[go: up one dir, main page]

JPS6338413B2 - - Google Patents

Info

Publication number
JPS6338413B2
JPS6338413B2 JP20809685A JP20809685A JPS6338413B2 JP S6338413 B2 JPS6338413 B2 JP S6338413B2 JP 20809685 A JP20809685 A JP 20809685A JP 20809685 A JP20809685 A JP 20809685A JP S6338413 B2 JPS6338413 B2 JP S6338413B2
Authority
JP
Japan
Prior art keywords
ppm
less
alloy
lead material
semiconductor devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20809685A
Other languages
Japanese (ja)
Other versions
JPS6270541A (en
Inventor
Hidetoshi Akutsu
Takuro Iwamura
Masao Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP20809685A priority Critical patent/JPS6270541A/en
Priority to US06/903,514 priority patent/US4749548A/en
Priority to GB8621958A priority patent/GB2181742B/en
Priority to DE19863631119 priority patent/DE3631119A1/en
Publication of JPS6270541A publication Critical patent/JPS6270541A/en
Priority to US07/166,217 priority patent/US4872048A/en
Publication of JPS6338413B2 publication Critical patent/JPS6338413B2/ja
Priority to GB8907058A priority patent/GB2219473B/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、ICやLSIなどの半導体装置の製造
に用いられるCu合金リード素材に関するもので
ある。 〔従来の技術〕 一般に、半導体装置のリード材となるCu合金
リード素材には、 (1) 良好なプレス打抜き性、 (2) 半導体素子の加熱接着あるいは加熱拡散圧着
に際して熱歪および熱軟化が生じない耐熱性、 (3) 良好な放熱性と導電性、 (4) 半導体装置の輸送あるいは電気機器への組込
みに際して曲がりや繰り返し曲げによつて破損
が生じない強度および伸び、 が要求され、特性的には、特定使用分野に限つて
見れば、 強度を評価する目的で、引張り強さ:40Kgf/
mm2以上、 伸び:4%以上、 放熱性および導電性を評価する目的で、導電
率:50%IACS以上、 耐熱性を評価する目的で、軟化点:400℃以上、
を具備することが必要とされるが、これらの特性
を有するCu合金リード素材としては材料的に多
数のものが提案され、実用に供されている。 〔発明が解決しようとする問題点〕 しかし、近年の半導体装置における集積度の
益々の向上に伴つて、Cu合金リード素材には、
上記の特性を具備した上で、さらに高強度が要求
されるようになつており、この要求に十分対応で
きる特性を具備したCu合金リード素材の開発が
強く望まれている。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、半導体装置用Cu合金リード素材に要求され
る特性を具備した上で、さらに一段と高強度を有
するCu合金リード素材を開発すべく研究を行な
つた結果、重量%で(以下%は重量%を示す)、 Cr:0.05〜1%、 Zr:0.005〜0.3%、 の1種または2種を含有し、 C:5〜60ppm、 を含有し、さらに、 Ni、Sn、Fe、Co、およびBeのうちの1種ま
たは2種以上(以下、これらを第1群金属とい
う):0.005〜2%、 Mg、Si、Al、Zn、Mn、B、P、Li、Y、お
よび希土類元素のうちの1種または2種以上(以
下、これらを第2群金属という):0.001〜1%、 Ti、Nb、V、Ta、Hf、Mo、およびWのうち
の1種または2種以上(以下、これらを第3群金
属という):0.005〜2%、 以上第1〜3群金属のうちのいずれか、または2
種以上を含有し、残りがCuと不可避不純物(た
だし酸素含有量は35ppm以下)からなる組成を有
するCu合金で構成されたリード素材は、 引張り強さ:50Kgf/mm2以上、 伸び :6%以上、 導 電 率:50%IACS以上、 軟 化駆点:400℃以上、 の特性を有し、これらの特性を有するCu合金リ
ード素材は、集積度の高い半導体装置のリード材
として十分満足する性能を発揮するという知見を
得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成を上記の通りに限定
した理由を説明する。 (a) CrおよびZr これらの成分には、強度および耐熱性を向上
させる作用があるが、その含有量がそれぞれ
Cr:0.05%未満、およびZr:0.005%未満では
前記作用に所望の効果が得られず、一方その含
有量が、それぞれCr:1%およびZr:0.3%を
越えると、非金属介在物が発生し易くなつて、
めつき性や導電率が低下するようになることか
ら、その含有量をCr:0.05〜1%、Zr:0.005
〜0.3%と定めた。 (b) C C成分には、炭化物を形成して、結晶粒およ
び析出物の微細化に寄与し、もつて強度を向上
させる作用があるが、その含有量が5ppm未満
では所望の高強度を確保することができず、一
方その含有量が60ppmを越えると塑性加工性が
低下するようになることから、この含有量を5
〜60ppmと定めた。ただし、この場合、不可避
不純物としての酸素含有量が35ppmを越える
と、C成分が5ppm未満となつてしまい、すな
わち5ppm以上のC成分を含有させることが困
難となつて、所望の高強度を確保することがで
きなくなるので、酸素含有量は35ppm以下とし
なければならない。 (c) 第1群金属 これらの成分には、強度を向上させるほか、
プレス打抜き時の変形およびバリ発生を防止す
る作用があるが、その含有量が0.005%未満で
は前記作用に所望の効果が得られず、一方その
含有量が2%を越えると導電率が低下するよう
になることから、その含有量を0.005〜2%と
定めた。 (d) 第2群金属 これらの成分には、いずれも脱酸作用がある
ほか、導電率、めつき性、およびはんだ付け性
を向上させる作用があるが、その含有量が
0.001%未満では前記作用に所望の効果が得ら
れず、一方その含有量が1%を越えると、前記
作用に劣化傾向が現われるようになることか
ら、その含有量を0.001〜1%と定めた。 (e) 第3群金属 これらの成分には、強度および耐熱性を向上
させる作用があるが、その含有量が0.005%未
満では前記作用に所望の効果が得られず、一方
その含有量が2%を越えると導電率が低下する
ようになることから、その含有量を0.005〜2
%と定めた。 〔実施例〕 つぎに、この発明のCu合金リード素材を実施
例により具体的に説明する。 通常の低周波溝型誘導炉を用い、Cu原料を黒
鉛板で覆うと共に、Ar雰囲気中で溶解し、溶落
後、溶湯温度が1220〜1480℃の範囲内の所定温度
に上昇した時点でArガスを吹込んで、溶湯の脱
ガスと撹拌を行ない、ついでこの状態の撹拌中の
溶湯に合金成分を添加して含有させ、かつ最終的
にCOガスを吹込んで、不可避不純物としての酸
素含有量を35ppm以下とすると共に、C含有量を
5〜60ppmの範囲内の所定含有量に調製してそれ
ぞれ第1表に示される成分組成をもつた溶湯と
し、ついで同じくAr雰囲気中にて、これを、水
冷鋳型を用い、平面形状:50mm□×高さ:100mm
の寸法をもつた鋳塊とし、この面削後の鋳塊に、
