JP4787986B2 - Copper alloy and manufacturing method thereof - Google Patents
Copper alloy and manufacturing method thereof Download PDFInfo
- Publication number
- JP4787986B2 JP4787986B2 JP2002374080A JP2002374080A JP4787986B2 JP 4787986 B2 JP4787986 B2 JP 4787986B2 JP 2002374080 A JP2002374080 A JP 2002374080A JP 2002374080 A JP2002374080 A JP 2002374080A JP 4787986 B2 JP4787986 B2 JP 4787986B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- less
- rolling
- oxide
- hot rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 85
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000005096 rolling process Methods 0.000 claims description 32
- 238000005098 hot rolling Methods 0.000 claims description 30
- 239000002245 particle Substances 0.000 claims description 28
- 239000013078 crystal Substances 0.000 claims description 24
- 238000001816 cooling Methods 0.000 claims description 19
- 238000000137 annealing Methods 0.000 claims description 17
- 239000000956 alloy Substances 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 11
- 239000002994 raw material Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 238000005097 cold rolling Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 2
- 230000008023 solidification Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims 1
- 239000000155 melt Substances 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 29
- 239000000463 material Substances 0.000 description 26
- 238000005336 cracking Methods 0.000 description 25
- 238000005260 corrosion Methods 0.000 description 19
- 230000007797 corrosion Effects 0.000 description 19
- 229910001369 Brass Inorganic materials 0.000 description 16
- 239000010951 brass Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 238000001953 recrystallisation Methods 0.000 description 12
- 229910000906 Bronze Inorganic materials 0.000 description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 11
- 239000010974 bronze Substances 0.000 description 11
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 11
- 239000000523 sample Substances 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 238000005204 segregation Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000000879 optical micrograph Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910007610 Zn—Sn Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Landscapes
- Conductive Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、コネクタなどの電気電子部品用材料として好適な強度、導電性、耐応力緩和特性などを有し、さらに熱間加工性やコストに優れた銅合金およびその製造方法に関する。
【0002】
【従来の技術】
近年のエレクトロニクスの発達により、種々の機械の電気配線の複雑化や高集積化が進み、それに伴ってコネクタなどの電気電子部品用の伸銅品材料の使用量が増加している。また、コネクタなどの電気電子部品では、軽量化、高信頼性化および低コスト化が要求されている。これらの要求を満たすために、コネクタ用銅合金材料は、薄肉化され、また、複雑な形状にプレスされるので、強度、弾性、導電性およびプレス成形性が良好でなければならない。
【0003】
具体的には、コネクタ用銅合金材料では、端子の挿抜や曲げに対して座屈や変形しない強度、電線の加締めや嵌合保持に対する強度として、0.2%耐力が600N/mm2以上、好ましくは650N/mm2以上、さらに好ましくは700N/mm2以上であり、引張強さが650N/mm2以上、好ましくは700N/mm2以上、さらに好ましくは750N/mm2以上であることが要求されている。また、端子をプレスする際に、連鎖方向の関係から、圧延などにおける展伸方向に対して直角方向の強度が所定の強度であることが要求されており、この直角方向の強度として、0.2%耐力が650N/mm2以上、好ましくは700N/mm2以上、さらに好ましくは750N/mm2以上であることが要求され、引張強さが700N/mm2以上、好ましくは750N/mm2以上、さらに好ましくは800N/mm2以上であることが要求されている。また、通電によるジュ−ル熱の発生を抑えるために、導電率が20%IACS以上であることが好ましい。
【0004】
さらに、コネクタ用銅合金材料では、耐食性や耐応力腐食割れ性に優れていることが必要であり、メス端子の場合には、熱的負荷が加わるため、耐応力緩和特性にも優れていなければならない。具体的には、応力腐食割れ寿命が従来の黄銅一種の3倍以上であり、応力緩和率が150℃において黄銅一種の半分以下、好ましくは25%以下、さらに好ましくは20%以下であることが必要である。
【0005】
従来、コネクタ材として一般に黄銅やりん青銅などが使用されていた。黄銅は低コストの材料として使用されているが、0.2%耐力および引張強さは、質別がH08(ばね材用)でもそれぞれ570N/mm2および640N/mm2程度であり、0.2%耐力が600N/mm2以上で引張強さが650N/mm2以上というコネクタ材としての要求を満足できない。また、黄銅は、耐食性、耐応力腐食割れ性および耐応力緩和特性にも劣っている。一方、りん青銅は、強度、耐食性、耐応力腐食割れ性および耐応力緩和特性のバランスに優れているが、例えば、ばね用りん青銅の場合、導電率が12%IACSと小さく、且つ熱間加工することができず、コスト的にも不利である。
【0006】
ここで、黄銅およびりん青銅のヤング率は、いずれも展伸方向において110〜120kN/mm2、直角方向において115〜130kN/mm2であり、このように小さいヤング率は、コネクタ材としての要求に合致し、最近、これらの材料が見直されている。したがって、黄銅とりん青銅の特長を兼備し、黄銅に近い価格で、展伸方向の0.2%耐力が600N/mm2以上、引張強さが650N/mm2以上、ヤング率が120kN/mm2以下、導電率が20%IACS以上、応力緩和率が20%以下であり、展伸方向に対して直角方向の0.2%耐力が650N/mm2以上、引張強さが700N/mm2以上、ヤング率が130kN/mm2以下である材料が望まれている。
【0007】
また、コネクタ用の材料は、Snめっきされる機会が多くなり、合金にSnを含んでいる方が原料としての利用度が高まる。さらに、黄銅に代表されるように、Znを含むと、強度、加工性およびコストのバランスに優れた合金が得られ易い。このような見地から、Cu−Zn−Sn合金は注目に値する合金系である。
【0008】
例えば、CDA規格のC42500は、Cu−9.5Zn−2.0Sn−0.2P合金であり、コネクタ用の材料として良く知られている。また、C43400は、Cu−14Zn−0.7Sn合金であり、少量ではあるがスイッチ、リレ−、端子用として使用されている。しかしながら、これよりZn量が多いCu−Zn−Sn合金は、コネクタ用の材料としてほとんど使用されていない。Zn量とSn量が増加すると熱間加工性が低下するためである。例えば、C42500よりZn量が多い銅合金として、C43500(Cu−18Zn−0.9Sn)、C44500(Cu−28Zn−1Sn−0.05P)、C46700(Cu−39Zn−0.8Sn−0.05P)などが挙げられるが、楽器用、船舶用、雑貨品用などの用途としての板、棒、管などの製品があるだけであり、コネクタ用の展伸材料、特に条材としては利用されていない。また、これらの材料の特性についても、展伸方向の0.2%耐力が600N/mm2以上、引張強さが650N/mm2以上、ヤング率が120kN/mm2以下、導電率が20%IACS以上、応力緩和率が20%以下であり、展伸方向に対して直角方向の0.2%耐力が650N/mm2以上、引張強さが700N/mm2以上、ヤング率が130kN/mm2以下であり、且つプレス性や耐応力腐食割れ性などのコネクタ材に必要な特性の全てを満たすことはできない。特に、上記の諸特性を維持するためには、一定量以上のZnとSnを含有する必要がある。しかし、Zn量とSn量が増加すると、熱間割れを生じ易く、歩留まりの低下によるコストアップの問題がある。
【0009】
このような現状に鑑み、適量のZnとSnを含有させ、あるいはさらにSiなどを含有させ、適切な製造方法を採ることにより、優れた特性を有する銅合金を得ることが提案されている(例えば、特許文献1、特許文献2参照)。
【0010】
【特許文献1】
特開2001−294957号公報(段落番号0014)
【特許文献2】
特開2002−88428号公報(段落番号0014)
【0011】
【発明が解決しようとする課題】
しかし、これらの従来の方法では、熱間圧延条件の制御が非常に厳しく、また、微細なひび割れによる歩留まりの低下を生じる場合があるため、熱間圧延性にも優れた銅合金を提供することが望まれている。
【0012】
