[go: up one dir, main page]

JPS6331176A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPS6331176A
JPS6331176A JP61174767A JP17476786A JPS6331176A JP S6331176 A JPS6331176 A JP S6331176A JP 61174767 A JP61174767 A JP 61174767A JP 17476786 A JP17476786 A JP 17476786A JP S6331176 A JPS6331176 A JP S6331176A
Authority
JP
Japan
Prior art keywords
layer
crystal layer
region
concentration
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61174767A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nagasawa
長沢 一利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61174767A priority Critical patent/JPS6331176A/en
Publication of JPS6331176A publication Critical patent/JPS6331176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To reduce interface current between a top epitaxial layer and an insulating film thereon and also to reduce a surface leak current, by providing a high carrier-concentration layer on a crystal layer laminated for forming an element, and also by removing a depletion layer generation region by etching. CONSTITUTION:An N<-> Inp crystal layer 2, an InGaAs active layer 3 and N<+> type Inp crystal layer 4 are formed on an N-type Inp compound semiconductor substrate 1, and an InGaAs layer 11 wherein a carrier concentration is higher than in the crystal layer is epitaxially grow further excessively. Then, the high-concentration layer 11 on the region of the crystal layer 4 wherein a depletion layer expands is removed selectively by selective etching. Next, zinc (Zn) atoms are diffused in the substrate by using a mask 6 formed of an Si nitride film. Thereby a p-type region 9 is formed, and a P-N junction section 7 is formed in the region of the active layer 3. Moreover, a antireflection film 8 of an Si nitride film is formed by evaporation on a light-receiving element region on the P-N junction section 7, and thereafter an electrode 10 of a gold- zinc alloy is formed on the mask layer 6 for diffusion.

Description

【発明の詳細な説明】 〔概要〕 インジウム−ガリウム−砒素(InGaAs)系の化合
物半導体結晶を用いた特に長波長の光通信方式に用いる
光半導体受光素子の高信頼化を図ったもので、特に素子
を形成するために積層形成されている結晶層の最上層上
に、該最上層よりキャリア濃度を高濃度とした高濃度層
を一層余分に設けるとともに、該形成した高濃度層の受
光部の周辺部、即ち空乏層発生領域をエツチング除去す
ることで、その素子形成のために設けた最上層のエピタ
キシ中ル層とその上に形成する絶縁膜との界面電流の低
減を図り、表面リーク電流の低下を図る。
[Detailed Description of the Invention] [Summary] This is an optical semiconductor light-receiving element that uses an indium-gallium-arsenide (InGaAs)-based compound semiconductor crystal and is used in particularly long-wavelength optical communication systems. On the top layer of the crystal layers stacked to form an element, an extra high concentration layer with a higher carrier concentration than the top layer is provided, and the light receiving part of the formed high concentration layer is By etching away the peripheral area, that is, the region where the depletion layer occurs, it is possible to reduce the interfacial current between the uppermost epitaxy intermediate layer provided for the device formation and the insulating film formed on it, and reduce the surface leakage current. We aim to reduce the

〔産業上の利用分野〕[Industrial application field]

本発明はInGaAs系の化合物半導体結晶を用いた半
導体受光素子に係り、特に長波長の光通信方式に用いる
光半導体受光素子に関する。
The present invention relates to a semiconductor light-receiving element using an InGaAs-based compound semiconductor crystal, and more particularly to an optical semiconductor light-receiving element used in a long wavelength optical communication system.

InGaAs系化合物半導体結晶を用いた光半導体受光
素子は、外部より光を導入しない時、熱電子放射や、漏
れ抵抗によって電流が流れるといった暗電流の発生が少
なく 、1.55μmの波長帯での入射光子数に対する
放出光電子数の比、即ち量子効率も高いことから従来の
Ge受光素子等の素子に代わり、長波長光通信用受光素
子として最近注目されている。
Optical semiconductor light-receiving elements using InGaAs-based compound semiconductor crystals generate little dark current, such as thermionic emission or current flow due to leakage resistance, when no light is introduced from the outside, and can detect light incident in the 1.55 μm wavelength band. Since the ratio of the number of emitted photoelectrons to the number of photons, that is, the quantum efficiency is also high, it has recently attracted attention as a light-receiving element for long-wavelength optical communications in place of devices such as conventional Ge light-receiving elements.

そのため、長波長光通信方式に用いられるI nGaA
s系受光素子は高信頼度のものが要求される傾向にあり
、素子表面での電流コントロールが重要な課題となる。
Therefore, InGaA used in long wavelength optical communication systems
S-based light receiving elements tend to be required to be highly reliable, and current control on the element surface becomes an important issue.

