[go: up one dir, main page]

JPS6124475B2 - - Google Patents

Info

Publication number
JPS6124475B2
JPS6124475B2 JP54094230A JP9423079A JPS6124475B2 JP S6124475 B2 JPS6124475 B2 JP S6124475B2 JP 54094230 A JP54094230 A JP 54094230A JP 9423079 A JP9423079 A JP 9423079A JP S6124475 B2 JPS6124475 B2 JP S6124475B2
Authority
JP
Japan
Prior art keywords
cathode
plating
iron
bath
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54094230A
Other languages
Japanese (ja)
Other versions
JPS5620179A (en
Inventor
Keiji Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9423079A priority Critical patent/JPS5620179A/en
Publication of JPS5620179A publication Critical patent/JPS5620179A/en
Publication of JPS6124475B2 publication Critical patent/JPS6124475B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルカリ金属ハロゲン化物、水酸化ア
ルカリ金属等の水溶液電解方法に関する。 更に詳しくは上記の電解において従来よりも水
素過電圧を著しく低減することのできる新しい陰
極を用いる電解方法を提供するものである。 電解槽を用いて例えば水素、塩素及び苛性ソー
ダを製造するための塩化ナトリウム水溶液の電解
とか、水素、酸素を製造するための水酸化アルカ
リ金属水溶液の電解を行う場合、陰極における水
素過電圧により生ずる電力効率の損失は大きく、
重大な問題である。この陰極における水素過電圧
は陰極の素地、表面材質あるいは表面状態等によ
り著しく異なることが知られている。これら知見
からアルカリ金属ハロゲン化物とか水酸化アルカ
リ金属の水溶液電解用陰極として水素過電圧の低
い金属あるいはその化合物で当該陰極基体表面を
処理したものが提案されている。例えば陰極基材
に犠性金属とニツケル等との合金をコーテイング
した陰極(特開昭51−54877)、レニウムをコーテ
イングした陰極(特開昭51−55782,51−
83083)、陰極基材に金属粉末溶射法にてニツケ
ル、コバルト、白金、鉄等の粉末状金属を密着さ
せた陰極(特開昭52−32832)、金属粉末体溶射法
にてコバルト、ジルコニア粉末混合物を被覆させ
た陰極(特開昭52−36582)、同法にてニツケル、
コバルト粉末もしくはこれらとアルミニウム粉末
とからなる混合物で陰極基材を被覆させた陰極
(特開昭52−36583)、化学メツキ法にて陰極基材
にニツケル被覆させた陰極(特開昭52−
110282)、同様に、ニツケル、コバルト、タング
ステン系の合金を化学メツキした陰極(特開昭52
−133100)、あるいは電気メツキ法にてニツケ
ル、バナジウム、モリブデン合金を被覆させた
り、(特開昭52−102888)、ハイドロサルフアイト
共存下でニツケルとモリブデンまたはバナジウム
との合金を陰極基材に被覆させた陰極(特許第
203635号)鋼の研削粉末を基材上に焼結法にて被
覆した陰極(特開昭51−147479)等が各種開示さ
れている。 しかしこられの陰極はそれぞれ作成皮膜が弱
い、あるいは水素過電圧低減効果が少ない、ある
いは使用金属又はその粉末が高価であること、さ
らには複雑な形状の陰極基体(例えば網状体)へ
の均質な適用が困難等の欠点が多い。 そこで本発明者は、特定の基体に種々の条件で
鉄を電気メツキしてこれを陰極として使用しアル
カリ金属ハロゲン化物、アルカリ金属水酸化物等
の水溶液の電解方法について検討した結果特定の
条件下で得られる鉄メツキ物を陰極として用いる
ことにより効果のあることを見出し、本発明を完
成した。 即ち、本発明の要旨は、チタンまたはチタン合
金からなる基体の少なくとも一面に、澱粉、デキ
ストリン、ポリ−2−ジエチルアミノエチルメタ
クリレート、ポリ塩化アルミニウム及び硫酸クロ
ムからなる群から選ばれる1つを第1鉄イオン濃
度0.1〜1.7mol/l、2.5PH6.0である鉄メツキ
浴に添加して鉄を電気メツキし、これを陰極とし
て使用する水溶液電解方法にある。 次に本発明において使用される陰極の製造方法
を詳説する。 本発明における前記特定の基体としてはチタン
またはチタン合金が鉄、ニツケル、ステンレス
鋼、白金族金属等と同様に電気伝導性、機械的性
質、電解液に対する耐薬品性、メツキ層、コーテ
イング層との接着性等の点で好適であるが、電解
槽用材料、陽極用基材としても同様に好適で、適
当なメツキまたはコーテイングをすることにより
陽極にも陰極にも使用しうる。このことは単極式
電極の場合のみならず、複極式電極用基体として
も有望なことを示すものである。 チタンの他チタン合金も同様に用いられるが特
にチタンとジルコニウム、タンタル、ニオブ、モ
リブデン、クロム、鉄、バナジウム、マンガン等
との合金が好適である。通常の組成はチタン以外
の成分は一般に数重量%含有されたものが適当で
ある。 チタンあるいはチタン合金は陰極として用いら
れる場合平板型、箱型または網状体のものが一般
的に用いられるが、少なくともその一面をメツキ
の前処理即ち、脱脂、ワイヤホイル研磨、サンド
ブラスト等の機械的粗面化、エツチング等の化学
的粗面化の他、金属のコーテイング等の適宜、単
独または組合わせ処理をすることが本発明の構成
要件であるメツキ処理をしたメツキ層の接着性の
点で好ましい。 電気メツキ浴への添加剤は一般にいわゆる水処
理技術において、水中浮遊物の凝集剤としても用
いられているものが好適に用いられることがわか
り、澱粉、デキストリン、ポリ−2−ジエチルア
ルミノエチルメタクリレート、ポリ塩化アルミニ
ウム又は硫酸クロムが使用されうる。これら添加
剤は通常は一種類でよいが、二種類以上併用して
も悪影響はない。 一方、こられの添加量については特に限定され
るものではないが、多きにすぎるとメツキ層の耐
剥離性、メツキ表面の機械的強度に悪影響をもた
らすので、陰極としての使用条件に応じ添加量は
決められなければならない。 次に、本発明においてはメツキされる金属成分
として、鉄が選ばれ、そのメツキ浴としては塩化
第1鉄浴、硫酸第1鉄浴、ホウ弗化鉄浴またはこ
れらの混合浴等の慣用のメツキ浴があるが、硫酸
アンモニウム、塩化アンモニウム等アンモニウム
イオンを含むメツキ浴は本目的には全く不適であ
る。また上記メツキ浴の中では塩化第1鉄浴が実
用上最も好適である。 またメツキ浴PHはメツキ皮膜の電気的活性に重
大な影響を与える。当該PHは2.5〜6.0に維持する
ことが必要である。PH<2.5を選ぶと通常の、活
性のない鉄メツキの表面しか得られず逆にPH>6
の条件下では第1鉄が沈澱してしまいメツキ効果
が悪く、メツキ作業に支障をきたしやすい。また
第2鉄の沈澱が生じてメツキ浴中に存在してもメ
ツキ層形成に役立たないだけであり何ら陰極性能
に影響はない。 メツキ浴中の第一鉄イオン濃度は0.1〜
1.7mol/l、好ましくは0.5〜1.5mol/lが選ば
れる。濃度をこの範囲よりも大にすると陰極とし
ての活性が落ち水素過電圧低減効果が激減する。
逆に濃度をこの範囲よりも小にするとメツキ皮膜
の耐剥離性、電流効率等の面で問題を生じる。日
本特許第206743号では第2鉄塩を第1鉄塩と溶解
共存させ、酸化鉄を鉄と共に強固に電気メツキす
る方法が開示されているが、第2鉄塩を溶解状態
で共存させて使用しなければならないためPH範囲
がPH<1.5〜2.0と狭くメツキ層形成のための条件
維持が難しい。しかし、本発明におけるメツキに
おいて第2鉄成分を存在ないし併存させる必要が
ないほか第2鉄成分は生成しても、また沈澱物と
なつても害にならず、PH条件のとりうる範囲が広
くなるメリツトは大きい。 なお、メツキ浴の電導度を増大させるために、
慣用的に用いられる塩化カルシウム、塩化カリウ
ム等の無機塩の添加は本発明においても適宜用い
られる。但しアンモニウムイオンを含む塩は前記
のごとく当該メツキの生成を妨害するので避けな