したがって、本発明は、このような従来の問題点に鑑み、エレクトロニクスの発達に伴ってコネクタなどの電気電子部品用材料に要求される上記のような諸特性を兼備した銅合金、すなわち、0.2%耐力、引張強さ、導電率、ヤング率、耐応力緩和特性、プレス性、熱間加工性およびコストに優れた銅合金およびその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、20〜46重量%のZnと、0.1〜5.0重量%のSnと、0.001〜0.5重量%のBとを含有し、残部がCuおよび不可避的不純物からなる銅合金材料に、粒径5μm以下のB酸化物を含有させることによって、鋳造結晶粒微細化と動的再結晶促進効果による熱間加工性に優れ、展伸方向の0.2%耐力が600N/mm2以上、引張強さが650N/mm2以上、ヤング率が120kN/mm2以下、導電率が20%IACS以上、応力緩和率が20%以下であり、展伸方向に対して直角方向の0.2%耐力が650N/mm2以上、引張強さが700N/mm2以上、ヤング率が130kN/mm2以下である銅合金を得ることができることを見出し、本発明を完成するに至った。
【0014】
すなわち、本発明による銅合金は、20〜46重量%のZnと、0.1〜5.0重量%のSnと、0.001〜0.5重量%のBとを含有し、残部がCuおよび不可避的不純物からなり、粒径5μm以下のB酸化物を含有することまたはB酸化物を含有し且つB酸化物の粒径が5μm以下であることを特徴とする。
【0015】
この銅合金において、粒径1μm未満のB酸化物を含有し且つ粒径1〜5μmのB酸化物を含有するのが好ましい。また、展伸方向の0.2%耐力が600N/mm2以上、引張強さが650N/mm2以上、ヤング率が120kN/mm2以下、導電率が20%IACS以上、応力緩和率が20%以下であり、展伸方向に対して直角方向の0.2%耐力が650N/mm2以上、引張強さが700N/mm2以上、ヤング率が130kN/mm2以下であるのが好ましい。また、この銅合金が、さらに0.01〜3重量%のFeと、0.01〜5重量%のNiと、0.01〜3重量%のCoと、0.01〜3重量%のTiと、0.01〜2重量%のMgと、0.01〜2重量%のZrと、0.01〜1重量%のCaと、0.01〜3重量%のSiと、0.01〜10重量%のMnと、0.01〜3重量%のCdと、0.01〜5重量%のAlと、0.01〜3重量%のPbと、0.01〜3重量%のBiと、0.01〜3重量%のBeと、0.01〜1重量%のTeと、0.01〜3重量%のYと、0.01〜3重量%のLaと、0.01〜3重量%のCrと、0.01〜3重量%のCeと、0.01〜1重量%のVと、0.01〜1重量%のBaと、0.01〜5重量%のAuと、0.01〜5重量%のAgと、0.005〜0.5重量%のPのうち少なくとも1種以上の元素を、その総量が0.01〜5重量%になるように含んでもよい。
【0016】
また、本発明による銅合金の製造方法は、20〜46重量%のZnと、0.1〜5.0重量%のSnと、0.001〜0.5重量%のBとを含有し、残部がCuおよび不可避的不純物からなる銅合金の製造方法において、銅合金の原料を溶解し、液相線温度から600℃までの温度域において50℃/分以上の冷却速度で冷却して鋳塊を得た後、900℃以下の温度で熱間圧延を行い、次いで冷間圧延と300〜650℃の温度域における焼鈍を繰り返すことによって焼鈍後の結晶粒径を25μm以下にし、次いで30%以上の加工率の冷間圧延と450℃以下の低温焼鈍を行うことを特徴とする。
【0017】
この銅合金の製造方法において、熱間圧延に際して、1パス目の熱間圧延における圧下率を5〜30%とし、次のパスの熱間圧延における圧下率を5〜40%とし、最終パス目の熱間圧延における圧下率を25%以上とするのが好ましく、1パス目の熱間圧延における圧下率を10〜20%とするのがさらに好ましい。また、焼鈍後の結晶粒径を15μm以下とするのが好ましく、30%以上の加工率の冷間圧延の加工率を60%以上とするのが好ましい。また、銅合金が、粒径5μm以下のB酸化物を含有するのが好ましく、展伸方向の0.2%耐力が600N/mm2以上、引張強さが650N/mm2以上、ヤング率が120kN/mm2以下、導電率が20%IACS以上、応力緩和率が20%以下であり、展伸方向に対して直角方向の0.2%耐力が650N/mm2以上、引張強さが700N/mm2以上、ヤング率が130kN/mm2以下であるのが好ましい。
【0018】
この銅合金の製造方法によれば、銅より安価な成分を添加することにより低コスト化を図りつつ、コネクタなどの電気電子部品用材料に要求される諸特性を兼備した銅合金、すなわち、0.2%耐力、引張強さ、導電率、ヤング率、耐応力緩和特性、プレス性、熱間加工性およびコストなどに優れたコネクタ用銅合金を提供することができる。
【0019】
【発明の実施の形態】
本発明による銅合金の実施の形態は、20〜46重量%のZnと、0.1〜5.0重量%のSnと、0.001〜0.5重量%のBとを含有し、残部がCuおよび不可避的不純物からなり、粒径5μm以下のB酸化物を含有することを特徴とする。このように銅合金の成分の量の限定した理由は以下の通りである。
【0020】
銅合金にZnを添加すると、銅合金の強度やばね性が向上し、また、ZnはCuより安価であるため、Znを多量に添加することが望ましい。しかし、Zn量が46重量%を超えると、Snとの共存下で粒界偏析が激しくなり、銅合金の熱間加工性が著しく低下する。また、銅合金の冷間加工性、耐食性および耐応力腐食割れ性も低下する。さらに、湿気や加熱によるめっき性やはんだ付け性も低下する。一方、Zn量が20重量%より少ないと、銅合金の0.2%耐力や引張強さなどの強度やばね性が不足し、ヤング率が大きくなり、さらに、Snを表面処理したスクラップを原料とする場合には、銅合金の溶解時の水素ガス吸蔵が多くなり、インゴットのブロ−ホ−ルが発生し易くなる。また、安価なZnの量が少なく、経済的にも不利になる。したがって、Zn量は、好ましくは20〜46重量%の範囲、さらに好ましくは24〜37重量%の範囲である。
【0021】
Snは、微量でも銅合金のヤング率を大きくすることなく0.2%耐力や引張強さなどの強度や弾性などの機械的特性を向上させる効果を有する。また、SnめっきなどのSnで表面処理した材料の再利用の点からも、銅合金が添加元素としてSnを含有するのが好ましい。しかし、Sn含有量が増加すると、銅合金の導電率が急激に低下し、また、Znとの共存下で粒界偏析が激しくなり、熱間加工性が著しく低下する。熱間加工性を確保するためには、Sn含有量は5.0重量%を超えない範囲でなければならない。一方、Sn含有量が0.1重量%より少ないと、銅合金の機械的特性の向上の効果が少なく、また、Snめっきなどを施したプレスくずなどを原料として利用し難くなる。したがって、Sn含有量は、好ましくは0.1〜5.0重量%の範囲、さらに好ましくは0.5〜1.8重量%の範囲である。
【0022】
Bは、本発明による銅合金の主成分であるCu、ZnおよびSnよりも酸素との親和力が大きいため、Cu、ZnおよびSnの酸化防止効果を有する。
【0023】
また、Bは、CaやMgなどの強脱酸剤ではなく、添加過程中のロスが少なく、生成される酸化物がクラスタ化し難い。
【0024】
さらに、Bは、溶湯または凝固過程で酸素と反応させることができ、粒径が数十nmから数μmの粒状酸化物を得ることができる。この酸化物は、結晶粒の核として鋳造結晶粒を微細化し、また、粒成長を阻止する効果を有する。特に、約1〜5μmの粒状酸化物が動的再結晶を促進して、さらに1μm以下の酸化物が再結晶粒成長を阻止することより、動的再結晶による熱間加工性の向上と再結晶粒微細化とを両立させることができる。これらの相乗効果により、熱間加工性を大幅に向上させることができる。B酸化物の粒径が5μmより大きい場合には、圧延中に粒子付近の応力集中によって割れが発生し易くなる。一方、粒径が1μm未満のB酸化物は、動的再結晶の発生と再結晶粒成長の両方を抑制する効果を有し、約1〜5μmの粒状酸化物は、動的再結晶の発生を促進する効果を有する。したがって、動的再結晶の発生を促進すると同時に再結晶粒成長を抑制するためには、粒径5μm以下の(すなわち、最大粒径が5μmで微細粒も含む)B酸化物を含有することが必要であり、粒径1μm未満のB酸化物を含有し且つ粒径1〜5μmのB酸化物を含有するのが好ましい。なお、B酸化物の同定は電子プローブマイクロアナライザ(EPMA)によって行い、その粒径は走査電子顕微鏡(SEM)によって確認することができる。但し、簡易的には、光学顕微鏡などによってB酸化物のおおよその粒径を知ることができ、参考にすることができる。
【0025】
また、Bは、分散強化効果を有するので、最終製品の軟化温度および耐応力緩和特性を向上させる効果も有する。
【0026】
Bの量が0.001重量%より少ないと、上記のような熱間加工性の向上効果がなくなる。一方、Bの量が0.5重量%を超えると、生成される第2相のサイズが大きくなり、逆に熱間加工性を著しく低下させ、コスト面でも不利となる。したがって、Bの量は、好ましくは0.001〜0.5重量%の範囲、さらに好ましくは0.002〜0.05重量%の範囲である。
【0027】
また、以上のように限定された成分であれば、鋳造や熱間圧延などの高温時に粒界に析出するSn酸化物の形成を抑制することができ、展伸方向の0.2%耐力が600N/mm2以上、引張強さが650N/mm2以上、ヤング率が120kN/mm2以下、導電率が20%IACS以上、応力緩和率が20%以下であり、展伸方向に対して直角方向の0.2%耐力が650N/mm2以上、引張強さが700N/mm2以上、ヤング率が130kN/mm2以下であり、さらにコネクタ材として必要な諸特性、具体的には、耐食性、耐応力腐食割れ性(アンモニア蒸気中での割れ寿命が黄銅一種の3倍以上)、耐応力緩和特性(150℃における緩和率が黄銅一種の半分以下でりん青銅並)、プレス打ち抜き性などを満足する銅合金を作成することができる。
【0028】
さらに、銅合金が、第3添加元素として、0.01〜3重量%のFeと、0.01〜5重量%のNiと、0.01〜3重量%のCoと、0.01〜3重量%のTiと、0.01〜2重量%のMgと、0.01〜2重量%のZrと、0.01〜1重量%のCaと、0.01〜3重量%のSiと、0.01〜10重量%のMnと、0.01〜3重量%のCdと、0.01〜5重量%のAlと、0.01〜3重量%のPbと、0.01〜3重量%のBiと、0.01〜3重量%のBeと、0.01〜1重量%のTeと、0.01〜3重量%のYと、0.01〜3重量%のLaと、0.01〜3重量%のCrと、0.01〜3重量%のCeと、0.01〜1重量%のVと、0.01〜1重量%のBaと、0.01〜5重量%のAuと、0.01〜5重量%のAgと、0.005〜0.5重量%のPのうち少なくとも1種以上の元素を、その総量が0.01〜5重量%になるように含んでも良い。
【0029】
これらの元素は、導電率、ヤング率および成形加工性を大きく損なうことなく、強度を向上させることができる。また、各元素の含有範囲からはずれると、所望の効果を得られないか、熱間加工性、冷間加工性、プレス性、導電率、ヤング率およびコスト面などにおいて不利になる。
【0030】
次に、本発明による銅合金の製造方法の実施の形態を説明する。
【0031】
まず最初に、本発明による銅合金の原料を溶解して鋳造する。原料を溶解するに際して、B粉末またはCu−B、Ni−BあるいはFe−Bなどの母合金により、Bを添加することができる。ただし、原料の半分程度が溶解したときにBを投入するのが望ましい。Bの投入時期が早すぎると、Bの酸化によるロスが多い。また、雰囲気は大気雰囲気で十分であるが、不活性ガスでシ−ルした方が酸化防止の面から好ましい。ただし、還元ガス雰囲気では、高温になると水分の分解による水素の吸収や拡散によって不利になる。
【0032】
次に、原料の溶解後、インゴットを連続鋳造によって鋳造するのが望ましい。この連続鋳造は、縦型と横型のいずれでも構わない。ただし、液相線温度から600℃まで温度域において50℃/分以上の冷却速度で冷却する。冷却速度が50℃/分未満では、粒界にSnの偏析が生じ、B酸化粒子がクラスタ(凝集)し易く、その後の熱間加工性を悪化させ、歩留まりの低下を引き起こす。冷却速度を規定する温度域は、液相線温度から600℃までの温度域で良い。液相線以上の温度域を規定しても効果がなく、一方、600℃以下では、鋳造時の冷却工程の時間程度では粒界へのSnの過度な偏析を生じないので、冷却速度を規定する温度域は、液相線温度から600℃までの温度域とする。
