 to 60 minutes. The heating temperature and time depend on the alloy composition, and in the case of the above composition, 670° C. for about 30 minutes is preferable.
しかして、次に少くとも所定温度で一回、また
は好ましくは温度を少しずつ降下させて行く多段
又は連続時効を行なう訳であるが、上記圧延後の
溶体化処理、または切断もしくはプレス打ち抜き
後の溶体化処理、及び之以後の各熱処理工程に於
ては、薄板を一枚一枚取扱い処理するのではな
く、適宜または所定の寸法、形状の薄板を多数密
着重ね合せ、之を厚板間に挾着する等適宜機械的
手段、その他により固定保持した状態で行なうの
が、反り、湾曲等各種の変形防止上望ましく、ま
た所定寸法形状への切断も、上記重ね合せたまゝ
で機械的に、またはワイヤカツト放電加工やその
他の電気加工、例えば電子ビーム加工、レザー、
ビーム加工等により切出し成形するようにしても
良い。 Then, multi-stage or continuous aging is performed at least once at a predetermined temperature, or preferably by gradually decreasing the temperature. In the solution treatment and each subsequent heat treatment process, instead of handling and processing the thin plates one by one, a large number of thin plates of appropriate or predetermined dimensions and shapes are stacked closely together, and the thin plates are placed between the thick plates. It is preferable to hold the sheets fixed by appropriate mechanical means such as clamping or other means in order to prevent various deformations such as warping and curving.Also, cutting into a predetermined size and shape is done mechanically while the sheets are stacked as described above. or wire cut electrical discharge machining or other electrical machining such as electron beam machining, laser,
It may also be cut and formed by beam machining or the like.
しかして、上記多段時効の上記組成合金に対す
る好ましい例としては、前記磁場中熱処理後、一
旦常温迄冷却するか炉中冷却により第1段の時効
温度に移行させるものとし、該多段時効は620℃
×1時間→600℃×1時間→580℃×1時間→560
℃×1時間→540℃×4時間→冷却の如きもの
で、この温度、時間条件も合金組成により或る程
度変更が必要である。 Therefore, as a preferable example of the multi-stage aging for the above-mentioned composition alloy, after the heat treatment in the magnetic field, the temperature is transferred to the first stage aging temperature by cooling to room temperature or cooling in a furnace, and the multi-stage aging is performed at 620°C.
× 1 hour → 600℃ × 1 hour → 580℃ × 1 hour → 560
℃×1 hour→540℃×4 hours→cooling, and these temperature and time conditions also need to be changed to some extent depending on the alloy composition.
このような製造方法によれば、板体は板面直角
方向に、磁化すると残溜磁束密度Br≒14500G、
抗磁力Hc≒520Oe、最大エネルギ積(B・H)
max≒5.8×106G・Oe、角形性約0.9以上と言う磁
石性能を示すもので、之が板体の板面と平行な方
向の磁気特性は、上記の如き製造方法により磁気
異方性化加工処理がほゞ100%となつている所か
ら透磁率(μ)が大きい強磁性体特性を示すだけ
で、磁石的性質は殆んど零となつていた。 According to this manufacturing method, when the plate is magnetized in the direction perpendicular to the plate surface, the residual magnetic flux density Br≒14500G,
Coercive force Hc≒520Oe, maximum energy product (B・H)
max≒5.8×10 6 G・Oe, squareness of about 0.9 or more, which indicates magnetic performance, and the magnetic properties in the direction parallel to the plate surface of the plate are magnetic anisotropy due to the manufacturing method described above. Since the chemical processing was almost 100%, it only exhibited ferromagnetic properties with high magnetic permeability (μ), and its magnetic properties were almost zero.
そしてこのような磁気異方性及び磁気特性は、
前述した他のFe―Cr―Co系合金に於ても同様で
あつて、本発明の目的、作用効果達成上、垂直磁
化記録及び検出読み出しの構成との組合せに於て
合目的々であることが判る。 And such magnetic anisotropy and magnetic properties are
The same applies to the other Fe-Cr-Co alloys mentioned above, and they are suitable for achieving the objectives, effects, and effects of the present invention in combination with perpendicular magnetization recording and detection/reading configurations. I understand.
約1mm厚で帯及び円板状に仕上げたスケール材
に板厚方向の垂直磁化による磁気格子を1つ置き
に磁化の方向を変えて50〜100μmピツチで行つ
た所、各磁気格子の残溜磁束密度は30〜50Gより
も充分大きく、S/N比が高く保て、検出分解能
も充分良好なものであつた。 When magnetic gratings with perpendicular magnetization in the plate thickness direction were applied to a scale material finished in the shape of a band or disk with a thickness of about 1 mm at a pitch of 50 to 100 μm, the direction of magnetization was changed every other time. The magnetic flux density was sufficiently greater than 30 to 50 G, the S/N ratio was kept high, and the detection resolution was sufficiently good.