ければならない。 第1鉄イオン濃度の比較的低いメツキ浴の場合
にはメツキ液の電導度が小さいので、上記の無機
塩の添加は有用である。但し、極めて多量に添加
すると、メツキ陰極の水素過電圧低減の効果が減
じ電解用に使用できない。 メツキ浴の温度は、慣用のメツキ温度(25〜90
°C位)が採用され得、特に限定されるものでは
ないが、70゜C以上が好ましい。メツキ時の電流
密度は、慣用の鉄メツキ条件(1〜5A/dm2
が適当である。更に大なる電流密度にても可能で
はあるが、表面状態が荒れて来、また耐剥離性が
悪化して来る。また前記より小なる電流密度にて
も可能ではあるが、メツキ皮膜の耐剥離性等が悪
化して来る。 また、メツキ浴は、慣用の電気メツキ操作にて
行なう程度の撹拌を行なう事が好ましい。 但し、空気撹拌は第1鉄イオンが酸化されるの
で、できるだけ避けなければならない。窒素ガス
撹拌等非酸化性ガスが上記の点で好ましい。 撹拌方法としてはガス通気撹拌、液循環撹拌あ
るいは機械的撹拌が適用し得る。 以下実施例を用いて本発明を詳しく説明する。 実施例 1〜12 第1表に示した条件でメツキ処理した陰極板を
チタン板に酸化ルテニウムを被覆した陽極と対置
し、塩素酸ナトリウム100g/l、塩化ナトリウ
ム240g/l、水酸化ナトリウム4g/lの水溶液
中に浸漬し温度45゜Cで電解を行ない、電流密度
10A/dm2、20A/dm2、30A/dm2の各条件に
おける慣用の軟鋼板製陰極(研磨紙で研磨)に対
する水素過電圧の低減量を効果として同表下欄に
示す。なお陰極電位はルギン毛細管を通じて飽和
カロメル電極により測定した。 実施例 13〜24 第2表に示した条件で作成した陰極の、水電解
における軟鋼板陰極に対する水素過電圧の低下量
を電流密度に対応させて測定した結果を同表下欄
に示す。 陰極電位は前記メツキ処理した軟鋼板を45゜
C、10重量%水酸化ナトリウム水溶液中に純ニツ
ケル板の陽極に対置し、浸漬し、ルギン毛細管を
通じて飽和カロメル電極により測定した。 また前記軟鋼板陰極としては、研磨紙#80にて
研磨した軟鋼板を用いた。 実施例 25 第3表に示した条件でメツキ処理した陰極金網
上にアスベストを沈着させて、アスベスト隔膜用
陰極とし、チタン金網上に酸化ルテニウムを被覆
した陽極と対置し、温度70゜C、電流密度20A/
dm2にて水酸化ナトリウム製造用の飽和食塩水の
アスベスト隔膜法電解を行なつた。 慣用の軟鋼金網陰極(ワイヤブラシにて研磨)
に対するメツキ処理陰極の電解電圧の低減効果を
同表下欄に示す。 実施例 26 第4表に示した条件で作成した陰極板を65゜
C、30重量%水酸化カリウム水溶液中に純ニツケ
ルの陽極に対置浸漬し電流密度20A/dm2にて水
電解を行つた。電解の結果、電解電圧は同表に示
すようにかなりの低下が見られた。 比較例 1〜6 第5表に示した条件でメツキ処理した陰極板を
対象として実施例1〜12と比較した。 比較例 1〜12 第6表に示したメツキ浴条件で作成した陰極の
水電解において軟鋼板に対する水素過電圧の低下
量を各電流密度条件に対応させて測定した結果を
同表下欄に示した。陰極電位測定法、軟鋼板陰極
及びその表面処理は実施例13〜24と同一とした。
The present invention relates to a method for aqueous electrolysis of alkali metal halides, alkali metal hydroxides, etc. More specifically, the present invention provides an electrolysis method using a new cathode that can significantly reduce hydrogen overvoltage compared to conventional electrolysis. When electrolyzing an aqueous sodium chloride solution to produce hydrogen, chlorine, and caustic soda, or electrolyzing an alkali metal hydroxide aqueous solution to produce hydrogen and oxygen using an electrolytic cell, the power efficiency caused by hydrogen overvoltage at the cathode The loss of
This is a serious problem. It is known that the hydrogen overvoltage at the cathode varies significantly depending on the material, surface material, surface condition, etc. of the cathode. Based on these findings, a cathode for aqueous electrolysis of alkali metal halides or alkali metal hydroxides has been proposed in which the surface of the cathode substrate is treated with a metal having a low hydrogen overvoltage or a compound thereof. For example, a cathode in which the cathode base material is coated with an alloy of sacrificial metal and nickel etc. (JP-A-51-54877), a cathode in which rhenium is coated (JP-A-51-55782, 51-
83083), a cathode in which powdered metals such as nickel, cobalt, platinum, and iron are adhered to the cathode base material using a metal powder spraying method (Japanese Patent Application Laid-Open No. 52-32832), cobalt and zirconia powders using a metal powder spraying method Cathode coated with a mixture (Japanese Unexamined Patent Publication No. 52-36582), nickel,
A cathode whose cathode base material is coated with cobalt powder or a mixture of these and aluminum powder (Japanese Patent Laid-Open No. 52-36583), a cathode whose cathode base material is coated with nickel using a chemical plating method (Japanese Patent Laid-Open No. 52-36583).
110282), similarly, a cathode chemically plated with a nickel, cobalt, and tungsten alloy (Japanese Unexamined Patent Publication No. 110282)
-133100), or coating a nickel, vanadium, or molybdenum alloy by electroplating (Japanese Patent Application Laid-Open No. 52-102888), or coating a cathode base material with an alloy of nickel and molybdenum or vanadium in the coexistence of hydrosulfite. cathode (patent no.
