[go: up one dir, main page]

JPS63225525A - Superconductive material - Google Patents

Superconductive material

Info

Publication number
JPS63225525A
JPS63225525A JP62057367A JP5736787A JPS63225525A JP S63225525 A JPS63225525 A JP S63225525A JP 62057367 A JP62057367 A JP 62057367A JP 5736787 A JP5736787 A JP 5736787A JP S63225525 A JPS63225525 A JP S63225525A
Authority
JP
Japan
Prior art keywords
oxides
bao
expressed
superconductive material
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62057367A
Other languages
Japanese (ja)
Inventor
Tomoaki Yamada
山田 智秋
Kyoichi Kinoshita
恭一 木下
Azusa Matsuda
松田 あづさ
Takao Watanabe
孝夫 渡辺
Yoshihiro Asano
浅野 義曠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62057367A priority Critical patent/JPS63225525A/en
Publication of JPS63225525A publication Critical patent/JPS63225525A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive material easy in synthesis, having high critical temp. and being useful for magnetic levitation train, CT scanner for medical treatment, etc, by using specified materials. CONSTITUTION:A superconductive material having >=ca.80K critical temp. and a compsn. expressed by the formula III is formed by calcining a compsn. of oxides expressed by the formula II (x is 0.33-0.82) contg. a material expressed by the formula I in O2 or air at ca.900 deg.C for ca.12hr.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、新しい超伝導性材料に関するものである。 (従来の技術〉 ある温度以下で電気抵抗がゼロになる超伝導物質は、磁
気浮上列車や医療用の断層診断装置、将来のエネルギー
源と目される核融合などに不可欠な強力磁石、送電損失
の少ない電力輸送用電線や電力貯蔵用の電源、高速コン
ピュータ素子用電極など暢広い応用が期待されている。 しかし、従来の材料は、超伝導体となる臨界温度(Tc
)が高々23にと低かったため、冷却のため高価なヘリ
ウムを使わなければならないという欠点があった。 このような欠点を除くため、最近Lm−Ha−Cu−0
からなる材料が開発され(J、G、Bednorz a
ndに、A、Muller、 Z、、Phys、B、i
N、189−193.1986)、それを受けて新たに
V−Ba−Cu−0が開発された(C,ν、Chu他、
to bepublished in Phys、Re
v、Lett、)a L/かし、La−Ba−Cu、−
0は、Tcが未だ30−35にと低く、轡た、V−Ba
−Cu−0は、Tcは98にと高いものの、その材料合
成法が難しく、同じ合成条件によフて超伝導性を示すも
のと示さないものがあるなど、特性の再現性に難がある
という欠点があった。 (発明が解決しようとする問題点〉 本発明の目的は、上記の欠点を除くため、Tcが高くか
つ合成が容易な新しい超伝導性材料を提供することにあ
る。 (問題点を解決するための手段) 本発明は、原料として酸化物、炭酸塩等を用い、焼成に
よりNd−11a−Cu−0からなる超伝導物 。 貢を得る。 (実施例) 〔実施例1] Nd2O,、BaCOx、CuOを試薬として(1−x
):2x:2(ここで、O<x<1>のモル比で焼成用
原料を秤量、混合後、900°Cの温度において酸素中
ないし空気中で12時閏燻、成してNd・l1a−Cu
−011化物を得た。 これらの酸化物は、rIi数の相からなる混合物であり
、その一つとして、LalBa3Cu60t4. t(
L、Er−RakhO他、 J、5olid 5tat
e Cheap、、 37,151−156.1981
)のようなペロブスカイト型化合物を含む、この酸化物
の抵抗率の温度変化を調べたところ、Xが0.33(第
2図のlで示した組成)から0.82 (第2図の2で
示した組成)の範囲でTcが80に以上の超伝導性を示
すことがわかった。そのIW4として、Xが0.5の1
合を第1図に示す、第1図に示すようにこの物質は、T
cが90にの超伝導性をもつ、これらの酸化物は、Tc
がllloK以上と高いため冷却に液体へ゛リウムより
価格が10分の!安い液体窒素(沸点77K)が使用で
きる可能性があり、また、合成法が単純で特性の再現性
に優れるという効果がある。 [実施例2] Nd2O3、BaCO3、CuOJ&試薬として(1−
x):3(+−x):5xのモル比で焼成用原料を秤量
、混合後、900°Cの温度において酸素中ないし空気
中で12時間焼成してNd−Ba−Cu−0酸化物を得
た。これらの酸化物も実施例1に示した酸化物と同様、
複数の相からなる混合物であるが、これらの酸化物の抵
抗率の温度変化を調べたところ、Xが0.29゛(第2
r:Iiの3で示した編成)から0.58 (第2図の
4で示した組成)の範囲でTcがllloK以上の超伝
導性を示すことがわがフた。 [実I[3] Nd2O3、BaCO3、CuOを試薬として(1−X
):2x:2xのモル比で焼成用原料を秤量、混合後、
900#Cの温度においで酸素中ないし空気中で12時
間焼成してNd−Ba−Cu・0酸化物な得た。これら
の酸化物も実施例1に示した酸化物と同様、複数の相か
らなる混合物であるが、これらの酸化物の抵抗率の温度
変化を調べたところ、Xが0.25 (第2図の6で示
した組成)から0.82 (第21!lの6で示した組
成)の範囲でTcが80に以上の超伝導性を示すことが
わかった。
(Industrial Application Field) The present invention relates to a new superconducting material. (Conventional technology) Superconducting materials, whose electrical resistance becomes zero below a certain temperature, are used in powerful magnets and power transmission losses, which are essential for magnetic levitation trains, medical tomographic diagnostic equipment, and nuclear fusion, which is seen as a future energy source. It is expected that it will find a wide range of applications, such as electric wires for power transport with low thermal conductivity, power sources for power storage, and electrodes for high-speed computer devices.
