[go: up one dir, main page]

JPS6353273B2 - - Google Patents

Info

Publication number
JPS6353273B2
JPS6353273B2 JP61009834A JP983486A JPS6353273B2 JP S6353273 B2 JPS6353273 B2 JP S6353273B2 JP 61009834 A JP61009834 A JP 61009834A JP 983486 A JP983486 A JP 983486A JP S6353273 B2 JPS6353273 B2 JP S6353273B2
Authority
JP
Japan
Prior art keywords
cathode
plating
cobalt
iron
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61009834A
Other languages
Japanese (ja)
Other versions
JPS61264187A (en
Inventor
Keiji Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61009834A priority Critical patent/JPS61264187A/en
Publication of JPS61264187A publication Critical patent/JPS61264187A/en
Publication of JPS6353273B2 publication Critical patent/JPS6353273B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルカリ金属ハロゲン化物、水酸化ア
ルカリ金属等の水溶液電解方法に関する。 更に詳しくは上記の電解において従来よりも水
素過電圧を著しく低減することのできる新しい陰
極を用いる電解方法を提供するものである。 電解槽を用いて例えば水素、塩素及び苛性ソー
ダを製造するための塩化ナトリウム水溶液の電解
とか、水素、酸素を製造するための水酸化アルカ
リ金属水溶液の電解を行う場合、陰極における水
素過電圧により生ずる電力効率の損失は大きく、
重大な問題である。この陰極における水素過電圧
は陰極の素地、表面材質あるいは表面状態等によ
り著しく異なることが知られている。これら知見
からアルカリ金属ハロゲン化物とか水酸化アルカ
リ金属の水溶液電解用陰極として水素過電圧の低
い金属あるいはその化合物で当該陰極基体表面を
処理したものが提案されている。例えば陰極基材
に犠牲金属とニツケル等との合金をコーテイング
した陰極(特開昭51−54877)、レニウムをコーテ
イングした陰極(特開昭51−55782、51−83083)、
陰極基材に金属粉末溶射法にてニツケル、コバル
ト、白金、鉄等の粉末状金属を密着させた陰極
(特開昭52−32832)、金属粉体溶射法にてコバル
ト、ジルコニア粉末混合物を被覆させた陰極(特
開昭52−36582)、同法にてニツケル、コバルト粉
末もしくはこれらとアルミニウム粉末とからなる
混合物で陰極基材を被覆させた陰極(特開昭52−
36583)、化学メツキ法にて陰極基材にニツケル被
覆させた陰極(特開昭52−110282)、同様にニツ
ケル、コバルト、タングステン系の合金を化学メ
ツキした陰極(特開昭52−133100)、あるいは電
気メツキ法にてニツケル、バナジウム、モリブデ
ン合金を被覆させたり(特開昭52−102888)、ハ
イドロサルフアイト共存下でニツケルとモリブデ
ンまたはバナジウムとの合金を陰極基材に被覆さ
せた陰極(特許第203635号)鋼の研削粉末を基材
上に焼結法にて被覆した陰極(特開昭51−
147479)等が各種開示されている。 しかしこれらの陰極はそれぞれ作成皮膜が弱
い、あるいは水素過電圧低減効果が少ない、ある
いは使用金属又はその粉末が高価であること、さ
らには複雑な形状の陰極基体(例えば網状体)へ
の均質な適用が困難等の欠点が多い。 そこで本発明者は、特定の基体に種々の条件で
鉄コバルト合金を電気メツキしてこれを陰極とし
て使用しアルカリ金属ハロゲン化物、アルカリ金
属水酸化物等の水溶液の電解方法について検討し
た結果特定の条件下で得られる鉄コバルト合金メ
ツキ物を陰極として用いることにより効果のある
ことを見出し、本発明を完成した。 即ち、本発明の要旨は、チタンまたはチタン合
金からなる基体の少なくとも一面に、澱粉、デキ
ストリン、ポリ―2―ジエチルアミノエチルメタ
クリレート及びポリ塩化アルミニウムからなる群
から選ばれる1つを第1鉄イオン及びコバルトイ
オン濃度の合計が0.1〜2mol/l、2.5PH6.0
である鉄コバルト合金メツキ浴に添加して鉄コバ
ルト合金を電気メツキし、これを陰極として使用
する水溶液電解方法にある。 次に本発明において使用される陰極の製造方法
を詳説する。 本発明における前記特定の基体としてはチタン
またはチタン合金が鉄、ニツケル、ステンレス
鋼、白金族金属等と同様に電気伝導性、機械的性
質、電解液に対する耐薬品性、メツキ層、コーテ
イング層との接着性等の点で好適であるが、電解
槽用材料、陽極用基体としても同様に好適で、適
当なメツキまたはコーテイングをすることにより
陽極にも陰極にも使用しうる。このことは単極式
電極の場合のみならず、複極式電極用基体として
も有望なことを示すものである。 チタンの他チタン合金も同様に用いられるが特
にチタンとジルコニウム、タンタル、ニオブ、モ
リブデン、クロム、鉄、バナジウム、マンガン等
との合金が好適である。通常の組成はチタン以外
の成分は一般に数重量%含有されたものが適当で
ある。 チタンあるいはチタン合金は陰極として用いら
れる場合平板型、箱型または網状体のものが一般
的に用いられるが、少くともその一面をメツキの
前処理即ち、脱脂、ワイヤホイル研磨、サンドブ
ラスト等の機械的粗面化、エッチング等の化学的
粗面化の他、金属のコーテイング等の適宜、単独
または組合わせ処理をすることが本発明の構成要
件であるメツキ処理をしたメツキ層の接着性の点
で好ましい。 電気メツキ浴への添加剤は一般にいわゆる水処
理技術において、水中浮遊物の凝集剤としても用
いられているものが好適に用いられることがわか
り、澱粉、デキストリン、ポリ―2―ジエチルア
ミノエチルメタクリレート又はポリ塩化アルミニ
ウムが使用されうる。これら添加剤は通常は一種
類でよいが、二種類以上併用しても悪影響はな
い。 一方、これらの添加量については特に限定され
るものではないが、多きにすぎるとメツキ層の耐
剥離性、メツキ表面の機械的強度に悪影響をもた
らすので、陰極としての使用条件に応じ添加量は
決められなければならない。 次に、本発明においてはメツキされる成分とし
て鉄―コバルト合金が選ばれ、そのメツキ浴とし
ては塩化第1鉄あるいは硫酸第1鉄等の第1鉄塩
と塩化コバルトあるいは硫酸コバルト等のコバル
ト塩との混合溶液からなる浴が用いられ得る。 メツキ浴のPHはメツキ皮膜に重大な影響を与え
る。メツキ浴のPHの好適な範囲は浴の撹拌の強さ
の影響を受けるがPH=2.5〜6.0である。撹拌が弱
い場合には更に低いPHにても可能であるが、メツ
キ面の均質性に問題が生じる。 メツキ浴中の第一鉄イオン及びコバルトイオン
の濃度は両者の合量が0.1mol/l〜2mol/lが
良く、更に好ましくは0.4mol/l〜1.7mol/l
が良い。 第一鉄イオンとコバルトイオンの比率は特に限
定されるものでは無いが、実用的にはCo/Fe=
0.01〜0.5が好ましい。 第一鉄イオンとコバルトイオンの濃度の合量が
前記範囲よりも大になると活性の無いメツキ表面
を生成しやすくなり陰極としての水素過電圧低減
効果が著減する。濃度をこの範囲よりも小にする
と、メツキ皮膜の耐剥離性、電流効率等の面で問
題を生じる。また、特許第206743号ではメツキ浴
に第二鉄塩の存在を必須条件とし、生成メツキ層
中に酸化鉄を含有させようとしているが、本発明
においては鉄―コバルト合金メツキ浴に前記の添
加剤を共存させることを構成要件の1つとして特
に第二鉄塩、酸化鉄の添加を必要とせず、一方PH
条件によつては第二鉄塩、酸化鉄は生成し易い
が、生成してもまた沈澱分離しても害とならない
ためPH条件をそれだけ広くとりうるメリツトは大
きい。 メツキ浴の電導度を増大させる等の為に、慣用
的に添加される塩化カルシウム等の無機塩の添加
は、必要に応じなし得る。但しアンモニウムイオ