そして、この磁性材料が、磁石特性及び磁気異
方性の点に於て充分な耐経年変化性を備えている
ことは明らかであつて、用途及び用法によつて
は、耐摩、潤滑、及び/または耐防錆のための合
成樹脂等の被覆処理、またはその他の表面処理を
施されることがある。 It is clear that this magnetic material has sufficient aging resistance in terms of magnetic properties and magnetic anisotropy, and depending on the application and usage, it can be used for wear resistance, lubrication, and/or Alternatively, it may be coated with synthetic resin or other surface treatments for rust prevention.
磁気格子の垂直磁化記録または検出読み出しの
磁気ヘツドとしては、隣接または複数ピツチを隔
てた一対の磁気格子を、スケールの一方の面で前
記一対の磁気格子を夫々微小隙間を置いて短絡さ
せる磁気ヨークと、他方の面で前記一対の磁気格
子を夫々微小隙間を置いて短絡させるように配置
された着磁記録、または検出読み出し用のコイル
を有する磁気ヨークとから成る構成のものを用い
ても良い。 The magnetic head for perpendicular magnetization recording or detection readout of magnetic gratings is a magnetic yoke that short-circuits a pair of magnetic gratings adjacent to each other or separated by a plurality of pitches with a minute gap between them on one side of the scale. and a magnetic yoke having a magnetized record or a detection readout coil arranged to short-circuit the pair of magnetic gratings with a small gap on the other surface. .
上述の磁場中熱処理による磁気異方性に、機械
的圧延加工により形成される磁気異方性をプラス
できれば、抗磁力が増し、耐経年減磁性が増すか
ら有効であるが、そのためには充分な圧下量の圧
延加工された板の端部より圧延方向と直角に所定
の厚さのものを切り出し切断し、前記切り出し厚
さ方向に磁場中熱処理をして、この厚さ方向を磁
気格子の垂直磁化方向とする必要があり、切断等
の機械その他の加工方法にもよるが、加工損の割
合が多くなる可能性があり、この製造方法には解
決されなければならない問題があるようである。 It would be effective if the magnetic anisotropy formed by mechanical rolling could be added to the magnetic anisotropy produced by the above-mentioned heat treatment in a magnetic field, since the coercive force would increase and the demagnetization resistance over time would increase. A piece of a predetermined thickness is cut out from the end of the rolled plate perpendicular to the rolling direction, heat treated in a magnetic field in the direction of the cut thickness, and the thickness direction is perpendicular to the magnetic grid. This manufacturing method seems to have a problem that needs to be solved, as it is necessary to set the magnetization direction in the direction of magnetization, and depending on the machine and other processing methods such as cutting, there is a possibility that the percentage of processing losses will increase.
以上詳述したように、本発明は垂直磁化用、特
にその垂直磁化記録方向に磁気異方性を有する帯
状または円板状体の磁気スケールの製造方法を提
案したもので、本発明により残溜磁束密度が充分
大きくS/N比が高く、磁気格子の高密度記録が
可能であると共に反面分解能も高い垂直磁化記録
及び検出読み出しの可能な磁気スケールが得られ
るもので、Fe―Cr―Co系合金以外にも同様な特
性を有する磁石合金に同様に適用して優れた磁気
スケールを製造することができる。 As described in detail above, the present invention proposes a method for manufacturing a magnetic scale for perpendicular magnetization, particularly a band-like or disk-like body having magnetic anisotropy in the perpendicular magnetization recording direction. It has a sufficiently large magnetic flux density and a high S/N ratio, enabling high-density recording of magnetic gratings, while also providing a magnetic scale that can perform perpendicular magnetization recording and detection readout with high resolution. In addition to alloys, the present invention can also be applied to magnetic alloys having similar properties to produce excellent magnetic scales.