【0033】
溶解鋳造後に熱間圧延を行う。熱間圧延の加熱温度は900℃以下とする。900℃を超える温度では、Snの粒界への偏析による熱間割れが生じ、歩留まりが低下する。900℃以下の温度で1パス目の熱間圧延を行う際の圧下率を5〜30%とする。圧下率が30%を超えると、鋳造結晶粒界に沿って割れが発生し易い。一方、圧下率が5%未満であると、動的再結晶またはパス間の静的再結晶が発生し難く、2パス目の圧延時に熱間割れが発生する場合もある。また、圧延パス回数が多くなり、効率的ではない。2〜3パス後に動的再結晶することによって、鋳造時のミクロな偏析および鋳造組織の消失により、本発明による銅合金の組成のZn量およびSn量を含んでも、組織的に均質な材料を得ることができる。さらに好ましくは1パス目の圧下率を10〜20%とする。次のパスでは、圧下率が5〜40%で良く、熱間割れの発生を防止し、続いて効率良く圧延することができる。さらに、最終パス目の圧下率が出来るだけ大きくなることが好ましく、具体的には圧下率25%以上が好ましい。これにより、熱間圧延後の結晶粒径を35μm以下、好ましくは15μm以下に制御することができる。熱間圧延後の結晶粒径が35μmを越えると、その後の冷間加工率や焼鈍条件の管理幅が狭く、少しでも逸脱すると、結晶粒が混粒になり易く、特性が劣化する。
【0034】
熱間圧延後に必要に応じて表面を面削する。その後、冷間圧延と300〜650℃の温度域における焼鈍を繰り返し、焼鈍後の結晶粒径を25μm以下とする。300℃未満の温度では、結晶粒の制御に要する時間が長くなって不経済であり、650℃を越えると、短時間で結晶粒が粗大化する。焼鈍後の結晶粒径が25μmを越えると、0.2%耐力などの機械特性や加工性が低下する。焼鈍後の結晶粒径は、好ましくは15μm以下、さらに好ましくは10μm以下である。
【0035】
このようにして得られた焼鈍材を、30%以上の加工率による冷間圧延と450℃以下の低温焼鈍によって、展伸方向の0.2%耐力が600N/mm2以上、引張強さが650N/mm2以上、ヤング率が120kN/mm2以下、導電率が20%IACS以上、応力緩和率が20%以下であり、展伸方向に対して直角方向の0.2%耐力が650N/mm2以上、引張強さが700N/mm2以上、ヤング率が130kN/mm2以下である銅合金とする。冷間加工率が30%未満では、加工硬化による強度の向上が不十分であり、機械特性の向上が不十分である。さらに好ましくは60%以上の加工率とする。低温焼鈍は、0.2%耐力、引張強さ、ばね限界値および耐応力緩和特性をさらに向上させるために必要である。450℃を越える温度では、与える熱容量が大き過ぎて短時間で軟化し、また、バッチ式と連続式のいずれの場合でもワ−ク内における特性ばらつきが発生し易くなる。したがって、低温焼鈍の温度条件を450℃以下とする。
【0036】
このようにして得られた材料を端子にプレスした後に、100〜280℃の温度で1〜180分間熱処理しても良い。この熱処理によって、プレス加工によって低下したばね限界値や耐応力緩和特性が改善され、さらに、ウイスカ対策を実現することができる。100℃未満の温度では、このような効果が十分でなく、280℃を超えると、拡散や酸化により、接触抵抗、はんだ付け性および加工性が低下する。また、熱処理時間が1分未満では、効果が十分でなく、180分を超えると、拡散や酸化による前述の特性の低下が起こり、また経済的でもない。
【0037】
【実施例】
以下、本発明による銅合金およびその製造方法の実施例について詳細に説明する。
【0038】
[実施例1〜6、比較例1〜6]
表1に化学成分(重量%)を示す各銅合金を、液相線温度より70℃高い温度で溶解した後、縦型の小型連続鋳造機を用いて、30×70×1000(mm)の鋳塊に鋳造した。ただし、鋳型による一次冷却と水シャワ−による二次冷却を調整することにより、液相線から600℃までの冷却速度は50℃/分を大きく上回る条件であった。
【0039】
また、Bを含有する実施例1〜6および比較例2の銅合金について、電子プローブマイクロアナライザ(EPMA)によってB酸化物を同定し、走査型電子顕微鏡(SEM)によってB酸化物の粒径を確認したところ、実施例1〜6の銅合金には粒径0.02〜1μmのB酸化物と粒径1〜3μmのB酸化物が分布していたが、比較例2の銅合金には粒径が5μmより大きいB酸化物が確認された。
【0040】
その後、各鋳塊を800〜840℃に加熱した後、厚さ5mmまで熱間圧延し、表面やエッジの割れによって熱間加工性を評価した。但し、熱間圧延は10パス行い、1パス当たりの圧下率を15%として、最終パスの圧下率を25%とした。酸洗後に50倍の光学顕微鏡により割れが全く確認されないものを◎、割れ深さが0.3mm以下(すなわち、片面0.3mmで面削またはミ−リングした後に割れが全く確認されない)のものを○、割れ深さが0.3mm以上のものを×とした。さらに、熱間圧延終了温度を約600℃とし、熱間圧延後の急冷によって結晶粒径が約20μmになるように制御した。
【0041】
次に、冷間圧延によって厚さ1mmまで圧延し、450〜520℃の温度で熱処理し、結晶粒径が約10μmになるように調整した。酸洗後に、厚さ0.25mmまで冷間圧延し、最終工程で230℃の低温焼鈍を施した。このようにして得られた条材から試験片を採取した。
【0042】
以上のようにして得られた条材を用いて、0.2%耐力、引張強さ、ヤング率、導電率、応力緩和率および応力腐食割れ寿命の測定を行った。0.2%耐力、引張強さおよびヤング率の測定はJIS−Z−2241、導電率はJIS−H−0505に従って行った。ただし、圧延方向に対して直角方向の0.2%耐力、引張強さおよびヤング率は、長さ70mmの小型の試験片を用いて測定した。応力緩和試験は、試料表面に0.2%耐力の80%に当たる曲げ応力を加え、150℃で500時間保持し、曲げぐせを測定することによって行った。また、応力緩和率は下記の式によって計算した。
【0043】
応力緩和率(%)=[(L1−L2)/(L1−L0)]×100
[L0:治具の長さ(mm) 、L1:開始時の試料の長さ(mm)、L2:処理後の試料端間の水平距離(mm)]
【0044】
応力腐食割れ試験は、0.2%耐力の80%に当たる曲げ応力を加え、12.5%のアンモニア水を入れたデシケ−タ内に保持することによって行った。暴露時間は、10分単位とし、150分まで試験した。暴露後に各時間の試験片を取り出し、必要に応じて皮膜を酸洗除去し、光学顕微鏡で100倍の倍率で割れを観察した。そして、割れを確認した10分前の時間を応力腐食割れ寿命とした。
【0045】
これらの結果を表1に示す。
【0046】
【表1】
【0047】
表1に示す結果から、実施例1〜6の銅合金は、熱間加工性に優れ、製造面でも有利であり、且つ0.2%耐力、引張強さ、ヤング率および導電率のバランスに優れ、また、耐応力緩和特性および耐応力腐食割れ性も良好である。したがって、実施例1〜6の銅合金は、コネクタなどの電気電子用材料として極めて優れた特性を有する銅合金である。
【0048】
これに対して、Bを添加しない比較例1の銅合金およびBの添加量が多い比較例2の銅合金は、実施例1の銅合金とほぼ同等の量のZnとSnを含有して同等の特性を有するが、熱間加工性に劣っており、歩留まり低下によるコストアップの問題がある。
【0049】
また、Sn含有量が少ない比較例3の銅合金およびZn含有量が少ない比較例4の銅合金は、熱間加工性に特に劣っていないが、0.2%耐力、引張強さおよび耐応力緩和特性に劣っている。また、比較例3の銅合金はヤング率も劣っている。
【0050】
さらに、Bを添加せずにCaまたはMgを単独で添加した比較例5および6の銅合金は、熱間圧延の途中で割れが入り、その後の冷間加工との兼ね合いで最終板厚まで歩留まり良く製造することができなかった。
【0051】
[実施例7、比較例7、8]
表1に示す実施例1の銅合金と同じ銅合金(実施例7)と、市販の黄銅1種(C26000−H08)(比較例7)と、ばね用りん青銅(C52100−H08)(比較例8)について、実施例1〜6と同様の方法により、0.2%耐力、引張強さ、ヤング率、導電率、応力緩和率および応力腐食割れ寿命を測定した。これらの結果を表2に示す。なお、これらの市販の材料は、質別がH08(ばね材用)であり、同一成分の中でも高強度な質別である。
【0052】
【表2】
【0053】
表2に示す結果から、実施例7の銅合金は、従来の代表的なコネクタなどの電気電子用材料である黄銅(比較例7)と比較して、0.2%耐力、引張強さ、耐応力緩和特性、耐応力腐食割れ性などが向上していることがわかる。また、ばね用りん青銅(比較例8)と比較しても、ヤング率および導電率に優れている。また、ばね用りん青銅は、高価なSnを8%も含有し、原料費が高騰し易く、且つ熱間圧延できないため、製法が限定され、製造費を含めたト−タルコスト面で劣っている。したがって、実施例7の銅合金は、従来の黄銅やりん青銅と比較して十分に優れているといえる。
【0054】
[実施例8、比較例9]
表1に示す実施例1の銅合金を、一次と二次の冷却条件と引き抜き速度を変えることによって、冷却速度を変化させて連続鋳造した。冷却速度は、熱電対を一緒に鋳込みながら測定した。この銅合金の液相線は約950℃であり、この温度から600℃までの平均冷却速度を求めた。
【0055】
その後、840℃に加熱して、1パス当たり約15%の圧下率で熱間圧延を10パス行い、表面とエッジの割れを観察した。この結果、50℃/分以上の平均冷却速度で鋳造した鋳片(実施例8)には、熱間割れが全く生じなかった。特に、80℃/分以上の平均冷却速度の鋳片は、熱間圧延温度をさらに上げても、圧下率を上げても対応することができ、条件範囲に余裕がある。これに対し、50℃/分未満の冷却速度(比較例9)では、熱間割れが発生し、適切な成分範囲であっても、鋳造時の平均冷却速度によっては熱間割れを生じることがあり、歩留まり低下をもたらす場合があることがわかった。
【0056】
[実施例9、比較例10、11]
表1に示す実施例1と同じ組成の銅合金を840℃に加熱し、熱間圧延を2パス行った。各パスの圧延直後に水冷したサンプルをリン酸と蒸留水(1:1)の溶液中で電解研磨して腐食させた後、光学顕微鏡により300倍の倍率で結晶粒組織を観察した。但し、1パス目の圧下率をそれぞれ15%(実施例9)、5%(比較例9)、35%(比較例10)として、2パス目の圧下率をいずれも25%とした。
【0057】
実施例9の銅合金の組織では、1パス目の圧延後にすべての結晶粒界に沿って動的再結晶粒が生じ、2パス目の圧延後にほぼ全域にわたって動的再結晶粒組織が観察された。これに対し、比較例9の組織では、1パス目の圧延後に動的再結晶粒がほとんど観察されず、2パス目の圧延後に一部の結晶粒界に沿ってクラックが観察された。また、比較例10の組織では、1パス目の圧延後に動的再結晶粒が不均一に分布して、一部の結晶粒界に沿ってクラックが観察され、2パス目の圧延後にこれらのクラックがさらに拡大した。したがって、1パス目の圧下率によっては熱延割れを生じることがあり、歩留まり低下をもたらす場合があることがわかった。
【0058】
[実施例10〜11、比較例12〜13]
表1に示す実施例1および比較例1と同じ組成の銅合金の鋳塊の断面中央部の鋳造組織(実施例10および比較例12)と、これらの銅合金を840℃に加熱して圧下率15%で熱間圧延を1パス行った後に水冷したサンプルの断面中央部の組織(実施例11および比較例13)を、リン酸と蒸留水(1:1)の溶液中で電解研磨して腐食させた後、光学顕微鏡により300倍の倍率で結晶粒組織を観察した。これらの光学顕微鏡写真をそれぞれ図1〜図4に示す。
【0059】