ンを含む塩は、当該メツキの生成を妨害するので
避けなければならない。 前記金属イオン濃度の比較的低いメツキ浴の場
合にはメツキ液の電導度が小さいので、上記の無
機塩の添加は有用である。但し多量に添加する
と、メツキ陰極の水素過電圧低減の効果が減じ
る。 メツキ浴の温度は、慣用のメツキ温度(約20〜
90℃)が採用され得、特に限定されるものではな
いが70℃以上が好ましい。 メツキ時の電流密度は、慣用の条件(1〜
5A/dm2)が適当である。更に大なる電流密度
にても可能ではあるが、表面状態が荒れて来、ま
た耐剥離性が悪化してくる。また前記よりも小な
る電流密度にても可能ではあるがメツキ皮膜の耐
剥離性等が悪化して来る。 またメツキ浴は、慣用の電気メツキ操作にて行
なう程度の撹拌を行なう事が好ましい。但し空気
撹拌すれば第一鉄イオンが酸化され不要の第二鉄
化しやすく、避けなければならない。そのために
窒素ガス撹拌等非酸化性ガス撹拌が上記の点で好
ましい。 以下実施例を用いて本発明を詳しく説明する。 実施例 1〜5 第1表に示した条件でメツキ処理した陰極板を
チタン板に酸化ルテニウムを被覆した陽極と対置
し、塩素酸ナトリウム100g/l、塩化ナトリウ
ム240g/l、水酸化ナトリウム4g/lの水溶
液中に浸漬し温度45℃で電解を行ない、電流密度
10A/dm2、20A/dm2、30A/dm2の各条件に
おける慣用の軟鋼板製陰極(研磨紙で研磨)に対
する水素過電圧の低減量を効果として同表下欄に
示す。なお陰極電位はルギン毛細管を通じて飽和
カロメル電極により測定した。 実施例 6〜14 第2表に示した条件で作成した陰極の、水電解
における軟鋼板陰極に対する水素過電圧の低下量
を電流密度に対応させて測定した結果を同表下欄
に示す。 陰極電位は前記メツキ処理した軟鋼板を45℃、
10重量%水酸化ナトリウム水溶液中に純ニツケル
板の陽極に対置し、浸漬し、ルギン毛細管を通じ
て飽和カロメル電極により測定した。 また前記軟鋼板陰極としては、研磨紙#80にて
研磨した軟鋼板を用いた。 実施例 15 第3表に示した条件でメツキ処理した陰極金網
上にアスベストを沈着させて、アスベスト隔膜用
陰極とし、チタン金網上に酸化ルテニウムを被覆
した陽極と対置し、温度70℃、電流密度20A/d
m2にて水酸化ナトリウム製造用の飽和食塩水のア
スベスト隔膜法電解を行なつた。 慣用の軟鋼金網陰極(ワイヤブラシにて研磨)
に対するメツキ処理陰極の電解電圧の低減効果を
同表下欄に示す。 実施例 16 第4表に示した条件で作成した陰極板を65℃、
30重量%水酸化カリウム水溶液中に純ニツケルの
陽極に対置浸漬し電流密度20A/dm2にて水電解
を行つた。電解の結果、電解電圧は同表に示すよ
うにかなりの低下が見られた。 比較例 1〜5 第5表に示した条件でメツキ処理した陰極板を
対象として実施例1〜5と比較した。 比較例 6〜11 第6表に示したメツキ浴条件で作成した陰極の
水電解において軟鋼板に対する水素過電圧の低下
量を各電流密度条件に対応させて測定した結果を
同表下欄に示した。陰極電位測定法、軟鋼板陰極
及びその表面処理は実施例6〜14と同一とした。
The present invention relates to a method for aqueous electrolysis of alkali metal halides, alkali metal hydroxides, etc. More specifically, the present invention provides an electrolysis method using a new cathode that can significantly reduce hydrogen overvoltage compared to conventional electrolysis. When electrolyzing an aqueous sodium chloride solution to produce hydrogen, chlorine, and caustic soda, or electrolyzing an alkali metal hydroxide aqueous solution to produce hydrogen and oxygen using an electrolytic cell, the power efficiency caused by hydrogen overvoltage at the cathode The loss of
This is a serious problem. It is known that the hydrogen overvoltage at the cathode varies significantly depending on the material, surface material, surface condition, etc. of the cathode. Based on these findings, a cathode for aqueous electrolysis of alkali metal halides or alkali metal hydroxides has been proposed in which the surface of the cathode substrate is treated with a metal having a low hydrogen overvoltage or a compound thereof. For example, a cathode in which the cathode base material is coated with an alloy of sacrificial metal and nickel etc. (Japanese Patent Laid-Open No. 51-54877), a cathode in which rhenium is coated (Japanese Patent Laid-Open No. 51-55782, 51-83083),
A cathode in which powdered metals such as nickel, cobalt, platinum, and iron are adhered to the cathode base material using a metal powder spraying method (Japanese Patent Application Laid-open No. 52-32832), and a mixture of cobalt and zirconia powders is coated using a metal powder spraying method. (Japanese Unexamined Patent Publication No. 52-36582), and a cathode whose cathode base material is coated with nickel or cobalt powder or a mixture of these and aluminum powder using the same method (Japanese Unexamined Patent Publication No. 52-36582).
36583), a cathode in which the cathode base material is coated with nickel using a chemical plating method (Japanese Patent Laid-Open No. 52-110282), a cathode in which a nickel, cobalt, and tungsten alloy is also chemically plated (Japanese Patent Laid-Open No. 52-133100), Alternatively, an alloy of nickel, vanadium, or molybdenum may be coated using an electroplating method (Japanese Patent Application Laid-open No. 102888/1988), or a cathode base material may be coated with an alloy of nickel, molybdenum, or vanadium in the coexistence of hydrosulfite (patented patent application). No. 203635) A cathode in which ground steel powder is coated on a base material using a sintering method.