特に素子形成のために設けた最上層のエピタキシャル層
と、その上に形成する絶縁膜との界面電流の低減が必要
となる。
In particular, it is necessary to reduce the interfacial current between the uppermost epitaxial layer provided for element formation and the insulating film formed thereon.

〔従来の技術〕[Conventional technology]

従来、このようなrnGaAsP系化合物半導体結晶を
用いた光半導体装置は、第2図に示すようにN型のIn
P基扱基土1上−InPのバッファ層2が形成され、更
にその上にN型のInGaAs結晶層が活性層3として
形成され、更にその上にN”lnP結晶層4が形成され
ている。
Conventionally, optical semiconductor devices using such rnGaAsP-based compound semiconductor crystals have been manufactured using N-type In as shown in FIG.
An InP buffer layer 2 is formed on the P-based substrate 1, an N-type InGaAs crystal layer is formed as an active layer 3 on top of the buffer layer 2, and an N''lnP crystal layer 4 is formed on top of the active layer 3. .

更にこのN”lnP結晶層4内にSi原子がイオン注入
された後、該注入されたSi原子の活性化を目的として
基板を熱処理して表面にリーク電流が流れないようにす
るためのチャネルストッパ層5が設けられている。
Furthermore, after Si atoms are ion-implanted into this N''lnP crystal layer 4, a channel stopper is provided to heat the substrate for the purpose of activating the implanted Si atoms and to prevent leakage current from flowing to the surface. A layer 5 is provided.

更にN” InP結晶層4上には、窒化5tlll!よ
りなる拡散用マスク6が形成され、この拡散用マスク6
を用いて、P型の不純物原子である亜鉛(Zn)原子が
導入されて活性層3にPN接合部7が形成され、このP
N接合部7の上部には窒化Si膜よりなる反射防止膜8
が形成され、このP型の不純物原子の導入層9に接触す
るように電極10が形成されている。
Furthermore, a diffusion mask 6 made of nitride 5tllll! is formed on the N'' InP crystal layer 4, and this diffusion mask 6
Zinc (Zn) atoms, which are P-type impurity atoms, are introduced into the active layer 3 to form a PN junction 7.
An antireflection film 8 made of a Si nitride film is provided on the upper part of the N junction part 7.
is formed, and an electrode 10 is formed so as to be in contact with this layer 9 into which P-type impurity atoms are introduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記したSi原子によるチャネルストッパ層
5は、Si原子が選択的にイオン注入された後、このS
i原子を活性化するために基板1を、約650℃の温度
で熱処理している。
By the way, the above-mentioned channel stopper layer 5 made of Si atoms is formed after Si atoms are selectively ion-implanted.
The substrate 1 is heat treated at a temperature of about 650° C. to activate the i atoms.

そのため、選択イオン注入工程とその後の高温熱処理工
程の2工程の処理工程が必要であり、また高温熱処理工
程のために、積層形成されている活性N3やN“InP
結晶層4等のエピタキシャル結晶層の結晶性が劣化し、
格子欠陥や格子不整合等の不都合が生じていた。
Therefore, two processing steps are required: a selective ion implantation step and a subsequent high-temperature heat treatment step. In addition, for the high-temperature heat treatment step, the active N3 and N"InP
The crystallinity of the epitaxial crystal layer such as crystal layer 4 deteriorates,
Problems such as lattice defects and lattice mismatches have occurred.

本発明は上記した問題点を除去し、工程を短縮してかつ
素子の表面リーク電流の減少を図った光半導体装置の提
供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical semiconductor device that eliminates the above-mentioned problems, shortens the process, and reduces surface leakage current of the device.

(問題点を解決するための手段〕 本発明の光半導体装置は、素子形成のために化合物半導
体基板上に積層形成された結晶層の最上層上に連続して
、該最上層よりキャリア濃度の大きい高濃度結晶層を設
け、該最上層の結晶層に形成される空乏層発生領域に対
応する前記高濃度層の領域が除去されている。
(Means for Solving the Problems) The optical semiconductor device of the present invention has a structure in which carrier concentration is lowered continuously on the uppermost layer of a crystal layer stacked on a compound semiconductor substrate for device formation. A large high concentration crystal layer is provided, and a region of the high concentration layer corresponding to a depletion layer generation region formed in the uppermost crystal layer is removed.

〔作用〕[Effect]

本発明の光半導体装置は、装置を形成する最上層の結晶
層上に該結晶層よりキャリア濃度の大きい結晶層を設け
、この結晶層をその下の最上層の結晶層に形成される空
乏層形成領域に対応する領域を除去する。
In the optical semiconductor device of the present invention, a crystal layer having a higher carrier concentration than the crystal layer is provided on the uppermost crystal layer forming the device, and this crystal layer is used as a depletion layer formed in the uppermost crystal layer below. A region corresponding to the formation region is removed.

このようにして従来、素子を形成する最上層の化合物半
導体結晶層と、その上に形成される絶縁膜との界面で発
生する表面リーク電流をストップさせるための、Si原
子のイオン注入法によるチャネルストッパの形成の熱処
理によって、基板上に形成された結晶層の歪みや、格子
不整合の発生を無くするようにする。
In this way, in order to stop the surface leakage current that occurs at the interface between the uppermost compound semiconductor crystal layer that forms an element and the insulating film formed thereon, a channel is created using the ion implantation method of Si atoms. The heat treatment for forming the stopper eliminates distortion of the crystal layer formed on the substrate and the occurrence of lattice mismatch.

〔実施例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図に示すように、本発明の光半導体装置は、N型の
InPよりなる化合物半導体基板1上にN−InPの結
晶層2が液相エピタキシャル法で形成され、更にその上
にInGaAs層よりなる活性層3と、更にその上にN
+型のInPよりなる結晶層4が液相エピタキシャル成
長法によってそれぞれ形成されており、ここ迄は従来の
装置と同じである。
As shown in FIG. 1, the optical semiconductor device of the present invention includes an N-InP crystal layer 2 formed by a liquid phase epitaxial method on a compound semiconductor substrate 1 made of N-type InP, and an InGaAs layer on top of the N-InP crystal layer 2. an active layer 3 consisting of
Crystal layers 4 made of +-type InP are each formed by liquid phase epitaxial growth, and up to this point the device is the same as the conventional device.

次いで該基板上にキャリア濃度が10/cm3以上の高
濃度のInGaAs、或いはInGaAsPの高濃度層
11が一層余分にエピタキシャル成長されている。
Next, an extra high concentration layer 11 of InGaAs or InGaAsP with a carrier concentration of 10/cm<3> or more is epitaxially grown on the substrate.

そして素子形成のための最上層となるInPの結晶層4
に於いて空乏層が拡がる領域上の前記形成したInGa
As、或いはInGaAsPの高濃度層11がホトリソ
グラフィ法を用いた選択エツチングにより、選択的に除
去されている。
And an InP crystal layer 4 which becomes the top layer for forming the element.
The formed InGa on the region where the depletion layer expands in
The high concentration layer 11 of As or InGaAsP is selectively removed by selective etching using photolithography.

このようにした状態で、該基板上に窒化Si膜よりなる
拡散用マスク6を用いてP型の不純物原子である亜鉛(
Zn)原子を拡散して、P型頭域9が形成され、活性層
3領域内にPN接合部7が形成されている。
In this state, using a diffusion mask 6 made of a Si nitride film on the substrate, zinc (
By diffusing Zn) atoms, a P-type head region 9 is formed and a PN junction 7 is formed in the active layer 3 region.

更にP−N接合部7上の受光部領域上に窒化Si膜より
なる反射防止膜8が蒸着により形成された後、前記形成
した拡散用マスク層6上に金−亜鉛合金よりなる電極1
0が蒸着及びホトリソグラフィ法を用いて形成されてい
る。
Furthermore, after an antireflection film 8 made of a Si nitride film is formed by vapor deposition on the light receiving area on the P-N junction 7, an electrode 1 made of a gold-zinc alloy is deposited on the diffusion mask layer 6 formed above.
0 is formed using vapor deposition and photolithography methods.

このような本発明の構造の光半導体装置によれば、従来
の装置に比較して、素子形成のために行う液相エピタキ
シャル成長法を用いて最上層の結晶層4の上に、更に一
層高濃度のInGaAs−、或いはInGaAsPの高
濃度結晶Jifllを連続的に容易に形成することがで
きる。
According to the optical semiconductor device having such a structure of the present invention, compared to conventional devices, even higher concentration is grown on the top crystal layer 4 using the liquid phase epitaxial growth method performed for element formation. A high-concentration crystal Jifll of InGaAs- or InGaAsP can be easily and continuously formed.

またその後のホトリソグラフィ法を用いた高濃度結晶層
11のエツチング工程も簡単な工程である。
Further, the subsequent etching process of the highly concentrated crystal layer 11 using photolithography is also a simple process.

従って従来の光半導体装置に於けるように、Siのチャ
ネルストンパ形成の際に、基板の加熱による熱歪みの現
象も除去でき、高信頼度の半導体装置が得られる。
Therefore, as in the conventional optical semiconductor device, the phenomenon of thermal distortion due to heating of the substrate can be eliminated when forming the Si channel stopper, and a highly reliable semiconductor device can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の光半導体装置によれば、選
択イオン打ち込み工程を液相エピタキシャル成長工程と
、エツチング工程に切り換えることができ、この液相エ
ピタキシャル成長工程は素子形成のエビタキシャル工程
に引き続いて行われるため、工程が複雑でなく簡単に行
える。
As described above, according to the optical semiconductor device of the present invention, the selective ion implantation process can be switched to a liquid phase epitaxial growth process and an etching process, and this liquid phase epitaxial growth process is performed subsequent to the epitaxial process for device formation. The process is not complicated and can be easily performed.

またSiのイオン注入後の高温熱処理工程が無いため、
エピタキシャル結晶層の歪みがなく、高性能な光半導体
装置が得られる効果がある。
Also, since there is no high-temperature heat treatment process after Si ion implantation,
There is an effect that a high-performance optical semiconductor device can be obtained without distortion of the epitaxial crystal layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光半導体装置の一実施例を示す断面図
、 第2図は従来の光半導体装置を示す断面図である。 図に於いて、 1はN型1nP基板、2はN−1nP結晶層、3は活性
層、4はN”lnP結晶層、6は拡散用マスク、7はP
N接合部、8は反射防止膜、9はP型頭域、10は電極
、11は高濃度結晶層を示す。 ゼp胎1+4杯客デ、、#吻の 第1図 徒シぼそX任迄デd憧担 第2図
FIG. 1 is a sectional view showing an embodiment of the optical semiconductor device of the present invention, and FIG. 2 is a sectional view showing a conventional optical semiconductor device. In the figure, 1 is an N-type 1nP substrate, 2 is an N-1nP crystal layer, 3 is an active layer, 4 is an N''lnP crystal layer, 6 is a diffusion mask, and 7 is a P
8 is an anti-reflection film, 9 is a P-type head region, 10 is an electrode, and 11 is a highly concentrated crystal layer. Zep womb 1 + 4 cups customer de...

Claims (1)

【特許請求の範囲】[Claims]  化合物半導体基板(1)上に素子形成用の半導体結晶
層(2、3、4)が積層形成され、該積層形成された最
上層の結晶層(4)上に、該最上層の結晶層(4)より
キャリア濃度の大きい高濃度結晶層(11)が形成され
、前記最上層の結晶層(4)に形成される空乏層発生領
域に対応する前記高濃度結晶層(11)の領域が除去さ
れていることを特徴とする光半導体装置。
Semiconductor crystal layers (2, 3, 4) for forming elements are laminated on a compound semiconductor substrate (1), and on the laminated uppermost crystal layer (4), the uppermost crystal layer ( 4) A high concentration crystal layer (11) having a higher carrier concentration is formed, and a region of the high concentration crystal layer (11) corresponding to a depletion layer generation region formed in the uppermost crystal layer (4) is removed. An optical semiconductor device characterized by:
JP61174767A 1986-07-24 1986-07-24 Optical semiconductor device Pending JPS6331176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174767A JPS6331176A (en) 1986-07-24 1986-07-24 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174767A JPS6331176A (en) 1986-07-24 1986-07-24 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPS6331176A true JPS6331176A (en) 1988-02-09

Family

ID=15984316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174767A Pending JPS6331176A (en) 1986-07-24 1986-07-24 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPS6331176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2466261A (en) * 2008-12-17 2010-06-23 Qinetiq Ltd Semiconductor device and fabrication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2466261A (en) * 2008-12-17 2010-06-23 Qinetiq Ltd Semiconductor device and fabrication method

Similar Documents

Publication Publication Date Title
US5157473A (en) Avalanche photodiode having guard ring
JPH02159775A (en) Semiconductor photodetector and its manufacturing method
US4794439A (en) Rear entry photodiode with three contacts
JPH02202071A (en) Semiconductor photodetector and manufacture thereof
KR100509355B1 (en) Photo-diode and method for fabricating the same
JP2996943B2 (en) Semiconductor light receiving device and method of manufacturing the same
US6558973B2 (en) Metamorphic long wavelength high-speed photodiode
JPS63955B2 (en)
CN101506998B (en) Photodetector and method for manufacturing photodetector
JPH08274358A (en) III-V group compound semiconductor solar cell
JPS6331176A (en) Optical semiconductor device
JPH02262379A (en) Semiconductor photodetector and manufacture thereof
JPH0955522A (en) Tunnel diode
JP3074574B2 (en) Manufacturing method of semiconductor light receiving element
JPS60173882A (en) semiconductor equipment
JPH0621503A (en) Semiconductor photodetector and manufacture thereof
JPH04246867A (en) Semiconductor photodetector
JP2692971B2 (en) Semiconductor light emitting device
JPS6259905B2 (en)
KR930001906B1 (en) Manufacturing method of light receiver devices with high-confidence
KR890004430B1 (en) Photodiode Structure
JPH02226777A (en) Semiconductor light receiving element and manufacture thereof
JPS6146080A (en) Semiconductor photodetector
JPH0554703B2 (en)
JPS6058684A (en) Manufacture of photo detector