図1に示すように、実施例10の銅合金の鋳造組織では、結晶粒界と粒内のいずれにおいても第2相粒子が観察された(この第2相粒子は、EPMAとSIMSで同定した結果、Bの酸化物であると判定された)。また、粒子の結晶粒成長に対する阻止効果による粒界が凹凸化していることがわかる。これに対し、図2に示すように、比較例12の銅合金の鋳造組織では、第2相粒子がほとんど観察されず、結晶粒界が滑らかで、粒径も大きくなっている。
【0060】
また、図3に示すように、実施例11の銅合金の組織では、結晶粒界だけではなく、粒内においても第2相粒子のまわりに動的再結晶粒が観察された。これに対し、図4に示すように、比較例13の銅合金の組織では、動的再結晶粒がほとんど観察されず、一部の結晶粒界に沿ってクラックが観察された。
【0061】
したがって、本発明による銅合金は、B酸化物の鋳造組織の微細化および動的再結晶促進効果により、熱間加工性を向上することがわかった。
【0062】
【発明の効果】
上述したように、本発明による銅合金は、従来の黄銅やりん青銅などと比較して、0.2%耐力、引張強さ、導電率およびヤング率のバランスや、耐応力緩和率特性、耐応力腐食割れ性およびプレス性などに優れ、さらに熱間加工性が良く、安価に製造できるため、黄銅やりん青銅に代わるコネクタなどの電気電子部品用材料として最適なものである。
【図面の簡単な説明】
【図1】実施例10の銅合金の鋳造組織の光学顕微鏡写真。
【図2】比較例12の銅合金の鋳造組織の光学顕微鏡写真。
【図3】実施例11の銅合金の鋳造組織の光学顕微鏡写真。
【図4】比較例13の銅合金の鋳造組織の光学顕微鏡写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper alloy having strength, conductivity, stress relaxation resistance, etc. suitable as a material for electrical and electronic parts such as connectors, and excellent in hot workability and cost, and a method for producing the same.
[0002]
[Prior art]
With the recent development of electronics, the electrical wiring of various machines has become more complex and highly integrated, and accordingly, the amount of copper products used for electrical and electronic parts such as connectors has increased. In addition, electrical and electronic parts such as connectors are required to be lightweight, highly reliable, and low in cost. In order to satisfy these requirements, the copper alloy material for connectors is thinned and pressed into a complicated shape, so that the strength, elasticity, conductivity and press formability must be good.
[0003]
Specifically, the copper alloy material for connectors has a 0.2% proof stress of 600 N / mm as strength against buckling or deformation against insertion / extraction or bending of terminals, and strength against caulking / fitting of wires. 2 Or more, preferably 650 N / mm 2 Or more, more preferably 700 N / mm 2 The tensile strength is 650 N / mm 2 Or more, preferably 700 N / mm 2 Or more, more preferably 750 N / mm 2 This is required. Further, when the terminal is pressed, the strength in the direction perpendicular to the extending direction in rolling or the like is required to be a predetermined strength due to the relation of the chain direction. 2% proof stress is 650 N / mm 2 Or more, preferably 700 N / mm 2 Or more, more preferably 750 N / mm 2 The tensile strength is 700 N / mm. 2 Or more, preferably 750 N / mm 2 Or more, more preferably 800 N / mm 2 This is required. Moreover, in order to suppress generation | occurrence | production of the Joule heat by electricity supply, it is preferable that electrical conductivity is 20% IACS or more.
[0004]
In addition, copper alloy materials for connectors must have excellent corrosion resistance and stress corrosion cracking resistance. In the case of female terminals, thermal loads are applied, so stress relaxation characteristics must also be excellent. Don't be. Specifically, the stress corrosion cracking life is at least three times that of a conventional brass, and the stress relaxation rate is not more than half that of a kind of brass at 150 ° C., preferably not more than 25%, more preferably not more than 20%. is necessary.
[0005]
Conventionally, brass or phosphor bronze has been generally used as a connector material. Brass is used as a low-cost material, but the 0.2% proof stress and tensile strength are 570 N / mm each even when the quality is H08 (for spring material). 2 And 640 N / mm 2 And 0.2% proof stress is 600 N / mm 2 The tensile strength is 650 N / mm 2 The above requirements for connector materials cannot be satisfied. Brass is also inferior in corrosion resistance, stress corrosion cracking resistance and stress relaxation properties. On the other hand, phosphor bronze has an excellent balance of strength, corrosion resistance, stress corrosion cracking resistance and stress relaxation resistance. For example, phosphor bronze for springs has a conductivity as small as 12% IACS and is hot-worked. This is disadvantageous in terms of cost.
[0006]
Here, the Young's modulus of brass and phosphor bronze is 110 to 120 kN / mm in the extending direction. 2 115-130 kN / mm in the perpendicular direction 2 Such a small Young's modulus meets the requirements as a connector material, and these materials have been reviewed recently. Therefore, it combines the features of brass and phosphor bronze, and has a 0.2% proof stress in the extending direction of 600 N / mm at a price close to that of brass. 2 The tensile strength is 650 N / mm 2 Above, Young's modulus is 120 kN / mm 2 Hereinafter, the electrical conductivity is 20% IACS or more, the stress relaxation rate is 20% or less, and the 0.2% proof stress in the direction perpendicular to the stretching direction is 650 N / mm. 2 Above, tensile strength is 700 N / mm 2 Above, Young's modulus is 130 kN / mm 2 The following materials are desired.
[0007]
Moreover, the opportunity for Sn plating of the material for connectors increases, and the use of Sn in the alloy increases the utilization as a raw material. Further, as represented by brass, when Zn is contained, an alloy having an excellent balance of strength, workability, and cost is easily obtained. From such a viewpoint, the Cu—Zn—Sn alloy is a remarkable alloy system.