147479) etc. have been disclosed. However, these cathodes each have weak coatings, low hydrogen overvoltage reduction effects, expensive metals or powders, and difficulty in homogeneous application to cathode substrates with complex shapes (e.g., mesh bodies). There are many drawbacks such as difficulty. Therefore, the present inventor electroplated an iron-cobalt alloy on a specific substrate under various conditions and used it as a cathode, and as a result of studying a method for electrolyzing aqueous solutions of alkali metal halides, alkali metal hydroxides, etc. The present invention was completed based on the discovery that it is effective to use an iron-cobalt alloy plating obtained under these conditions as a cathode. That is, the gist of the present invention is that one selected from the group consisting of starch, dextrin, poly-2-diethylaminoethyl methacrylate, and polyaluminum chloride is added to at least one surface of a substrate made of titanium or a titanium alloy with ferrous ions and cobalt. Total ion concentration is 0.1-2mol/l, 2.5PH6.0
This is an aqueous solution electrolysis method in which an iron-cobalt alloy is electroplated by adding it to an iron-cobalt alloy plating bath, and this is used as a cathode. Next, the method for manufacturing the cathode used in the present invention will be explained in detail. The specific substrate in the present invention is titanium or a titanium alloy, which has electrical conductivity, mechanical properties, chemical resistance to electrolytes, plating layer, coating layer, etc., as well as iron, nickel, stainless steel, platinum group metals, etc. Although it is suitable in terms of adhesive properties, it is equally suitable as a material for electrolytic cells and a substrate for anodes, and can be used for both anodes and cathodes by applying appropriate plating or coating. This shows that it is promising not only as a substrate for monopolar electrodes but also as a substrate for bipolar electrodes. In addition to titanium, titanium alloys may also be used, but alloys of titanium with zirconium, tantalum, niobium, molybdenum, chromium, iron, vanadium, manganese, etc. are particularly suitable. In general, a suitable composition contains components other than titanium in an amount of several percent by weight. When titanium or titanium alloy is used as a cathode, it is generally in the form of a flat plate, a box, or a mesh. In addition to chemical roughening such as surface roughening and etching, it is preferable to carry out appropriate treatments such as metal coating, alone or in combination, from the viewpoint of adhesion of the plating layer that has been subjected to the plating treatment, which is a component of the present invention. . It has been found that additives to the electroplating bath are those that are generally used as flocculants for suspended substances in water in so-called water treatment technology, and include starch, dextrin, poly-2-diethylaminoethyl methacrylate, or polyester. Aluminum chloride can be used. Usually one type of these additives is sufficient, but there is no adverse effect when two or more types are used in combination. On the other hand, there is no particular limitation on the amount of these additives, but if too large, it will have a negative effect on the peeling resistance of the plating layer and the mechanical strength of the plating surface, so the amount added should be determined depending on the conditions of use as a cathode. must be decided. Next, in