Claims (1)
すると共に、前記帯状体と磁気ヘツドとを帯状体
の長尺軸方向に相対的に移動せしめる帯状体磁気
スケールの製造方法に於て、機械的に塑性加工が
可能で、かつ磁気異方性化加工処理が可能な永久
磁石材料を用い、該永久磁石材料の鋳造成形体を
冷間圧延等の圧延加工することにより薄板状に圧
延成形し、該圧延成形薄板より所望の長さ及び幅
の帯状体をプレス、切断して切り出し、該切り出
し後又は前記圧延成形後に加熱溶体化処理を行な
い、次いで前記薄板又は帯状体の板面方向と直角
方向に磁場を作用せしめた状態で加熱処理する磁
気異方性化処理を行ない、更に該磁場処理後時効
して後帯状体の長尺軸方向に所定のピツチで間歇
的なかつ板厚方向の磁気格子着磁を順次に行なう
ことを特徴とする磁気スケールの製造方法。 2 前記圧延成形された薄板又は切り出した帯状
体を所望の枚数重ね合せ、該重ね合せ体を加熱溶
体化処理をし、次いで前記重ね合せ体の重ね合せ
方向に磁場を作用せしめた状態で、前記加熱処理
する磁気異方性化処理を行なうことを特徴とする
特許請求の範囲第1項記載の磁気スケールの製造
方法。 3 前記永久磁石材料がFe―Cr―Co系のスピノ
ーダル分解型磁石合金から成ることを特徴とする
特許請求の範囲第1項記載の磁気スケールの製造
方法。 4 円板状体の外周縁面に検出用磁気ヘツドを対
接配置すると共に、前記円板状体を軸の周りに回
転させるか前記磁気ヘツドを前記外周縁に沿つて
移動回転させる円板状体磁気スケールの製造方法
に於て、機械的に塑性加工が可能で、かつ磁気異
方性化加工処理が可能な永久磁石材料を用い、該
永久磁石材料の鋳造成形体を冷間圧延等の圧延加
工することにより薄板状に圧延成形し、該圧延成
形薄板より所望の円板状体をプレス、切断して切
り出し、該切り出し後又は前記圧延成形後に加熱
溶体化処理を行ない、次いで前記薄板又は円板状
体の板面方向と直角方向に磁場を作用せしめた状
態で加熱処理する磁気異方性化処理を行ない、更
に該磁場処理後時効して後円板状体の外周縁円周
方向に所定のピツチで間歇的なかつ板厚方向の磁
気格子着磁を順次に行なうことを特徴とする磁気
スケールの製造方法。 5 前記圧延成形後に切り出された円板状体を所
望の枚数重ね合せ、該重ね合せ体を加熱溶体化処
理をし、次いで前記重ね合せ体の重ね合せ方向に
磁場を作用せしめた状態で、前記加熱処理する磁
気異方性化処理を行なうことを特徴とする特許請
求の範囲第4項記載の磁気スケールの製造方法。 6 前記永久磁石材料がFe―Cr―Co系のスピノ
ーダル分解型磁石合金から成ることを特徴とする
特許請求の範囲第4項記載の磁気スケールの製造
方法。[Scope of Claims] 1. A band-shaped magnetic scale in which a detection magnetic head is disposed in opposition to the plate surface of the band-shaped body, and the band-shaped body and the magnetic head are moved relative to each other in the longitudinal axis direction of the band-shaped body. In the manufacturing method, a permanent magnet material that can be mechanically plasticized and subjected to magnetic anisotropy processing is used, and a cast molded body of the permanent magnet material is subjected to rolling processing such as cold rolling. The rolled thin plate is rolled and formed into a thin plate shape, and a strip having a desired length and width is cut out from the rolled thin plate by pressing and cut. After the cutting out or after the rolling forming, a heating solution treatment is performed, and then the thin plate or strip is cut out. A magnetic anisotropy treatment is performed in which a magnetic field is applied in a direction perpendicular to the direction of the plate surface of the body, and further, after the magnetic field treatment, the material is aged and then intermittently at a predetermined pitch in the longitudinal axis direction of the strip body. 1. A method for manufacturing a magnetic scale, characterized by sequentially magnetizing a magnetic lattice in the plate thickness direction. 2 Layering a desired number of the rolled thin plates or cut out strips, subjecting the stacked body to heat solution treatment, and then applying a magnetic field in the stacking direction of the stacked body, 2. The method of manufacturing a magnetic scale according to claim 1, further comprising performing a magnetic anisotropy treatment by heat treatment. 3. The method of manufacturing a magnetic scale according to claim 1, wherein the permanent magnet material is made of an Fe-Cr-Co spinodal decomposition type magnet alloy. 4. A disc-shaped body in which a detection magnetic head is disposed in opposition to the outer peripheral edge surface of the disc-shaped body, and the disc-shaped body is rotated around an axis or the magnetic head is moved and rotated along the outer peripheral edge. In the manufacturing method of the body magnetic scale, a permanent magnet material that can be mechanically plasticized and subjected to magnetic anisotropy processing is used, and a cast molded body of the permanent magnet material is processed by cold rolling, etc. A desired disc-shaped body is cut out by pressing and cutting from the rolled thin plate, and a heating solution treatment is performed after the cutting or after the rolling forming, and then the thin plate or A magnetic anisotropy treatment is performed in which a magnetic field is applied in a direction perpendicular to the plate surface direction of the disc-shaped body, and then the outer periphery of the disc-shaped body is aged in the circumferential direction after the magnetic field treatment. 1. A method of manufacturing a magnetic scale, characterized by sequentially magnetizing a magnetic grid in the thickness direction intermittently at a predetermined pitch. 5. A desired number of disk-shaped bodies cut out after the above-mentioned rolling forming are stacked together, the stacked body is heated and solution-treated, and then a magnetic field is applied in the stacking direction of the stacked bodies, and the above-mentioned 5. The method of manufacturing a magnetic scale according to claim 4, further comprising performing a magnetic anisotropy treatment by heat treatment. 6. The method of manufacturing a magnetic scale according to claim 4, wherein the permanent magnet material is made of an Fe-Cr-Co spinodal decomposition type magnet alloy.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10544179A JPS5629115A (en) | 1979-08-17 | 1979-08-17 | Manufacture for magnetic scale |