[0008]
For example, CDA standard C42500 is a Cu-9.5Zn-2.0Sn-0.2P alloy, which is well known as a material for connectors. C43400 is a Cu-14Zn-0.7Sn alloy and is used for switches, relays, and terminals, although in small quantities. However, a Cu—Zn—Sn alloy having a larger amount of Zn than this is hardly used as a connector material. This is because hot workability deteriorates as the Zn content and Sn content increase. For example, C43500 (Cu-18Zn-0.9Sn), C44500 (Cu-28Zn-1Sn-0.05P), C46700 (Cu-39Zn-0.8Sn-0.05P) are copper alloys having a larger amount of Zn than C42500. There are only products such as plates, rods, tubes, etc. for musical instruments, ships, miscellaneous goods, etc., but they are not used as extension materials for connectors, especially strip materials. . In addition, regarding the characteristics of these materials, the 0.2% proof stress in the extending direction is 600 N / mm. 2 The tensile strength is 650 N / mm 2 Above, Young's modulus is 120 kN / mm 2 Hereinafter, the electrical conductivity is 20% IACS or more, the stress relaxation rate is 20% or less, and the 0.2% proof stress in the direction perpendicular to the stretching direction is 650 N / mm. 2 Above, tensile strength is 700 N / mm 2 Above, Young's modulus is 130 kN / mm 2 It is not possible to satisfy all the characteristics required for the connector material such as pressability and stress corrosion cracking resistance. In particular, in order to maintain the above characteristics, it is necessary to contain a certain amount of Zn and Sn. However, when the Zn content and Sn content increase, hot cracking is likely to occur, and there is a problem of cost increase due to a decrease in yield.
[0009]
In view of such a current situation, it has been proposed to obtain a copper alloy having excellent characteristics by containing appropriate amounts of Zn and Sn, or further containing Si or the like and adopting an appropriate manufacturing method (for example, , See Patent Document 1 and Patent Document 2).
[0010]
[Patent Document 1]
JP 2001-294957 A (paragraph number 0014)
[Patent Document 2]
JP 2002-88428 A (paragraph number 0014)
[0011]
[Problems to be solved by the invention]
However, in these conventional methods, the control of hot rolling conditions is very strict, and the yield may be reduced due to fine cracks, so that a copper alloy having excellent hot rolling properties is provided. Is desired.
[0012]
Therefore, in view of such a conventional problem, the present invention is a copper alloy having the above-described characteristics required for materials for electrical and electronic parts such as connectors as electronics develops. An object of the present invention is to provide a copper alloy excellent in 2% yield strength, tensile strength, electrical conductivity, Young's modulus, stress relaxation resistance, pressability, hot workability and cost, and a method for producing the same.
[0013]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have studied 20 to 46 wt% Zn, 0.1 to 5.0 wt% Sn, and 0.001 to 0.5 wt%. By adding a B oxide having a grain size of 5 μm or less to a copper alloy material containing B and the balance consisting of Cu and inevitable impurities, hot working due to refinement of cast crystal grains and dynamic recrystallization promotion effect Excellent resistance and 0.2% proof stress in the stretch direction is 600 N / mm 2 The tensile strength is 650 N / mm 2 Above, Young's modulus is 120 kN / mm 2 Hereinafter, the electrical conductivity is 20% IACS or more, the stress relaxation rate is 20% or less, and the 0.2% proof stress in the direction perpendicular to the stretching direction is 650 N / mm. 2 Above, tensile strength is 700 N / mm 2 Above, Young's modulus is 130 kN / mm 2 The present inventors have found that the following copper alloy can be obtained, and have completed the present invention.
[0014]
That is, the copper alloy according to the present invention contains 20 to 46% by weight of Zn, 0.1 to 5.0% by weight of Sn, and 0.001 to 0.5% by weight of B, with the balance being Cu. And a B oxide having a particle size of 5 μm or less, or containing a B oxide and having a particle size of B oxide of 5 μm or less.
[0015]
This copper alloy preferably contains B oxide having a particle size of less than 1 μm and B oxide having a particle size of 1 to 5 μm. Also, 0.2% proof stress in the extending direction is 600 N / mm 2 The tensile strength is 650 N / mm 2 Above, Young's modulus is 120 kN / mm 2 Hereinafter, the electrical conductivity is 20% IACS or more, the stress relaxation rate is 20% or less, and the 0.2% proof stress in the direction perpendicular to the stretching direction is 650 N / mm. 2 Above, tensile strength is 700 N / mm 2 Above, Young's modulus is 130 kN / mm 2 It is preferable that: In addition, this copper alloy is further 0.01 to 3 wt% Fe, 0.01 to 5 wt% Ni, 0.01 to 3 wt% Co, and 0.01 to 3 wt% Ti. 0.01 to 2 wt% Mg, 0.01 to 2 wt% Zr, 0.01 to 1 wt% Ca, 0.01 to 3 wt% Si, and 0.01 to 10 wt% Mn, 0.01-3 wt% Cd, 0.01-5 wt% Al, 0.01-3 wt% Pb, 0.01-3 wt% Bi, 0.01 to 3 wt% Be, 0.01 to 1 wt% Te, 0.01 to 3 wt% Y, 0.01 to 3 wt% La, and 0.01 to 3 wt% Wt% Cr, 0.01-3 wt% Ce, 0.01-1 wt% V, 0.01-1 wt% Ba, 0.01-5 wt% Au, 0.01-5 wt% Ag and 0.005-0.5 at least one element of the weight% of P, may comprise as the total amount thereof is 0.01 to 5 wt%.
[0016]
Moreover, the manufacturing method of the copper alloy by this invention contains 20 to 46 weight% Zn, 0.1 to 5.0 weight% Sn, and 0.001 to 0.5 weight% B, In a method for producing a copper alloy comprising the remainder of Cu and unavoidable impurities, the raw material of the copper alloy is melted and cooled at a cooling rate of 50 ° C./min or more in the temperature range from the liquidus temperature to 600 ° C. Is obtained, and then hot rolling is performed at a temperature of 900 ° C. or less, then cold rolling and annealing in a temperature range of 300 to 650 ° C. are repeated to reduce the crystal grain size after annealing to 25 μm or less, and then 30% or more. It is characterized by performing cold rolling at a working rate of 5 ° C. and low-temperature annealing at 450 ° C. or lower.
[0017]
In this copper alloy manufacturing method, in hot rolling, the rolling reduction in the first rolling hot rolling is 5 to 30%, the rolling reduction in the next rolling hot rolling is 5 to 40%, and the final pass The rolling reduction in the hot rolling is preferably 25% or more, more preferably 10 to 20% in the first rolling hot rolling. Moreover, it is preferable that the crystal grain size after annealing is 15 μm or less, and the processing rate of cold rolling at a processing rate of 30% or more is preferably 60% or more. Further, the copper alloy preferably contains a B oxide having a particle size of 5 μm or less, and the 0.2% proof stress in the extending direction is 600 N / mm. 2 The tensile strength is 650 N / mm 2 Above, Young's modulus is 120 kN / mm 2 Hereinafter, the electrical conductivity is 20% IACS or more, the stress relaxation rate is 20% or less, and the 0.2% proof stress in the direction perpendicular to the stretching direction is 650 N / mm. 2 Above, tensile strength is 700 N / mm 2 Above, Young's modulus is 130 kN / mm 2 It is preferable that:
[0018]
According to this method for producing a copper alloy, a copper alloy having various characteristics required for materials for electrical and electronic parts such as connectors, while reducing costs by adding a component cheaper than copper, that is, 0 It is possible to provide a copper alloy for connectors excellent in 2% proof stress, tensile strength, electrical conductivity, Young's modulus, stress relaxation resistance, pressability, hot workability and cost.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the copper alloy according to the invention contains 20 to 46% by weight of Zn, 0.1 to 5.0% by weight of Sn and 0.001 to 0.5% by weight of B, with the balance Is made of Cu and inevitable impurities and contains B oxide having a particle size of 5 μm or less. The reason why the amount of the copper alloy component is thus limited is as follows.
[0020]
When Zn is added to the copper alloy, the strength and springiness of the copper alloy are improved, and Zn is cheaper than Cu, so it is desirable to add a large amount of Zn. However, when the amount of Zn exceeds 46% by weight, grain boundary segregation becomes severe in the presence of Sn, and the hot workability of the copper alloy is significantly reduced. In addition, the cold workability, corrosion resistance and stress corrosion cracking resistance of the copper alloy are also reduced. Furthermore, the plating property and the soldering property due to moisture and heating are also lowered. On the other hand, if the Zn content is less than 20% by weight, the copper alloy lacks strength such as 0.2% proof stress and tensile strength and springiness, increases Young's modulus, and further uses Sn as a surface-treated scrap as a raw material. In this case, hydrogen gas occlusion increases when the copper alloy is dissolved, and ingot blowholes are easily generated. In addition, the amount of inexpensive Zn is small, which is economically disadvantageous. Accordingly, the Zn content is preferably in the range of 20 to 46% by weight, more preferably in the range of 24 to 37% by weight.
[0021]
Sn has an effect of improving mechanical properties such as strength and elasticity such as 0.2% proof stress and tensile strength without increasing the Young's modulus of the copper alloy even in a small amount. Moreover, it is preferable that a copper alloy contains Sn as an additive element also from the point of reuse of the material surface-treated with Sn, such as Sn plating. However, when Sn content increases, the electrical conductivity of a copper alloy will fall rapidly, and grain boundary segregation will become intense in coexistence with Zn, and hot workability will fall remarkably. In order to ensure hot workability, the Sn content must be in a range not exceeding 5.0% by weight. On the other hand, if the Sn content is less than 0.1% by weight, the effect of improving the mechanical properties of the copper alloy is small, and it becomes difficult to use press scraps and the like subjected to Sn plating as raw materials. Therefore, Sn content becomes like this. Preferably it is the range of 0.1-5.0 weight%, More preferably, it is the range of 0.5-1.8 weight%.