the present invention, an iron-cobalt alloy is selected as the component to be plated, and the plating bath consists of a ferrous salt such as ferrous chloride or ferrous sulfate, and a cobalt salt such as cobalt chloride or cobalt sulfate. A bath consisting of a mixed solution of The pH of the plating bath has a significant effect on the plating film. The preferred pH range of the plating bath is 2.5 to 6.0, although it is influenced by the strength of bath agitation. If the stirring is weak, it is possible to use a lower pH, but this will cause problems with the uniformity of the plated surface. The concentration of ferrous ions and cobalt ions in the plating bath is preferably such that the total amount of both is 0.1 mol/l to 2 mol/l, more preferably 0.4 mol/l to 1.7 mol/l.
is good. The ratio of ferrous ions and cobalt ions is not particularly limited, but in practice Co/Fe=
0.01-0.5 is preferred. If the total concentration of ferrous ions and cobalt ions exceeds the above range, an inactive plated surface is likely to be formed, and the effect of reducing hydrogen overvoltage as a cathode is significantly reduced. If the concentration is lower than this range, problems will occur in terms of peeling resistance of the plating film, current efficiency, etc. In addition, in Patent No. 206743, the presence of ferric salt in the plating bath is an essential condition, and iron oxide is intended to be contained in the plating layer formed, but in the present invention, the above-mentioned addition to the iron-cobalt alloy plating bath One of the constituent requirements is the coexistence of ferric salts and iron oxides, and on the other hand, PH
Depending on the conditions, ferric salts and iron oxides can easily be produced, but even if they are produced, they will not cause any harm even if they are separated by precipitation, so there is a great advantage in being able to set a wide range of PH conditions. In order to increase the electrical conductivity of the plating bath, an inorganic salt such as calcium chloride, which is conventionally added, may be added as necessary. However, salts containing ammonium ions must be avoided because they interfere with the formation of the plating. In the case of a plating bath having a relatively low concentration of metal ions, the electrical conductivity of the plating solution is low, so the addition of the above-mentioned inorganic salt is useful. However, if a large amount is added, the effect of reducing the hydrogen overvoltage of the plating cathode will be reduced. The temperature of the plating bath is the customary plating temperature (approximately 20~
(90°C) may be employed, and although not particularly limited, 70°C or higher is preferred. The current density during plating is set under the conventional conditions (1 to
5A/dm 2 ) is appropriate. Even higher current densities are possible, but the surface condition becomes rough and the peeling resistance deteriorates. Although it is possible to use a current density lower than the above, the peeling resistance of the plating film deteriorates. Further, it is preferable that the plating bath be stirred to the extent that it is used in conventional electroplating operations. However, air agitation tends to oxidize ferrous ions and turn them into unnecessary ferric iron, which must be avoided. For this purpose, non-oxidizing gas stirring such as nitrogen gas stirring is preferred from the above point of view. The present invention will be explained in detail below using Examples. Examples 1 to 5 A cathode plate plated under the conditions shown in Table 1 was placed opposite an anode made of a titanium plate coated with ruthenium oxide, and sodium chlorate 100g/l, sodium chloride 240g/l, and sodium hydroxide 4g/l were applied. Electrolysis is carried out at a temperature of 45℃ by immersing it in an aqueous solution of