No. 203635) Various cathodes in which ground steel powder is coated on a base material by a sintering method (Japanese Patent Application Laid-open No. 147479/1983) have been disclosed. However, each of these cathodes has weak coatings, low hydrogen overvoltage reduction effects, expensive metals or powders, and difficulty in homogeneous application to complex-shaped cathode substrates (e.g., mesh). There are many drawbacks such as difficulty in Therefore, the present inventor investigated a method for electrolyzing aqueous solutions of alkali metal halides, alkali metal hydroxides, etc. by electroplating iron on a specific substrate under various conditions and using this as a cathode. They discovered that it is effective to use the iron-plated material obtained in the above as a cathode, and completed the present invention. That is, the gist of the present invention is to coat at least one surface of a substrate made of titanium or a titanium alloy with one selected from the group consisting of starch, dextrin, poly-2-diethylaminoethyl methacrylate, polyaluminum chloride, and chromium sulfate. It is an aqueous electrolysis method in which iron is electroplated by adding it to an iron plating bath with an ion concentration of 0.1 to 1.7 mol/l and a pH of 6.0, and this is used as a cathode. Next, the method for manufacturing the cathode used in the present invention will be explained in detail. The specific substrate in the present invention is titanium or a titanium alloy, which has electrical conductivity, mechanical properties, chemical resistance to electrolytes, plating layer, coating layer, etc., as well as iron, nickel, stainless steel, platinum group metals, etc. Although it is suitable in terms of adhesive properties, it is equally suitable as a material for electrolytic cells and a base material for anodes, and can be used for both anodes and cathodes by applying appropriate plating or coating. This shows that it is promising not only as a substrate for monopolar electrodes but also as a substrate for bipolar electrodes. In addition to titanium, titanium alloys may also be used, but alloys of titanium with zirconium, tantalum, niobium, molybdenum, chromium, iron, vanadium, manganese, etc. are particularly suitable. In general, a suitable composition contains components other than titanium in an amount of several percent by weight. When titanium or titanium alloy is used as a cathode, it is generally in the form of a flat plate, a box, or a mesh, and at least one side of the titanium is subjected to pretreatment for plating, such as degreasing, wire foil polishing, sandblasting, etc., to mechanically roughen the surface. In addition to chemical surface roughening such as chemical roughening and etching, it is preferable to carry out appropriate treatments such as metal coating alone or in combination, from the viewpoint of adhesion of the plating layer which is a component of the present invention. It has been found that suitable additives for the electroplating bath are those that are generally used as flocculants for suspended substances in water in so-called water treatment technology, such as starch, dextrin, poly-2-diethylaluminoethyl methacrylate, Polyaluminum chloride or chromium sulfate can be used. Usually one type of these additives is sufficient, but there is no adverse effect when two or more types are used in combination. On the other hand, there is no particular limit to the amount of these added, but if too large, it will have a negative effect on the peeling resistance of the plating layer and the mechanical strength of the plating surface, so the amount added depends on the conditions of use as a cathode. must be determined. Next, in the present invention, iron is selected as the metal component to be plated, and the plating bath may be a conventional bath such as a ferrous chloride bath, a ferrous sulfate bath, a