800〜950℃の範囲内の所定の熱間圧延開始温度に
て熱間圧延を施して厚さ:11mmの熱延板とし、つ
いで水冷後、前記熱延板の上下両面を0.5mmづつ
面削して厚さ:10mmとし、引続いてこれに通常の
条件で冷間圧延と焼鈍を交互に繰返し施して、厚
さ:0.3mmの条材とし、最終的に400〜550℃の範
囲内の所定温度で歪取り焼鈍を施すことによつて
本発明Cu合金リード素材1〜20をそれぞれ製造
した。 ついて、この結果得られた本発明Cu合金リー
ド素材1〜20について、引張り強さ、伸び、導電
率、および軟化点を測定した。これらの結果を第
1表に示した。 〔発明の効果〕 第1表に示される結果から、本発明Cu合金リ
ード素材1〜20は、いずれも、
[Industrial Application Field] The present invention relates to a Cu alloy lead material used in the manufacture of semiconductor devices such as ICs and LSIs. [Prior Art] In general, Cu alloy lead materials used as lead materials for semiconductor devices have the following properties: (1) Good press punching properties; (2) Heat distortion and heat softening occur during heat bonding or heat diffusion compression bonding of semiconductor elements. (3) Good heat dissipation and conductivity; (4) Strength and elongation that will prevent damage from bending or repeated bending when transporting semiconductor devices or incorporating them into electrical equipment. In terms of specific fields of use, for the purpose of evaluating strength, tensile strength: 40Kgf/
mm 2 or more, elongation: 4% or more, conductivity: 50% IACS or more, for the purpose of evaluating heat dissipation and conductivity, softening point: 400℃ or more, for the purpose of evaluating heat resistance,
However, many Cu alloy lead materials having these characteristics have been proposed and put into practical use. [Problems to be solved by the invention] However, with the increasing degree of integration of semiconductor devices in recent years, Cu alloy lead materials have
In addition to the above-mentioned properties, there is a growing demand for even higher strength, and there is a strong desire to develop a Cu alloy lead material that has properties that can fully meet this demand. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors developed a Cu alloy lead material for semiconductor devices that has the characteristics required and also has even higher strength. As a result of conducting research to develop an alloy lead material, we found that it contained one or two of the following in weight% (hereinafter % indicates weight%): Cr: 0.05-1%, Zr: 0.005-0.3%. , C: 5 to 60 ppm, and further contains one or more of Ni, Sn, Fe, Co, and Be (hereinafter referred to as Group 1 metals): 0.005 to 2%, Mg , Si, Al, Zn, Mn, B, P, Li, Y, and one or more rare earth elements (hereinafter referred to as 2nd group metals): 0.001 to 1%, Ti, Nb, One or more of V, Ta, Hf, Mo, and W (hereinafter referred to as 3rd group metals): 0.005 to 2%, any of the above 1st to 3rd group metals, or 2
The lead material is made of a Cu alloy with a composition of at least 100% Cu and the rest is Cu and unavoidable impurities (however, the oxygen content is 35ppm or less).Tensile strength: 50Kgf/ mm2 or more, elongation: 6% As described above, the Cu alloy lead material has the following characteristics: conductivity: 50% IACS or higher, softening point: 400°C or higher, and Cu alloy lead material with these characteristics is fully satisfactory as a lead material for highly integrated semiconductor devices. We have gained knowledge that it can perform well. This invention was made based on the above knowledge, and the reason why the component composition was limited as described above will be explained below. (a) Cr and Zr These components have the effect of improving strength and heat resistance, but the content of each
If Cr: less than 0.05% and Zr: less than 0.005%, the desired effect cannot be obtained, while if the content exceeds Cr: 1% and Zr: 0.3%, nonmetallic inclusions will occur. It has become easier to