) was as low as 23 at most, and had the disadvantage of requiring the use of expensive helium for cooling. In order to eliminate such drawbacks, recently Lm-Ha-Cu-0
A material consisting of (J, G, Bednorz a
nd, A., Muller, Z., Phys., B.i.
N, 189-193.1986), and in response, V-Ba-Cu-0 was newly developed (C, ν, Chu et al.
to be published in Phys, Re
v, Lett,) a L/Kashi, La-Ba-Cu, -
0, Tc is still low at 30-35, and V-Ba
-Cu-0 has a high Tc of 98, but its material synthesis method is difficult, and there are difficulties in reproducibility of its properties, with some exhibiting superconductivity and others not under the same synthesis conditions. There was a drawback. (Problems to be Solved by the Invention) An object of the present invention is to provide a new superconducting material that has a high Tc and is easy to synthesize, in order to eliminate the above-mentioned drawbacks. The present invention uses oxides, carbonates, etc. as raw materials, and obtains a superconductor composed of Nd-11a-Cu-0 by firing. (Example) [Example 1] Nd2O, BaCOx , CuO as a reagent (1-x
):2x:2 (Here, after weighing and mixing raw materials for firing with a molar ratio of O<x<1>, smoke them in oxygen or air at a temperature of 900°C for 12 hours to form Nd. l1a-Cu
-011 compound was obtained. These oxides are a mixture of rIi number of phases, one of which is LalBa3Cu60t4. t(
L, Er-RakhO et al., J, 5olid 5tat
e Cheap, 37, 151-156.1981
), we investigated the temperature change in resistivity of this oxide, which contains perovskite-type compounds such as It was found that superconductivity with a Tc of 80 or more was exhibited within the range of the composition shown in . As that IW4, X is 1 of 0.5
The combination is shown in Figure 1. As shown in Figure 1, this material
These oxides have superconductivity with c of 90, Tc
Since it is more expensive than lloK, it is 10 times cheaper than liquid helium for cooling! There is a possibility that cheap liquid nitrogen (boiling point 77K) can be used, and the synthesis method is simple and the reproducibility of characteristics is excellent. [Example 2] Nd2O3, BaCO3, CuOJ & (1-
Weigh and mix the raw materials for firing at a molar ratio of I got it. These oxides are similar to the oxides shown in Example 1,
Although it is a mixture consisting of multiple phases, when we investigated the temperature change in the resistivity of these oxides, we found that X was 0.29゛ (second phase).
It was found that Tc exhibits superconductivity of lloK or higher in the range of r:Ii (composition indicated by 3) to 0.58 (composition indicated by 4 in FIG. 2). [Real I [3] Nd2O3, BaCO3, CuO as reagents (1-X
): 2x: After weighing and mixing the raw materials for firing at a molar ratio of 2x,
A Nd--Ba--Cu.0 oxide was obtained by firing in oxygen or air at a temperature of 900 #C for 12 hours. Similar to the oxide shown in Example 1, these oxides are mixtures consisting of multiple phases, but when we investigated the temperature change in resistivity of these oxides, we found that X was 0.25 (Fig. 2). It was found that superconductivity with Tc of 80 or more was exhibited in the range from 0.82 (composition shown in 6 of No. 21!l) to 0.82 (composition shown in 6 of No. 21!l).