borofluoride bath, or a mixed bath thereof. Although there are plating baths, plating baths containing ammonium ions such as ammonium sulfate and ammonium chloride are completely unsuitable for this purpose. Among the plating baths mentioned above, the ferrous chloride bath is practically the most suitable. Furthermore, the plating bath pH has a significant effect on the electrical activity of the plating film. The pH must be maintained between 2.5 and 6.0. If you choose PH<2.5, you will only get a normal, inactive iron plating surface, and on the other hand, if you choose PH>6
Under these conditions, ferrous iron precipitates and the plating effect is poor and the plating work is likely to be hindered. Further, even if ferric iron precipitates and is present in the plating bath, it does not help in forming the plating layer and does not affect the cathode performance in any way. The ferrous ion concentration in the bath is 0.1~
1.7 mol/l, preferably 0.5-1.5 mol/l is chosen. If the concentration is made larger than this range, the activity as a cathode will drop and the hydrogen overvoltage reducing effect will be drastically reduced.
On the other hand, if the concentration is lower than this range, problems will arise in terms of peeling resistance of the plating film, current efficiency, etc. Japanese Patent No. 206743 discloses a method in which a ferric salt is allowed to coexist in a dissolved state with a ferrous salt, and iron oxide is strongly electroplated together with iron. Therefore, the pH range is narrow, PH < 1.5 to 2.0, and it is difficult to maintain conditions for forming a plating layer. However, in the plating of the present invention, there is no need for the presence or coexistence of a ferric iron component, and even if the ferric component is generated or becomes a precipitate, it does not cause any harm, and the range of possible pH conditions is wide. The benefits are great. In addition, in order to increase the electrical conductivity of the plating bath,
The addition of conventionally used inorganic salts such as calcium chloride and potassium chloride can also be used appropriately in the present invention. However, salts containing ammonium ions must be avoided since they interfere with the formation of the plating as described above. In the case of a plating bath with a relatively low ferrous ion concentration, the addition of the above-mentioned inorganic salt is useful because the plating solution has a low electrical conductivity. However, if it is added in an extremely large amount, the effect of reducing the hydrogen overvoltage of the plating cathode will be reduced and it cannot be used for electrolysis. The temperature of the plating bath is the customary plating temperature (25 to 90
70°C or higher, although not particularly limited. The current density during plating is the conventional iron plating condition (1 to 5 A/dm 2 ).
is appropriate. Even higher current densities are possible, but the surface condition becomes rough and the peeling resistance deteriorates. Although it is possible to use a current density lower than the above, the peeling resistance of the plating film deteriorates. Further, it is preferable that the plating bath be stirred to the extent that it is used in conventional electroplating operations. However, since air agitation oxidizes ferrous ions, it must be avoided as much as possible. Non-oxidizing gas such as nitrogen gas stirring is preferred from the above point of view. As the stirring method, gas aeration stirring, liquid circulation stirring, or mechanical stirring can be applied. The present invention will be explained in detail below using Examples. Examples 1 to 12 A cathode plate plated under the conditions shown in Table 1 was placed opposite an anode made of a titanium plate coated with ruthenium oxide, and 100 g/l of sodium chlorate, 240 g/l of sodium chloride, and 4 g/l of sodium hydroxide were applied. Electrolysis is carried out at a temperature of 45°C by immersing it in an aqueous solution of