The lower column of the same table shows the reduction in hydrogen overvoltage compared to a conventional mild steel plate cathode (polished with abrasive paper) under each condition of 10 A/dm 2 , 20 A/dm 2 , and 30 A/dm 2 . The cathode potential was measured using a saturated calomel electrode through a Luggin capillary. Examples 6 to 14 The lower column of the table shows the results of measuring the decrease in hydrogen overvoltage of the cathodes prepared under the conditions shown in Table 2 relative to the mild steel plate cathode in water electrolysis in response to current density. The cathode potential was set at 45℃ for the plated mild steel plate.
A pure nickel plate was placed opposite an anode and immersed in a 10% by weight aqueous sodium hydroxide solution, and measured using a saturated calomel electrode through a Luggin capillary tube. Further, as the mild steel plate cathode, a mild steel plate polished with #80 abrasive paper was used. Example 15 Asbestos was deposited on a cathode wire mesh plated under the conditions shown in Table 3 to serve as a cathode for an asbestos diaphragm.The cathode was placed opposite an anode made of a titanium wire mesh coated with ruthenium oxide at a temperature of 70°C and a current density. 20A/d
Asbestos diaphragm electrolysis of saturated brine for the production of sodium hydroxide was carried out at m2 . Conventional mild steel wire mesh cathode (polished with a wire brush)
The lower column of the same table shows the effect of reducing the electrolytic voltage of the plating-treated cathode. Example 16 A cathode plate prepared under the conditions shown in Table 4 was heated at 65°C.
Pure nickel anodes were immersed oppositely in a 30% by weight aqueous potassium hydroxide solution, and water electrolysis was performed at a current density of 20 A/dm 2 . As a result of electrolysis, the electrolytic voltage decreased considerably as shown in the same table. Comparative Examples 1 to 5 Comparisons were made with Examples 1 to 5 using cathode plates plated under the conditions shown in Table 5. Comparative Examples 6 to 11 The lower column of the table shows the results of measuring the reduction in hydrogen overvoltage against mild steel plates in water electrolysis using cathodes prepared under the plating bath conditions shown in Table 6, corresponding to each current density condition. . The cathode potential measuring method, the mild steel plate cathode, and its surface treatment were the same as in Examples 6-14.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 チタンまたはチタン合金からなる基体の少な
くとも一面に、澱粉、デキストリン、ポリ―2―
ジエチルアミノエチルメタクリレート及びポリ塩
化アルミニウムからなる群から選ばれる1つを第
1鉄イオン及びコバルトイオン濃度の合計が0.1
〜2mol/l、2.5PH6.0である鉄コバルト合金
メツキ浴に添加して鉄コバルト合金を電気メツキ
し、これを陰極として使用する水溶液電解方法。
1 Starch, dextrin, poly-2-
one selected from the group consisting of diethylaminoethyl methacrylate and polyaluminum chloride with a total ferrous ion and cobalt ion concentration of 0.1
An aqueous solution electrolysis method in which an iron-cobalt alloy is electroplated by adding it to an iron-cobalt alloy plating bath with ~2 mol/l and 2.5 PH6.0, and this is used as a cathode.
JP61009834A 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution Granted JPS61264187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61009834A JPS61264187A (en) 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61009834A JPS61264187A (en) 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9423079A Division JPS5620179A (en) 1979-07-26 1979-07-26 Preparation of cathode for electrolysis of aqueous solution of alkali metal halogenide