[0022]
Since B has a higher affinity for oxygen than Cu, Zn and Sn, which are the main components of the copper alloy according to the present invention, it has an antioxidant effect on Cu, Zn and Sn.
[0023]
Further, B is not a strong deoxidizer such as Ca or Mg, and there is little loss during the addition process, and the generated oxide is difficult to cluster.
[0024]
Furthermore, B can be reacted with oxygen in the molten metal or solidification process, and a granular oxide having a particle size of several tens to several μm can be obtained. This oxide has the effect of refining cast crystal grains as crystal grain nuclei and inhibiting grain growth. In particular, the granular oxide of about 1 to 5 μm promotes dynamic recrystallization, and the oxide of 1 μm or less prevents recrystallized grain growth, thereby improving the hot workability and recrystallization by dynamic recrystallization. Both crystal grain refinement can be achieved. These synergistic effects can greatly improve the hot workability. When the particle size of the B oxide is larger than 5 μm, cracking is likely to occur due to stress concentration near the particles during rolling. On the other hand, the B oxide having a particle size of less than 1 μm has the effect of suppressing both the occurrence of dynamic recrystallization and recrystallization grain growth, and the granular oxide of about 1 to 5 μm has the effect of generating dynamic recrystallization. Has the effect of promoting Therefore, in order to promote the occurrence of dynamic recrystallization and suppress recrystallization grain growth, it is necessary to contain a B oxide having a grain size of 5 μm or less (that is, the maximum grain size is 5 μm and includes fine grains). It is necessary and preferably contains B oxide having a particle size of less than 1 μm and B oxide having a particle size of 1 to 5 μm. B oxide is identified by an electron probe microanalyzer (EPMA), and the particle size can be confirmed by a scanning electron microscope (SEM). However, for simplicity, the approximate particle size of the B oxide can be known by an optical microscope or the like and can be used as a reference.
[0025]
Further, since B has a dispersion strengthening effect, it also has an effect of improving the softening temperature and stress relaxation resistance of the final product.
[0026]
When the amount of B is less than 0.001% by weight, the effect of improving the hot workability as described above is lost. On the other hand, when the amount of B exceeds 0.5% by weight, the size of the second phase to be produced increases, conversely, the hot workability is remarkably lowered, which is disadvantageous in terms of cost. Therefore, the amount of B is preferably in the range of 0.001 to 0.5% by weight, more preferably in the range of 0.002 to 0.05% by weight.
[0027]
Moreover, if it is a component limited as mentioned above, formation of Sn oxide which precipitates in a grain boundary at the time of high temperature, such as casting and hot rolling, can be suppressed, and 0.2% proof stress in the extending direction can be achieved. 600 N / mm 2 The tensile strength is 650 N / mm 2 Above, Young's modulus is 120 kN / mm 2 Hereinafter, the electrical conductivity is 20% IACS or more, the stress relaxation rate is 20% or less, and the 0.2% proof stress in the direction perpendicular to the stretching direction is 650 N / mm. 2 Above, tensile strength is 700 N / mm 2 Above, Young's modulus is 130 kN / mm 2 Furthermore, various characteristics required as a connector material, specifically, corrosion resistance, stress corrosion cracking resistance (cracking life in ammonia vapor is more than three times that of brass), stress relaxation resistance (at 150 ° C) It is possible to produce a copper alloy having a relaxation rate of less than half of one kind of brass and satisfying the press punchability and the like.
[0028]
Further, the copper alloy contains 0.01 to 3 wt% Fe, 0.01 to 5 wt% Ni, 0.01 to 3 wt% Co, and 0.01 to 3 wt% as the third additive element. Wt% Ti, 0.01-2 wt% Mg, 0.01-2 wt% Zr, 0.01-1 wt% Ca, 0.01-3 wt% Si, 0.01 to 10 wt% Mn, 0.01 to 3 wt% Cd, 0.01 to 5 wt% Al, 0.01 to 3 wt% Pb, and 0.01 to 3 wt% % Bi, 0.01-3 wt% Be, 0.01-1 wt% Te, 0.01-3 wt% Y, 0.01-3 wt% La, 0 0.01-3 wt% Cr, 0.01-3 wt% Ce, 0.01-1 wt% V, 0.01-1 wt% Ba, 0.01-5 wt% 0.01 to 5 layers with Au % And Ag, and at least one element of 0.005-0.5 wt% of P, the total amount thereof may include such that 0.01 to 5 wt%.
[0029]
These elements can improve the strength without significantly impairing the electrical conductivity, Young's modulus, and moldability. Moreover, if it deviates from the content range of each element, a desired effect cannot be obtained or it becomes disadvantageous in terms of hot workability, cold workability, pressability, electrical conductivity, Young's modulus and cost.
[0030]
Next, an embodiment of a method for producing a copper alloy according to the present invention will be described.
[0031]
First, the raw material of the copper alloy according to the present invention is melted and cast. In melting the raw material, B can be added by a B powder or a master alloy such as Cu-B, Ni-B or Fe-B. However, it is desirable to add B when about half of the raw material is dissolved. If the timing of introducing B is too early, there are many losses due to oxidation of B. In addition, an atmospheric atmosphere is sufficient as the atmosphere, but sealing with an inert gas is preferable from the viewpoint of preventing oxidation. However, in a reducing gas atmosphere, when the temperature is high, it is disadvantageous due to the absorption and diffusion of hydrogen due to the decomposition of moisture.
[0032]
Next, after melting the raw material, it is desirable to cast the ingot by continuous casting. This continuous casting may be either a vertical type or a horizontal type. However, cooling is performed at a cooling rate of 50 ° C./min or more in the temperature range from the liquidus temperature to 600 ° C. When the cooling rate is less than 50 ° C./min, Sn segregation occurs at the grain boundaries, and the B oxide particles are likely to cluster (aggregate), thereby deteriorating the hot workability and lowering the yield. The temperature range that defines the cooling rate may be a temperature range from the liquidus temperature to 600 ° C. Even if the temperature range above the liquidus is defined, there is no effect. On the other hand, at 600 ° C. or less, excessive segregation of Sn to the grain boundary does not occur in about the time of the cooling process during casting. The temperature range to be used is a temperature range from the liquidus temperature to 600 ° C.
[0033]
Hot rolling is performed after melt casting. The heating temperature of hot rolling is 900 ° C. or less. If the temperature exceeds 900 ° C., hot cracking due to segregation of Sn to the grain boundary occurs, and the yield decreases. The rolling reduction at the time of hot rolling in the first pass at a temperature of 900 ° C. or lower is set to 5 to 30%. If the rolling reduction exceeds 30%, cracks are likely to occur along the cast grain boundaries. On the other hand, if the rolling reduction is less than 5%, dynamic recrystallization or static recrystallization between passes hardly occurs, and hot cracking may occur during the second pass rolling. In addition, the number of rolling passes increases, which is not efficient. By dynamically recrystallizing after 2 to 3 passes, a microscopic segregation during casting and disappearance of the cast structure can lead to a material that is structurally homogeneous even if it contains Zn content and Sn content of the composition of the copper alloy according to the present invention. Obtainable. More preferably, the rolling reduction of the first pass is 10 to 20%. In the next pass, the rolling reduction may be 5 to 40%, the occurrence of hot cracking can be prevented, and then rolling can be performed efficiently. Furthermore, it is preferable that the rolling reduction rate of the final pass is as large as possible, specifically, a rolling reduction rate of 25% or more is preferable. Thereby, the crystal grain size after hot rolling can be controlled to 35 μm or less, preferably 15 μm or less. If the crystal grain size after hot rolling exceeds 35 μm, the subsequent cold work rate and the control range of annealing conditions are narrow, and if it deviates even a little, the crystal grains tend to be mixed and the characteristics deteriorate.
[0034]
The surface is chamfered as necessary after hot rolling. Then, cold rolling and annealing in a temperature range of 300 to 650 ° C. are repeated, and the crystal grain size after annealing is set to 25 μm or less. If the temperature is less than 300 ° C., the time required for controlling the crystal grains becomes long and uneconomical, and if it exceeds 650 ° C., the crystal grains become coarse in a short time. When the grain size after annealing exceeds 25 μm, mechanical properties such as 0.2% proof stress and workability deteriorate. The crystal grain size after annealing is preferably 15 μm or less, more preferably 10 μm or less.
[0035]
The annealed material thus obtained has a 0.2% proof stress of 600 N / mm in the stretching direction by cold rolling at a processing rate of 30% or more and low temperature annealing at 450 ° C. or less. 2 The tensile strength is 650 N / mm 2 Above, Young's modulus is 120 kN / mm 2 Hereinafter, the electrical conductivity is 20% IACS or more, the stress relaxation rate is 20% or less, and the 0.2% proof stress in the direction perpendicular to the stretching direction is 650 N / mm. 2 Above, tensile strength is 700 N / mm 2 Above, Young's modulus is 130 kN / mm 2 The following copper alloy is used. When the cold working rate is less than 30%, the strength is not sufficiently improved by work hardening, and the mechanical properties are not sufficiently improved. More preferably, the processing rate is 60% or more. Low temperature annealing is necessary to further improve 0.2% yield strength, tensile strength, spring limit and stress relaxation resistance. When the temperature exceeds 450 ° C., the heat capacity to be applied is too large and softens in a short time, and characteristic variations in the work are likely to occur in both the batch type and the continuous type. Therefore, the temperature condition of the low temperature annealing is set to 450 ° C. or less.