The lower column of the same table shows the reduction in hydrogen overvoltage compared to a conventional mild steel plate cathode (polished with abrasive paper) under each condition of 10 A/dm 2 , 20 A/dm 2 , and 30 A/dm 2 . The cathode potential was measured using a saturated calomel electrode through a Luggin capillary. Examples 13 to 24 The lower column of the table shows the results of measuring the reduction in hydrogen overvoltage of the cathodes prepared under the conditions shown in Table 2 relative to the mild steel plate cathode in water electrolysis in response to current density. The cathode potential was measured by immersing the plated mild steel plate in a 10% by weight aqueous sodium hydroxide solution at 45°C, opposite to a pure nickel plate anode, and using a saturated calomel electrode through a Luggin capillary tube. Further, as the mild steel plate cathode, a mild steel plate polished with #80 abrasive paper was used. Example 25 Asbestos was deposited on a cathode wire mesh plated under the conditions shown in Table 3 to serve as a cathode for an asbestos diaphragm, and placed opposite to an anode coated with ruthenium oxide on a titanium wire mesh at a temperature of 70°C and a current Density 20A/
Asbestos diaphragm electrolysis of saturated saline solution for the production of sodium hydroxide was carried out at dm2 . Conventional mild steel wire mesh cathode (polished with a wire brush)
The lower column of the same table shows the effect of reducing the electrolytic voltage of the plating-treated cathode. Example 26 A cathode plate prepared under the conditions shown in Table 4 was immersed in a 30% by weight potassium hydroxide aqueous solution at 65°C opposite a pure nickel anode, and water electrolysis was performed at a current density of 20 A/dm 2 . . As a result of electrolysis, the electrolytic voltage decreased considerably as shown in the same table. Comparative Examples 1 to 6 Comparisons were made with Examples 1 to 12 using cathode plates plated under the conditions shown in Table 5. Comparative Examples 1 to 12 The lower column of the table shows the results of measuring the amount of decrease in hydrogen overvoltage against a mild steel plate in water electrolysis using cathodes prepared under the plating bath conditions shown in Table 6, corresponding to each current density condition. . The cathode potential measuring method, the mild steel plate cathode, and its surface treatment were the same as in Examples 13-24.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 チタンまたはチタン合金からなる基体の少な
くとも一面に、澱粉、デキストリン、ポリ−2−
ジエチルアミノエチルメタクリレート、ポリ塩化
アルミニウム及び硫酸クロムからなる群から選ば
れる1つを第1鉄イオン濃度0.1〜1.7mol/l、
2.5PH6.0である鉄メツキ浴に添加して鉄を電
気メツキし、これを陰極として使用する水溶液電
解方法。
1 Starch, dextrin, poly-2-
One selected from the group consisting of diethylaminoethyl methacrylate, polyaluminum chloride, and chromium sulfate at a ferrous ion concentration of 0.1 to 1.7 mol/l,
An aqueous solution electrolysis method in which iron is electroplated by adding it to an iron plating bath with a pH of 2.5PH6.0, and this is used as a cathode.
JP9423079A 1979-07-26 1979-07-26 Preparation of cathode for electrolysis of aqueous solution of alkali metal halogenide Granted JPS5620179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9423079A JPS5620179A (en) 1979-07-26 1979-07-26 Preparation of cathode for electrolysis of aqueous solution of alkali metal halogenide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9423079A JPS5620179A (en) 1979-07-26 1979-07-26 Preparation of cathode for electrolysis of aqueous solution of alkali metal halogenide

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP61009835A Division JPS61264188A (en) 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution
JP61009834A Division JPS61264187A (en) 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution

Publications (2)

Publication Number Publication Date
JPS5620179A JPS5620179A (en) 1981-02-25
JPS6124475B2 true JPS6124475B2 (en) 1986-06-11

Family

ID=14104500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9423079A Granted JPS5620179A (en) 1979-07-26 1979-07-26 Preparation of cathode for electrolysis of aqueous solution of alkali metal halogenide

Country Status (1)

Country Link
JP (1) JPS5620179A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843786A (en) * 1971-10-01 1973-06-23
JPS51140842A (en) * 1975-05-16 1976-12-04 M & T Chemicals Inc Bright nickelliron plating
JPS5270340A (en) * 1975-12-09 1977-06-11 Inco Europ Ltd Method of electrodepositing iron active material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843786A (en) * 1971-10-01 1973-06-23
JPS51140842A (en) * 1975-05-16 1976-12-04 M & T Chemicals Inc Bright nickelliron plating
JPS5270340A (en) * 1975-12-09 1977-06-11 Inco Europ Ltd Method of electrodepositing iron active material

Also Published As

Publication number Publication date
JPS5620179A (en) 1981-02-25

Similar Documents

Publication Publication Date Title
US3480523A (en) Deposition of platinum-group metals
US4033837A (en) Plated metallic cathode
US5560815A (en) Electrolytic chromium plating method using trivalent chromium
JPS634920B2 (en)
US4170536A (en) Electrolytic cathode and method for its production
US4162204A (en) Plated metallic cathode
US4250004A (en) Process for the preparation of low overvoltage electrodes
KR910000916B1 (en) Metal electrolytic treatment method
US4190514A (en) Electrolytic cell
JP3654204B2 (en) Oxygen generating anode
US4230543A (en) Cathode for electrolysis of aqueous solution of alkali metal halide
JPS6124475B2 (en)
JPS61264187A (en) Method for electrolyzing aqueous solution
US5827413A (en) Low hydrogen over voltage cathode and process for production thereof
JPS6017096A (en) Production of electrode
JPH0559999B2 (en)
JPS6353274B2 (en)
US4177129A (en) Plated metallic cathode
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
US2439935A (en) Indium electroplating
JPH0260759B2 (en)
JPS6211075B2 (en)
JPS6123276B2 (en)
JPH036996B2 (en)
JPS61223189A (en) Cathode manufacturing method