【実施例4】 Nd2O,、BaC0]、CuOを試薬として第2図の
1と4.4と2.2と6.6と3.3と5.5と1を結
んだ線で囲まれる領域の組成をもつ焼成用原料を秤量、
混合後、90G’Cの温度において酸素中ないし空気中
で12時間焼成して得た酸化物の抵抗率を調べたところ
、これらの酸化物もTcが80に以上の超伝導性をもつ
ことがわかった。 (発明の効果) 以上説明したようにNd−8a−Cu・0酸化物は、T
cが80に以上と高く、合成も容易で特性の再現性に優
れるため、超伝導材料として使用できる利点がある。
[Example 4] Using Nd2O, BaC0] and CuO as reagents, the area surrounded by the line connecting 1, 4.4, 2.2, 6.6, 3.3, 5.5, and 1 in Fig. 2 Weigh the raw materials for firing with the composition of
After mixing, we investigated the resistivity of the oxides obtained by baking them in oxygen or air at a temperature of 90 G'C for 12 hours, and found that these oxides also had superconductivity with a Tc of 80 or higher. Understood. (Effect of the invention) As explained above, Nd-8a-Cu.0 oxide has T
It has a high c of 80 or more, is easy to synthesize, and has excellent reproducibility of properties, so it has the advantage of being usable as a superconducting material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Nd2O3:BaCO3:CuO=0.5:
I:1(14,3:28.6:57.1)の組成をもつ
焼成物の抵抗率の温度変化を示す図である。 第2図は、Nd203−BaO−CuO3元系で超伝導
性を示す組成領域を示す図である。ここで、1.2.3
.4.5,6は、各々、Nd2O3:BaO:CuO=
 20:20:80.4.7:42.9:52.4.1
B、[i:49.6:33.8.9.2:27.5:6
3.3.42.8:28.6:2B、6.5.2:47
.4:47.4の組成を示す。 図面の浄書(内容に変更なし) ヤ 1 父 N従L03 峯2(支)
Figure 1 shows Nd2O3:BaCO3:CuO=0.5:
FIG. 2 is a diagram showing a temperature change in resistivity of a fired product having a composition of I:1 (14,3:28.6:57.1). FIG. 2 is a diagram showing a compositional region exhibiting superconductivity in the Nd203-BaO-CuO ternary system. Here, 1.2.3
.. 4.5 and 6 are respectively Nd2O3:BaO:CuO=
20:20:80.4.7:42.9:52.4.1
B, [i:49.6:33.8.9.2:27.5:6
3.3.42.8:28.6:2B, 6.5.2:47
.. 4:47.4. Engraving of drawings (no changes in content) Ya 1 Father N subordinate L03 Mine 2 (branch)

Claims (5)

【特許請求の範囲】[Claims] (1)Nd−Ba−Cu−Oからなる超伝導性物質。(1) A superconducting material consisting of Nd-Ba-Cu-O. (2)上記物質のうち、Nd_2O_3:BaO:Cu
O=(1−x):2x:2からなる組成において、xが
0.33から0.82の範囲で規定される特許請求の範
囲1項記載の超伝導性物質。
(2) Among the above substances, Nd_2O_3:BaO:Cu
The superconducting material according to claim 1, wherein x is defined in the range of 0.33 to 0.82 in a composition consisting of O=(1-x):2x:2.
(3)上記物質のうち、Nd_2O_3:BaO:Cu
O=(1−x):3(1−x):5xからなる組成にお
いて、xが0.29から0.58の範囲で規定される特
許請求の範囲第1項記載の超伝導性物質。
(3) Among the above substances, Nd_2O_3:BaO:Cu
The superconducting material according to claim 1, wherein x is defined in the range of 0.29 to 0.58 in a composition consisting of O=(1-x):3(1-x):5x.
(4)上記物質のうち、Nd_2O_3:BaO:Cu
O=(1−x):2x:2xからなる組成において、x
が0.25から0.82の範囲で規定される特許請求の
範囲第1項記載の超伝導性物質。
(4) Among the above substances, Nd_2O_3:BaO:Cu
In the composition consisting of O=(1-x):2x:2x, x
The superconducting material according to claim 1, wherein the superconducting material is defined in the range of 0.25 to 0.82.
(5)上記物質のうち、Nd_2O_3−BaO−Cu
O系でNd_2O_3:BaO:CuO=20:20:
60、9.2:27.5:63.3、4.7:42.9
:52.4、5.2:47.4:47.4、16.6:
49.6:33.8、42.8:28.6:28.6で
示される組成を結んだ領域の中にある組成をもつ特許請
求の範囲1項、第2項、第3項、第4項いずれか記載の
超伝導性物質。
(5) Among the above substances, Nd_2O_3-BaO-Cu
In O system, Nd_2O_3:BaO:CuO=20:20:
60, 9.2:27.5:63.3, 4.7:42.9
:52.4, 5.2:47.4:47.4, 16.6:
49.6:33.8, 42.8:28.6:28.6 having a composition within the region connecting the compositions shown in Claims 1, 2, 3, and The superconducting substance according to any of Item 4.
JP62057367A 1987-03-12 1987-03-12 Superconductive material Pending JPS63225525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057367A JPS63225525A (en) 1987-03-12 1987-03-12 Superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057367A JPS63225525A (en) 1987-03-12 1987-03-12 Superconductive material

Publications (1)

Publication Number Publication Date
JPS63225525A true JPS63225525A (en) 1988-09-20

Family

ID=13053618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057367A Pending JPS63225525A (en) 1987-03-12 1987-03-12 Superconductive material

Country Status (1)

Country Link
JP (1) JPS63225525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232917A (en) * 1994-02-18 1995-09-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconductor and manufacturing method thereof
EP1035592A2 (en) * 1999-03-05 2000-09-13 International Superconductivity Technology Center Oxide superconductor and method for producing same
US6690567B1 (en) 2002-09-26 2004-02-10 Ceramphysics, Inc. Capacitive energy storage device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502903A (en) * 1987-01-12 1990-09-13 ユニヴァーシティ オヴ ヒューストン・ユニヴァーシティ パーク Superconductivity in rectangular planar compound systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502903A (en) * 1987-01-12 1990-09-13 ユニヴァーシティ オヴ ヒューストン・ユニヴァーシティ パーク Superconductivity in rectangular planar compound systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232917A (en) * 1994-02-18 1995-09-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconductor and manufacturing method thereof
EP1035592A2 (en) * 1999-03-05 2000-09-13 International Superconductivity Technology Center Oxide superconductor and method for producing same
EP1035592A3 (en) * 1999-03-05 2004-12-01 International Superconductivity Technology Center Oxide superconductor and method for producing same
US6690567B1 (en) 2002-09-26 2004-02-10 Ceramphysics, Inc. Capacitive energy storage device

Similar Documents

Publication Publication Date Title
US4843059A (en) Superconductive mixed valence copper oxide, and method of making it
JPH0696450B2 (en) High temperature superconductor and manufacturing method thereof
JPH07121805B2 (en) Superconducting composition object
JPH0643268B2 (en) Oxide high temperature superconductor
Michel et al. Neutron diffraction structure determination of the “1212”-series TlBa2Ca1− xNdxCu2O7− δ
JPS63225525A (en) Superconductive material
Ganguly et al. Identification of the high-temperature superconducting phase in the Y-Ba-Cu-O system as the perovskite YBa 2 Cu 3 O 7±δ
KR970002894B1 (en) Superconducting metal oxide compositions
US4959348A (en) Y-Ba-Cu-O superconductor for containing antimony or boron to increase current density
US5716907A (en) Rock-salt/infinite layer chlorine-containing oxide superconductor and manufacturing method of the same
US6630425B1 (en) Devices and systems based on novel superconducting material
JPS63225527A (en) Superconductive material
JPS63225573A (en) Superconductive material
JPS63225526A (en) Super conductive material
US5108986A (en) Substituted YiBa2 Cu3 oxide superconductor
US5599775A (en) (Hg Cu)Bg2 Ca2 Cu3 Oy oxide superconductor and method of preparing the same
JP2850310B2 (en) Superconductive metal oxide composition and method for producing the same
US5073536A (en) High temperature superconductors comprising Tl--Ca--Ba--O, Tl--Sr--Ba--Cu--O--Sr--Cu--O
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JP2855123B2 (en) Oxide superconductor
US5256635A (en) High temperature superconductor system comprising Tl2 Ba2 CuO+δ
JP2656531B2 (en) Oxide superconductor
Xianhui et al. (Bi, M) Sr 2 (R, Ce) n Cu 2 O y (M= Cu, Cd; R= Nd, Gd; n= 1, 2, and 3): A family of superconductors that exhibit superconductivity at T c≃ 20 K for n= 3 with double fluorite blocks and monolayer (Bi, M) O sheets
US5215962A (en) 90 K Tl-Ba-Ce-Cu-O superconductor and processes for making same
JPS63270349A (en) Superconductive substance