Since the plating properties and conductivity will decrease, the content should be reduced to 0.05 to 1% for Cr and 0.005 for Zr.
It was set at ~0.3%. (b) C The C component forms carbides, contributes to the refinement of crystal grains and precipitates, and has the effect of improving strength, but if its content is less than 5 ppm, the desired high strength cannot be achieved. On the other hand, if the content exceeds 60 ppm, plastic workability will decrease, so this content should be reduced to 5.
~60ppm. However, in this case, if the oxygen content as an unavoidable impurity exceeds 35 ppm, the C component will be less than 5 ppm, which means that it will be difficult to contain 5 ppm or more of the C component to ensure the desired high strength. Therefore, the oxygen content must be 35 ppm or less. (c) Group 1 metals In addition to improving strength, these components
It has the effect of preventing deformation and burr generation during press punching, but if the content is less than 0.005%, the desired effect will not be obtained, while if the content exceeds 2%, the electrical conductivity will decrease. Therefore, the content was set at 0.005 to 2%. (d) Group 2 metals These components all have a deoxidizing effect and also have the effect of improving electrical conductivity, plating properties, and soldering properties, but their content is
If the content is less than 0.001%, the desired effect cannot be obtained in the above action, while if the content exceeds 1%, the above action tends to deteriorate. Therefore, the content was set at 0.001 to 1%. . (e) Group 3 metals These components have the effect of improving strength and heat resistance, but if their content is less than 0.005%, the desired effect cannot be obtained; If the content exceeds 0.005% to 2%, the conductivity will decrease.
%. [Example] Next, the Cu alloy lead material of the present invention will be specifically explained using Examples. Using an ordinary low-frequency groove induction furnace, the Cu raw material is covered with a graphite plate and melted in an Ar atmosphere. After melting, when the temperature of the molten metal rises to a predetermined temperature within the range of 1220 to 1480 °C, the Ar gas is The molten metal is degassed and stirred by blowing in CO gas, and then alloy components are added to the molten metal under stirring, and finally CO gas is blown in to reduce the oxygen content as an unavoidable impurity to 35 ppm. In addition, the C content was adjusted to a predetermined content within the range of 5 to 60 ppm to obtain a molten metal having the component composition shown in Table 1, and then water-cooled in the same Ar atmosphere. Using a mold, planar shape: 50mm x height: 100mm
An ingot with the dimensions of
Hot rolling is performed at a predetermined hot rolling start temperature within the range of 800 to 950°C to obtain a hot-rolled sheet with a thickness of 11 mm. After water cooling, the top and bottom surfaces of the hot-rolled sheet are faceted by 0.5 mm each. The thickness is 10mm, and then cold rolling and annealing are alternately repeated under normal conditions to obtain a strip with a thickness of 0.3mm. Cu alloy lead materials 1 to 20 of the present invention were manufactured by subjecting them to strain relief annealing at a predetermined temperature. Then, the tensile strength, elongation, electrical conductivity, and softening point of the Cu alloy lead materials 1 to 20 of the present invention obtained as a result were measured. These results are shown in Table 1. [Effect of the invention] From the results shown in Table 1, Cu alloy lead materials 1 to 20 of the present invention all have the following properties:

【表】【table】

【表】 51Kgf/mm2以上の引張り強さ、 6.2%以上の伸び、 52%IACS以上の導電率、 410℃以上の軟化点、 を示し、これらの値は半導体装置のリード素材に
要求される特性を十分満足して具備することを示
し、かつ強度が一段と高い値を示すことが明らか
である。 上述のように、この発明のCu合金リード素材
は通常の半導体装置用Cu合金リード素材に要求
される伸び、導電率、および軟化点を具備した上
で、さらに一段と高い強度を具備するので、通常
の半導体装置は勿論のこと、集積度の高い半導体
装置のリード素材としてすぐれた性能を発揮する
ものである。
[Table] Tensile strength of 51Kgf/ mm2 or more, elongation of 6.2% or more, electrical conductivity of 52%IACS or more, and softening point of 410℃ or more. These values are required for lead materials for semiconductor devices. It is clear that the properties are fully satisfied and the strength is even higher. As mentioned above, the Cu alloy lead material of the present invention not only has the elongation, electrical conductivity, and softening point required of ordinary Cu alloy lead materials for semiconductor devices, but also has even higher strength. It exhibits excellent performance as a lead material not only for semiconductor devices but also for highly integrated semiconductor devices.

Claims (1)

【特許請求の範囲】 1 Cr:0.05〜1%、 Zr:0.005〜0.3%、 のうちの1種または2種を含有し、 C:5〜60ppm、 を含有し、残りがCuと不可避不純物(ただし酸
素含有量は35ppm以下)からなる組成(以上重量
%)を有するCu合金で構成されたことを特徴と
する高強度を有する半導体装置用Cu合金リード
素材。 2 Cr:0.05〜1%、 Zr:0.005〜0.3%、 のうちの1種または2種を含有し、 C:5〜60ppm、 を含有し、さらに、 Ni、Sn、Fe、Co、およびBeのうちの1種ま
たは2種以上:0.005〜2%、 を含有し、残りがCuと不可避不純物(ただし酸
素含有量は35ppm以下)からなる組成(以上重量
%)を有するCu合金で構成されたことを特徴と
する高強度を有する半導体装置用Cu合金リード
素材。 3 Cr:0.05〜1%、 Zr:0.005〜0.3%、 のうちの1種または2種を含有し、 C:5〜60ppm、 を含有し、さらに、 Mg、Si、Al、Zn、Mn、B、P、Li、Y、お
よび希土類元素のうちの1種または2種以上:
0.001〜1%、 を含有し、残りがCuと不可避不純物(ただし酸
素含有量は35ppm以下)からなる組成(以上重量
%)を有するCu合金で構成されたことを特徴と
する高強度を有する半導体装置用Cu合金リード
素材。 4 Cr:0.05〜1%、 Zr:0.005〜0.3%、 のうちの1種または2種を含有し、 C:5〜60ppm、 を含有し、さらに、 Ti、Nb、V、Ta、Hf、Mo、およびWのうち
の1種または2種以上:0.005〜2%、 を含有し、残りがCuと不可避不純物(ただし酸
素含有量は35ppm以下)からなる組成(以上重量
%)を有するCu合金で構成されたことを特徴と
する高強度を有する半導体装置用Cu合金リード
素材。 5 Cr:0.05〜1%、 Zr:0.005〜0.3%、 のうちの1種または2種を含有し、 C:5〜60ppm、 を含有し、さらに、 Ni、Sn、Fe、Co、およびBeのうちの1種ま
たは2種以上:0.005〜2%、 Mg、Si、Al、Zn、Mn、B、P、Li、Y、お
よび希土類元素のうちの1種または2種以上:
0.001〜1%、 を含有し、残りがCuと不可避不純物(ただし酸
素含有量は35ppm以下)からなる組成(以上重量
%)を有するCu合金で構成されたことを特徴と
する高強度を有する半導体装置用Cu合金リード
素材。 6 Cr:0.05〜1%、 Zr:0.005〜0.3%、 のうちの1種または2種を含有し、 C:5〜60ppm、 を含有し、さらに、 Ni、Sn、Fe、Co、およびBeのうちの1種ま
たは2種以上:0.005〜2%、 Ti、Nb、V、Ta、Hf、Mo、およびWのうち
の1種または2種以上:0.005〜2%、 を含有し、残りがCuと不可避不純物(ただし酸
素含有量は35ppm以下)からなる組成(以上重量
%)を有するCu合金で構成されたことを特徴と
する高強度を有する半導体装置用Cu合金リード
素材。 7 Cr:0.05〜1%、 Zr:0.005〜0.3%、 のうちの1種または2種を含有し、 C:5〜60ppm、 を含有し、さらに、 Mg、Si、Al、Zn、Mn、B、P、Li、Y、お
よび希土類元素のうちの1種または2種以上:
0.001〜1%、 Ti、Nb、V、Ta、Hf、Mo、およびWのうち
の1種または2種以上:0.005〜2%、 を含有し、残りがCuと不可避不純物(ただし酸
素含有量は35ppm以下)からなる組成(以上重量
%)を有するCu合金で構成されたことを特徴と
する高強度を有する半導体装置用Cu合金リード
素材。 8 Cr:0.05〜1%、 Zr:0.005〜0.3%、 のうちの1種または2種を含有し、 C:5〜60ppm、 を含有し、さらに、 Ni、Sn、Fe、Co、およびBeのうちの1種ま
たは2種以上:0.005〜2%、 Mg、Si、Al、Zn、Mn、B、P、Li、Y、お
よび希土類元素のうちの1種または2種以上:
0.001〜1%、 Ti、Nb、V、Ta、Hf、Mo、およびWのうち
の1種または2種以上:0.005〜2%、 を含有し、残りがCuと不可避不純物(ただし酸
素含有量は35ppm以下)からなる組成(以上重量
%)を有するCu合金で構成されたことを特徴と
する高強度を有する半導体装置用Cu合金リード
素材。
[Claims] 1 Contains one or two of Cr: 0.05 to 1%, Zr: 0.005 to 0.3%, C: 5 to 60 ppm, and the remainder is Cu and unavoidable impurities ( A Cu alloy lead material for semiconductor devices having high strength, characterized in that it is made of a Cu alloy having a composition (within weight %) with an oxygen content of 35 ppm or less. 2 Contains one or two of Cr: 0.05-1%, Zr: 0.005-0.3%, C: 5-60ppm, and further contains Ni, Sn, Fe, Co, and Be. Contains one or more of the following: 0.005 to 2%, with the remainder consisting of Cu and unavoidable impurities (however, the oxygen content is 35 ppm or less) (by weight). Cu alloy lead material for semiconductor devices with high strength. 3 Contains one or two of the following: Cr: 0.05-1%, Zr: 0.005-0.3%, C: 5-60ppm, and further contains Mg, Si, Al, Zn, Mn, B , P, Li, Y, and one or more of rare earth elements:
0.001 to 1%, and the remainder is Cu and unavoidable impurities (however, the oxygen content is 35 ppm or less). Cu alloy lead material for equipment. 4 Contains one or two of the following: Cr: 0.05-1%, Zr: 0.005-0.3%, C: 5-60ppm, and further contains Ti, Nb, V, Ta, Hf, Mo , and one or more of W: 0.005 to 2%, and the remainder is Cu and unavoidable impurities (however, the oxygen content is 35 ppm or less) (by weight). A Cu alloy lead material for semiconductor devices having high strength. 5 Contains one or two of the following: Cr: 0.05-1%, Zr: 0.005-0.3%, C: 5-60ppm, and further contains Ni, Sn, Fe, Co, and Be. One or more of these: 0.005 to 2%; One or more of Mg, Si, Al, Zn, Mn, B, P, Li, Y, and rare earth elements:
0.001 to 1%, and the remainder is Cu and unavoidable impurities (however, the oxygen content is 35 ppm or less). Cu alloy lead material for equipment. 6 Contains one or two of the following: Cr: 0.05-1%, Zr: 0.005-0.3%, C: 5-60ppm, and further contains Ni, Sn, Fe, Co, and Be. Contains one or more of these: 0.005-2%, one or more of Ti, Nb, V, Ta, Hf, Mo, and W: 0.005-2%, and the rest is Cu. A Cu alloy lead material for semiconductor devices having high strength, characterized in that it is made of a Cu alloy having a composition (by weight %) consisting of and unavoidable impurities (however, the oxygen content is 35 ppm or less). 7 Contains one or two of the following: Cr: 0.05-1%, Zr: 0.005-0.3%, C: 5-60ppm, and further contains Mg, Si, Al, Zn, Mn, B , P, Li, Y, and one or more of rare earth elements:
Contains 0.001 to 1%, one or more of Ti, Nb, V, Ta, Hf, Mo, and W: 0.005 to 2%, and the rest is Cu and unavoidable impurities (however, the oxygen content is A Cu alloy lead material for semiconductor devices having high strength, characterized in that it is made of a Cu alloy having a composition (weight% of 35 ppm or less). 8 Contains one or two of Cr: 0.05-1%, Zr: 0.005-0.3%, C: 5-60ppm, and further contains Ni, Sn, Fe, Co, and Be. One or more of these: 0.005 to 2%; One or more of Mg, Si, Al, Zn, Mn, B, P, Li, Y, and rare earth elements:
Contains 0.001 to 1%, one or more of Ti, Nb, V, Ta, Hf, Mo, and W: 0.005 to 2%, and the rest is Cu and unavoidable impurities (however, the oxygen content is A Cu alloy lead material for semiconductor devices having high strength, characterized in that it is made of a Cu alloy having a composition (weight% of 35 ppm or less).
JP20809685A 1985-09-13 1985-09-20 Cu alloy lead material for semiconductor devices Granted JPS6270541A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20809685A JPS6270541A (en) 1985-09-20 1985-09-20 Cu alloy lead material for semiconductor devices
US06/903,514 US4749548A (en) 1985-09-13 1986-09-03 Copper alloy lead material for use in semiconductor device
GB8621958A GB2181742B (en) 1985-09-13 1986-09-11 Copper alloy lead material for use in semiconductor device
DE19863631119 DE3631119A1 (en) 1985-09-13 1986-09-12 CONDUCTOR MATERIAL BASED ON COPPER ALLOYS FOR APPLICATION FOR SEMICONDUCTOR DEVICES
US07/166,217 US4872048A (en) 1985-09-13 1988-03-10 Semiconductor device having copper alloy leads
GB8907058A GB2219473B (en) 1985-09-13 1989-03-29 Copper alloy lead material for use in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20809685A JPS6270541A (en) 1985-09-20 1985-09-20 Cu alloy lead material for semiconductor devices