Publications (2)

Publication Number Publication Date
JPS61264187A JPS61264187A (en) 1986-11-22
JPS6353273B2 true JPS6353273B2 (en) 1988-10-21

Family

ID=11731156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61009834A Granted JPS61264187A (en) 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution

Country Status (1)

Country Link
JP (1) JPS61264187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286027A (en) * 1989-04-28 1990-11-26 Hamata Seibaku Kk Pest control and fungusproofing for grain and feed granule

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677752B2 (en) * 2010-02-25 2015-02-25 株式会社バンテック Electrode for alkaline water electrolysis, method for producing the same, and hydrogen generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286027A (en) * 1989-04-28 1990-11-26 Hamata Seibaku Kk Pest control and fungusproofing for grain and feed granule

Also Published As

Publication number Publication date
JPS61264187A (en) 1986-11-22

Similar Documents

Publication Publication Date Title
US4543265A (en) Method for production of a cathode for use in electrolysis
US4555317A (en) Cathode for the electrolytic production of hydrogen and its use
MXPA01003960A (en) Cathode for electrolysing aqueous solutions.
US4589969A (en) Electrode for electrolysis of solutions of electrolytes and process for producing same
EP0129734B1 (en) Preparation and use of electrodes
US4250004A (en) Process for the preparation of low overvoltage electrodes
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
US3977959A (en) Anodes for electrolysis
JPH0257159B2 (en)
JPS6353273B2 (en)
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPH0499294A (en) Oxygen generating anode and its production
JP3654204B2 (en) Oxygen generating anode
JPH07229000A (en) Oxygen generating anode
US5827413A (en) Low hydrogen over voltage cathode and process for production thereof
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
JPS6353274B2 (en)
JPS6124475B2 (en)
JPS6362894A (en) Cathode for producing electrolytic manganese dioxide
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JPS6017096A (en) Production of electrode
JP3661924B2 (en) Oxygen generating anode
JPS6123276B2 (en)
JPS6211075B2 (en)
JPS61223189A (en) Cathode manufacturing method