DE8080302815T DE3069509D1 (en) | 1979-08-16 | 1980-08-15 | Manufacture and use of magnetic scale systems |
EP19800302815 EP0027308B1 (en) | 1979-08-16 | 1980-08-15 | Manufacture and use of magnetic scale systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10544179A JPS5629115A (en) | 1979-08-17 | 1979-08-17 | Manufacture for magnetic scale |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5629115A JPS5629115A (en) | 1981-03-23 |
JPS6257929B2 true JPS6257929B2 (en) | 1987-12-03 |
Family
ID=14407674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10544179A Granted JPS5629115A (en) | 1979-08-16 | 1979-08-17 | Manufacture for magnetic scale |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5629115A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0462513U (en) * | 1990-10-11 | 1992-05-28 | ||
JPH04205924A (en) * | 1990-11-30 | 1992-07-28 | Nec Corp | Objective lens driving device for optical disk |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5814011A (en) * | 1981-07-20 | 1983-01-26 | Hitachi Ltd | magnetic encoder |
JP2681048B2 (en) * | 1985-07-04 | 1997-11-19 | 株式会社ソキア | Magnetic scale material |
DE102014201975A1 (en) * | 2013-08-28 | 2015-03-05 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Sensor with a sensor element and method for producing the sensor element |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52139614A (en) * | 1976-05-18 | 1977-11-21 | Toshiba Corp | Magnet alloy |
JPS53109816A (en) * | 1977-03-09 | 1978-09-26 | Hitachi Metals Ltd | Method of producing feecrrco based permanent magnet |
JPS586883B2 (en) * | 1977-03-10 | 1983-02-07 | 株式会社井上ジャパックス研究所 | How to make a magnetic scale |
JPS53140220A (en) * | 1977-05-13 | 1978-12-07 | Hitachi Metals Ltd | Method of producing feecrrco based permant magnet |
JPS547668U (en) * | 1977-06-17 | 1979-01-18 |
-
1979
- 1979-08-17 JP JP10544179A patent/JPS5629115A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0462513U (en) * | 1990-10-11 | 1992-05-28 | ||
JPH04205924A (en) * | 1990-11-30 | 1992-07-28 | Nec Corp | Objective lens driving device for optical disk |
Also Published As
Publication number | Publication date |
---|---|
JPS5629115A (en) | 1981-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200325564A1 (en) | High permeability soft magnetic alloy and method for the production of a high permeability soft magnetic alloy | |
CN1043579C (en) | Wear-resistant high permeability magnetic alloy and method of manufacturing the same | |
CN100403627C (en) | Iron-alloy band material for voice-coil motor magnetic circuit | |
JPS6133900B2 (en) | ||
EP1763042A1 (en) | Magnetic circuit with excellent corrosion resistance, and voice coil motor or actuator | |
JPS6257929B2 (en) | ||
JPS59582B2 (en) | Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method | |
NL8303709A (en) | APPARATUS PROVIDED WITH A MAGNETIC SOFT ALLOY BODY. | |
JPH08143994A (en) | Abrasion resistant high permeability alloy, its manufacturing method and magnetic recording / reproducing head | |
US6514358B1 (en) | Stretching of magnetic materials to increase pass-through-flux (PTF) | |
US4312683A (en) | Method for heat-treating amorphous alloy films | |
JPH0230375B2 (en) | ||
Arai et al. | Grain growth characteristics and magnetic properties of rapidly quenched silicon steel ribbons | |
US3837844A (en) | Wear resisting magnetic material having high permeability | |
JPS58211604A (en) | Magnetic scale | |
JPS61134603A (en) | Production of magnetic scale | |
JPH03115564A (en) | Production of sputtering target material | |
JPS61119005A (en) | Manufacture of iron-rareearth-boron permanent magnet | |
JP2549145B2 (en) | Magnetic head | |
JPH0645847B2 (en) | Manufacturing method of wear resistant high permeability alloy. | |
CN108624824B (en) | Bias sheet, manufacturing method thereof and acoustic-magnetic anti-theft label manufactured by bias sheet | |
JPH0645849B2 (en) | Manufacturing method of wear resistant high permeability alloy. | |
JPH0310699B2 (en) | ||
JPS61165604A (en) | Magnetic scale | |
JP3019400B2 (en) | Amorphous soft magnetic material |