Publications (2)

Publication Number Publication Date
JPS6270541A JPS6270541A (en) 1987-04-01
JPS6338413B2 true JPS6338413B2 (en) 1988-07-29

Family

ID=16550568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20809685A Granted JPS6270541A (en) 1985-09-13 1985-09-20 Cu alloy lead material for semiconductor devices

Country Status (1)

Country Link
JP (1) JPS6270541A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445686A (en) * 1990-04-09 1995-08-29 Nippon Steel Corporation Fe-Cu alloy sheet having an alloy structure of high uniformity
KR940008939B1 (en) * 1990-04-09 1994-09-28 신닛뽕세이데쓰 가부시끼가이샤 Iron-copper alloy plate with alloy structure excellent in homogeneity
CN1102177C (en) * 1998-03-10 2003-02-26 三菱伸铜株式会社 Copper alloy and copper alloy thin sheet exhibiting improved wear of blanking metal mold
JP3918397B2 (en) 2000-04-11 2007-05-23 三菱マテリアル株式会社 Adhesion-resistant oxygen-free copper rough wire, its manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JPS6270541A (en) 1987-04-01

Similar Documents

Publication Publication Date Title
US4749548A (en) Copper alloy lead material for use in semiconductor device
JP4787986B2 (en) Copper alloy and manufacturing method thereof
US4466939A (en) Process of producing copper-alloy and copper alloy plate used for making electrical or electronic parts
US11851735B2 (en) High-strength and ductile multicomponent precision resistance alloys and fabrication methods thereof
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
KR102423266B1 (en) Copper titanium alloy sheet for vapor chamber and vapor chamber
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
CN112055756A (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP4259828B2 (en) Manufacturing method of high strength copper alloy
JPS6338412B2 (en)
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JPS6338413B2 (en)
JPS5893860A (en) Manufacturing method of high strength and high conductivity copper alloy
JP7227245B2 (en) Method for producing copper alloy sheet material excellent in strength and electrical conductivity, and copper alloy sheet material produced therefrom
JPS6338414B2 (en)
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JP3941308B2 (en) Copper alloy with excellent hot workability
JPS6142772B2 (en)
JPS6311415B2 (en)
JPS6311416B2 (en)
US5149499A (en) Cooper-Fe-P-Nb alloys for electrical and electronic parts and its manufacturing process
JPS6245298B2 (en)
GB2158095A (en) Copper alloys for integrated circuit leads
JPH0380856B2 (en)