[0036]
After the material thus obtained is pressed on a terminal, it may be heat-treated at a temperature of 100 to 280 ° C. for 1 to 180 minutes. By this heat treatment, the spring limit value and the stress relaxation resistance lowered by the press working are improved, and further, whisker countermeasures can be realized. If the temperature is lower than 100 ° C., such an effect is not sufficient. If the temperature exceeds 280 ° C., contact resistance, solderability, and workability deteriorate due to diffusion and oxidation. Further, if the heat treatment time is less than 1 minute, the effect is not sufficient, and if it exceeds 180 minutes, the above-described characteristics are deteriorated due to diffusion and oxidation, and it is not economical.
[0037]
【Example】
Hereinafter, examples of the copper alloy and the method for producing the same according to the present invention will be described in detail.
[0038]
[Examples 1-6, Comparative Examples 1-6]
Each copper alloy showing chemical components (% by weight) in Table 1 was melted at a temperature 70 ° C. higher than the liquidus temperature, and then 30 × 70 × 1000 (mm) using a vertical compact continuous casting machine. Cast into ingot. However, by adjusting the primary cooling by the mold and the secondary cooling by the water shower, the cooling rate from the liquidus to 600 ° C. was a condition that greatly exceeded 50 ° C./min.
[0039]
Further, for the copper alloys of Examples 1 to 6 and Comparative Example 2 containing B, the B oxide was identified by an electron probe microanalyzer (EPMA), and the particle size of the B oxide was determined by a scanning electron microscope (SEM). As a result, B oxides having a particle size of 0.02 to 1 μm and B oxides having a particle size of 1 to 3 μm were distributed in the copper alloys of Examples 1 to 6, but the copper alloy of Comparative Example 2 B oxide having a particle size larger than 5 μm was confirmed.
[0040]
Then, after heating each ingot to 800-840 degreeC, it hot-rolled to thickness 5mm, and evaluated hot workability by the crack of the surface or edge. However, hot rolling was performed for 10 passes, and the reduction rate per pass was 15%, and the reduction rate of the final pass was 25%. Those with no cracking confirmed by an optical microscope of 50 times after pickling, with crack depth of 0.3 mm or less (that is, no cracking is confirmed after chamfering or milling on one side 0.3 mm) ◯, and those having a crack depth of 0.3 mm or more were marked with ×. Furthermore, the hot rolling end temperature was set to about 600 ° C., and the crystal grain size was controlled to about 20 μm by rapid cooling after hot rolling.
[0041]
Next, it was rolled to a thickness of 1 mm by cold rolling, heat-treated at a temperature of 450 to 520 ° C., and adjusted so that the crystal grain size was about 10 μm. After pickling, it was cold-rolled to a thickness of 0.25 mm and subjected to low-temperature annealing at 230 ° C. in the final step. A test piece was collected from the strip thus obtained.
[0042]
Using the strips obtained as described above, 0.2% proof stress, tensile strength, Young's modulus, electrical conductivity, stress relaxation rate, and stress corrosion cracking life were measured. The 0.2% proof stress, tensile strength, and Young's modulus were measured according to JIS-Z-2241, and the conductivity was measured according to JIS-H-0505. However, the 0.2% proof stress, tensile strength, and Young's modulus in the direction perpendicular to the rolling direction were measured using a small test piece having a length of 70 mm. The stress relaxation test was performed by applying a bending stress equivalent to 80% of 0.2% proof stress to the sample surface, holding the sample at 150 ° C. for 500 hours, and measuring the bending distortion. Moreover, the stress relaxation rate was calculated by the following formula.
[0043]
Stress relaxation rate (%) = [(L1-L2) / (L1-L0)] × 100
[L0: Jig length (mm), L1: Length of sample at start (mm), L2: Horizontal distance (mm) between sample ends after processing]
[0044]
The stress corrosion cracking test was performed by applying a bending stress equivalent to 80% of 0.2% proof stress and holding it in a desiccator containing 12.5% ammonia water. The exposure time was 10 minutes and tested up to 150 minutes. After the exposure, the test piece at each time was taken out, the film was pickled and removed as necessary, and cracks were observed with an optical microscope at a magnification of 100 times. The time 10 minutes before the crack was confirmed was defined as the stress corrosion crack life.
[0045]
These results are shown in Table 1.
[0046]
[Table 1]
[0047]
From the results shown in Table 1, the copper alloys of Examples 1 to 6 are excellent in hot workability, are advantageous in terms of manufacturing, and have a balance of 0.2% proof stress, tensile strength, Young's modulus, and electrical conductivity. Excellent stress relaxation resistance and stress corrosion cracking resistance. Therefore, the copper alloys of Examples 1 to 6 are copper alloys having extremely excellent characteristics as electrical and electronic materials such as connectors.
[0048]
On the other hand, the copper alloy of Comparative Example 1 in which B is not added and the copper alloy of Comparative Example 2 in which the amount of B added is large contain substantially the same amounts of Zn and Sn as the copper alloy of Example 1 and are equivalent. However, the hot workability is inferior, and there is a problem of cost increase due to a decrease in yield.
[0049]
Further, the copper alloy of Comparative Example 3 having a low Sn content and the copper alloy of Comparative Example 4 having a low Zn content are not particularly inferior in hot workability, but 0.2% proof stress, tensile strength and stress resistance. Inferior relaxation properties. Further, the copper alloy of Comparative Example 3 is inferior in Young's modulus.
[0050]
Furthermore, in the copper alloys of Comparative Examples 5 and 6 in which Ca or Mg alone was added without adding B, cracking occurred during hot rolling, and the yield to the final thickness was achieved in consideration of subsequent cold working. It could not be manufactured well.
[0051]
[Example 7, Comparative Examples 7 and 8]
The same copper alloy as in Example 1 shown in Table 1 (Example 7), commercially available brass 1 type (C26000-H08) (Comparative Example 7), and spring phosphor bronze (C52100-H08) (Comparative Example) For 8), 0.2% proof stress, tensile strength, Young's modulus, electrical conductivity, stress relaxation rate and stress corrosion cracking life were measured by the same method as in Examples 1-6. These results are shown in Table 2. In addition, these commercially available materials are classified into H08 (for spring material), and are of high strength among the same components.
[0052]
[Table 2]
[0053]
From the results shown in Table 2, the copper alloy of Example 7 is 0.2% proof stress, tensile strength, compared to brass (Comparative Example 7) which is a material for electric and electronic such as a conventional representative connector. It can be seen that the stress relaxation resistance and stress corrosion cracking resistance are improved. Moreover, it is excellent in Young's modulus and electrical conductivity even compared with phosphor bronze for springs (Comparative Example 8). Moreover, the phosphor bronze for spring contains 8% of expensive Sn, the raw material cost is likely to rise and hot rolling is not possible, so the production method is limited and the total cost including the manufacturing cost is inferior. . Therefore, it can be said that the copper alloy of Example 7 is sufficiently superior to conventional brass and phosphor bronze.
[0054]
[Example 8, comparative example 9]
The copper alloy of Example 1 shown in Table 1 was continuously cast at different cooling rates by changing the primary and secondary cooling conditions and the drawing speed. The cooling rate was measured while casting a thermocouple together. The liquidus of this copper alloy was about 950 ° C., and the average cooling rate from this temperature to 600 ° C. was determined.
[0055]
Then, it heated to 840 degreeC and hot-rolled 10 passes by the reduction of about 15% per pass, and the crack of the surface and the edge was observed. As a result, no hot cracking occurred in the slab cast at an average cooling rate of 50 ° C./min or more (Example 8). In particular, a slab having an average cooling rate of 80 ° C./min or more can be handled even if the hot rolling temperature is further increased or the rolling reduction is increased, and there is a margin in the condition range. On the other hand, at a cooling rate of less than 50 ° C./min (Comparative Example 9), hot cracking occurs, and even within an appropriate component range, hot cracking may occur depending on the average cooling rate during casting. It has been found that there is a case where yield is lowered.
[0056]
[Example 9, Comparative Examples 10 and 11]
A copper alloy having the same composition as in Example 1 shown in Table 1 was heated to 840 ° C., and hot rolling was performed for two passes. After water-cooled samples immediately after rolling in each pass were corroded by electrolytic polishing in a solution of phosphoric acid and distilled water (1: 1), the crystal grain structure was observed with an optical microscope at a magnification of 300 times. However, the rolling reduction of the first pass was 15% (Example 9), 5% (Comparative Example 9), and 35% (Comparative Example 10), respectively, and the rolling reduction of the second pass was 25%.
[0057]
In the structure of the copper alloy of Example 9, dynamic recrystallized grains were generated along all the crystal grain boundaries after the first pass rolling, and the dynamic recrystallized grain structure was observed over almost the entire area after the second pass rolling. It was. In contrast, in the structure of Comparative Example 9, almost no dynamic recrystallized grains were observed after the first pass rolling, and cracks were observed along some of the grain boundaries after the second pass rolling. In the structure of Comparative Example 10, dynamic recrystallized grains are unevenly distributed after the first pass rolling, and cracks are observed along some crystal grain boundaries. The crack further expanded. Therefore, it has been found that hot rolling cracks may occur depending on the rolling reduction ratio in the first pass, which may lead to a decrease in yield.
[0058]
[Examples 10-11, Comparative Examples 12-13]
The cast structure (Example 10 and Comparative Example 12) in the center of the cross section of the ingot of the copper alloy having the same composition as Example 1 and Comparative Example 1 shown in Table 1, and these copper alloys are heated to 840 ° C. and reduced. The structure (Example 11 and Comparative Example 13) at the center of the cross section of the sample that was water-cooled after one pass of hot rolling at a rate of 15% was electropolished in a solution of phosphoric acid and distilled water (1: 1). After being corroded, the crystal grain structure was observed with an optical microscope at a magnification of 300 times. These optical micrographs are shown in FIGS.
[0059]
As shown in FIG. 1, in the cast structure of the copper alloy of Example 10, second phase particles were observed both at the grain boundaries and within the grains (this second phase particles were identified by EPMA and SIMS). As a result, it was determined to be an oxide of B). Moreover, it turns out that the grain boundary by the inhibitory effect with respect to the crystal grain growth of particle | grains is uneven | corrugated. On the other hand, as shown in FIG. 2, in the cast structure of the copper alloy of Comparative Example 12, almost no second phase particles are observed, the crystal grain boundaries are smooth, and the particle size is large.
[0060]
As shown in FIG. 3, in the structure of the copper alloy of Example 11, dynamic recrystallized grains were observed around the second phase grains not only at the grain boundaries but also within the grains. On the other hand, as shown in FIG. 4, in the structure of the copper alloy of Comparative Example 13, almost no dynamic recrystallized grains were observed, and cracks were observed along some crystal grain boundaries.
[0061]
Therefore, it was found that the copper alloy according to the present invention improves the hot workability due to the refinement of the cast structure of the B oxide and the effect of promoting dynamic recrystallization.
[0062]
【The invention's effect】
As described above, the copper alloy according to the present invention has a balance of 0.2% proof stress, tensile strength, electrical conductivity and Young's modulus, stress relaxation rate characteristics, resistance to resistance, and the like compared to conventional brass and phosphor bronze. Since it is excellent in stress corrosion cracking and pressability, and has good hot workability and can be manufactured at low cost, it is optimal as a material for electrical and electronic parts such as connectors in place of brass and phosphor bronze.
[Brief description of the drawings]
1 is an optical micrograph of a cast structure of a copper alloy of Example 10. FIG.
2 is an optical micrograph of the cast structure of the copper alloy of Comparative Example 12. FIG.
3 is an optical micrograph of the cast structure of the copper alloy of Example 11. FIG.
4 is an optical micrograph of the cast structure of the copper alloy of Comparative Example 13. FIG.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002374080A JP4787986B2 (en) | 2002-11-25 | 2002-12-25 | Copper alloy and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002340706 | 2002-11-25 | ||
JP2002340706 | 2002-11-25 | ||
JP2002374080A JP4787986B2 (en) | 2002-11-25 | 2002-12-25 | Copper alloy and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004225060A JP2004225060A (en) | 2004-08-12 |
JP4787986B2 true JP4787986B2 (en) | 2011-10-05 |
Family
ID=32910845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002374080A Expired - Lifetime JP4787986B2 (en) | 2002-11-25 | 2002-12-25 | Copper alloy and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4787986B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106269970A (en) * | 2016-08-10 | 2017-01-04 | 安徽晋源铜业有限公司 | A kind of preparation technology of high-strength highly-conductive micro-wire |
CN110482563A (en) * | 2019-08-26 | 2019-11-22 | 山东大学 | A method of preparing crystalline state boron powder |
CN110527860A (en) * | 2019-09-23 | 2019-12-03 | 四川博鑫铜业有限公司 | Waste purple impure copper refining agent and preparation method and application thereof |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5050226B2 (en) * | 2005-03-31 | 2012-10-17 | Dowaメタルテック株式会社 | Manufacturing method of copper alloy material |
JP5109073B2 (en) * | 2008-02-07 | 2012-12-26 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
JP5045784B2 (en) * | 2010-05-14 | 2012-10-10 | 三菱マテリアル株式会社 | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment |
JP5712585B2 (en) * | 2010-12-03 | 2015-05-07 | 三菱マテリアル株式会社 | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment |
JP5903842B2 (en) | 2011-11-14 | 2016-04-13 | 三菱マテリアル株式会社 | Copper alloy, copper alloy plastic working material, and method for producing copper alloy plastic working material |
CN103509967B (en) * | 2013-01-22 | 2016-04-27 | 阮媛清 | A kind of gravitational casting special DZR environment-friendly yellow brass alloy ingot and manufacture craft thereof |
CN103725919B (en) * | 2014-01-03 | 2016-09-14 | 安新县华昌合金厂 | A kind of LEAD-FREE BRASS ALLOY |
CN104032165B (en) * | 2014-05-12 | 2016-05-25 | 蚌埠市宏威滤清器有限公司 | A kind of antifouling and seawater corrosion resistance Cu alloy material and preparation method thereof |
CN107046768B (en) * | 2016-02-05 | 2019-12-31 | Jx金属株式会社 | Copper foil for flexible printed circuit boards, copper clad laminates using the same, flexible printed circuit boards, and electronic devices |
CN105908014B (en) * | 2016-06-08 | 2017-08-25 | 上海理工大学 | A kind of copper alloy of seawater corrosion resistance and preparation method thereof |
CN106251926B (en) * | 2016-08-10 | 2018-09-14 | 安徽晋源铜业有限公司 | A kind of preparation process of high-strength and high ductility copper conductor |
JP6858532B2 (en) * | 2016-10-28 | 2021-04-14 | Dowaメタルテック株式会社 | Copper alloy plate material and its manufacturing method |
CN107858552B (en) * | 2017-11-10 | 2019-08-16 | 广州番禺职业技术学院 | A kind of casting tire enamel copper master alloy and preparation method thereof |
CN108034854B (en) * | 2017-11-15 | 2019-09-10 | 宁波长振铜业有限公司 | A kind of multicomponent microalloying brass alloys |
CN108728690B (en) * | 2018-07-02 | 2020-06-23 | 定襄县新世纪机械有限公司 | Manufacturing method of heating power pipeline connecting flange |
CN109266899A (en) * | 2018-11-16 | 2019-01-25 | 宁波金田铜业(集团)股份有限公司 | Low anti-dezincification value DZR copper ingot of a kind of environmental protection and preparation method thereof |
CN111041270A (en) * | 2019-12-30 | 2020-04-21 | 南通南平电子科技有限公司 | High-stability high-efficiency vehicle-mounted capacitor guide pin |
CN114686721B (en) * | 2022-03-16 | 2023-02-24 | 宁波金田铜业(集团)股份有限公司 | A kind of high-strength copper alloy bar material and preparation method thereof |
CN115261665B (en) * | 2022-06-22 | 2023-04-28 | 昆明冶金研究院有限公司北京分公司 | Modifier for copper-iron-phosphorus alloy, preparation method and application thereof |
CN115386765B (en) * | 2022-08-24 | 2023-07-21 | 宁波金田铜业(集团)股份有限公司 | Brass alloy and preparation method thereof |
CN118910465A (en) * | 2024-07-22 | 2024-11-08 | 浙江惟精新材料股份有限公司 | Medium-strength high-elasticity corrosion-resistant brass alloy and preparation method thereof |
-
2002
- 2002-12-25 JP JP2002374080A patent/JP4787986B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106269970A (en) * | 2016-08-10 | 2017-01-04 | 安徽晋源铜业有限公司 | A kind of preparation technology of high-strength highly-conductive micro-wire |
CN110482563A (en) * | 2019-08-26 | 2019-11-22 | 山东大学 | A method of preparing crystalline state boron powder |
CN110482563B (en) * | 2019-08-26 | 2020-04-24 | 山东大学 | Method for preparing crystalline boron powder |
CN110527860A (en) * | 2019-09-23 | 2019-12-03 | 四川博鑫铜业有限公司 | Waste purple impure copper refining agent and preparation method and application thereof |
CN110527860B (en) * | 2019-09-23 | 2021-09-07 | 四川博鑫铜业有限公司 | A kind of waste purple miscellaneous copper refining agent and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JP2004225060A (en) | 2004-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4787986B2 (en) | Copper alloy and manufacturing method thereof | |
JP4294196B2 (en) | Copper alloy for connector and manufacturing method thereof | |
JP4943095B2 (en) | Copper alloy and manufacturing method thereof | |
JP4441669B2 (en) | Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking | |
JP3953357B2 (en) | Copper alloy for electrical and electronic parts | |
WO2014126047A1 (en) | HIGH-STRENGTH Cu-Ni-Co-Si BASE COPPER ALLOY SHEET, PROCESS FOR PRODUCING SAME, AND CURRENT-CARRYING COMPONENT | |
JP2004225093A (en) | Copper-based alloy and method for producing the same | |
WO2006019035A1 (en) | Copper alloy plate for electric and electronic parts having bending workability | |
JP2002180165A (en) | Copper base alloy excellent in press punching property and method for producing the same | |
JP5461711B2 (en) | Copper alloy having high strength and high conductivity and method for producing the same | |
JP4129807B2 (en) | Copper alloy for connector and manufacturing method thereof | |
JP4503696B2 (en) | Electronic parts made of copper alloy sheets with excellent bending workability | |
KR101917416B1 (en) | Copper-cobalt-silicon alloy for electrode material | |
JP5036623B2 (en) | Copper alloy for connector and manufacturing method thereof | |
JP3797882B2 (en) | Copper alloy sheet with excellent bending workability | |
JP2010059543A (en) | Copper alloy material | |
JP4567906B2 (en) | Copper alloy plate or strip for electronic and electrical parts and method for producing the same | |
JP3962751B2 (en) | Copper alloy sheet for electric and electronic parts with bending workability | |
JP3511648B2 (en) | Method for producing high-strength Cu alloy sheet strip | |
JP3904118B2 (en) | Copper alloy for electric and electronic parts and manufacturing method thereof | |
JP2013520571A (en) | High strength, high conductivity copper alloy and method for producing the same | |
JP4431741B2 (en) | Method for producing copper alloy | |
JP3729733B2 (en) | Copper alloy plate for lead frame | |
JP2006200042A (en) | Electronic component composed of copper alloy sheet having excellent bending workability | |
JP4664584B2 (en) | High strength copper alloy plate and method for producing high strength copper alloy plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071023 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090310 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090408 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20090821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110425 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110628 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110628 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4787986 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |