[go: up one dir, main page]

JPS63225527A - Superconductive material - Google Patents

Superconductive material

Info

Publication number
JPS63225527A
JPS63225527A JP62057369A JP5736987A JPS63225527A JP S63225527 A JPS63225527 A JP S63225527A JP 62057369 A JP62057369 A JP 62057369A JP 5736987 A JP5736987 A JP 5736987A JP S63225527 A JPS63225527 A JP S63225527A
Authority
JP
Japan
Prior art keywords
oxides
superconductive material
bao
cuo
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62057369A
Other languages
Japanese (ja)
Inventor
Tomoaki Yamada
山田 智秋
Kyoichi Kinoshita
恭一 木下
Azusa Matsuda
松田 あづさ
Takao Watanabe
孝夫 渡辺
Yoshihiro Asano
浅野 義曠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62057369A priority Critical patent/JPS63225527A/en
Publication of JPS63225527A publication Critical patent/JPS63225527A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive material easy in synthesis and having high critical temp. and being useful for magnetic lavitation train, electrode for high speed computer element etc., by using Lu, Ba, Cu, and O. CONSTITUTION:A superconductive material having >=ca.80K critical temp. and a compsn. expressed by the formula II is prepd. by calcining a compsn. consisting of oxides expressed by the formula I (x is 0.33-0.82) contg. Lu, Ba, Cu, and O in or air at ca.900 deg.C for ca.12hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、新しい超伝導性材料に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to new superconducting materials.

(従来の技術) ある温度以下で電気抵抗がゼロになる超伝導物質は、磁
気浮上列車や医療用の断層診断装置、将来のエネルギー
源と目される核融合などに不可欠な強力磁石、送電損失
の少ない電力輸送用電線や電力貯蔵用の電源、高速コン
ピュータ素子用電橋なと暢広い応用がa待されている。
(Conventional technology) Superconducting materials, whose electrical resistance becomes zero below a certain temperature, are essential for magnetic levitation trains, medical tomographic diagnostic devices, and nuclear fusion, which is considered a future energy source, as well as for power transmission losses. It is expected to find a wide range of applications, such as electrical wires for transporting low-energy electricity, power sources for power storage, and electrical bridges for high-speed computer devices.

しかし、従来の材料は、超伝導体となる臨界温度(Tc
)が高々23にと低かったため、冷却のため高価なヘリ
ウムを使わなければならないという欠点があった。
However, conventional materials have a critical temperature (Tc) at which they become superconductors.
) was as low as 23 at most, and had the disadvantage of requiring the use of expensive helium for cooling.

このような欠点を除くため、最近La−Ba−Cu−0
からなる材料が開発され(J、G、Bednorz a
nd K、^、Muller、 Z、、Phys、B、
、11,189−193.1986)、それを受けて新
たにY−Ba−Cu−0が開発された(C,W、Chu
flb、to bepublished in Phy
s、Rev、Lett、)、 Llかし、La−Ha−
Cu−0は、Tcが未だ3G−35にと低く、また、V
−Ba−Cu・0は、↑Cは98にと高いものの、その
材料合成法が難しく、同じ合成条件によって超伝導性を
示すものと示さないものがあるなど、特性の再現性に難
があるという欠点があった。
In order to eliminate such drawbacks, recently La-Ba-Cu-0
A material consisting of (J, G, Bednorz a
nd K, ^, Muller, Z,, Phys, B,
, 11, 189-193.1986), and in response, Y-Ba-Cu-0 was newly developed (C, W, Chu
flb, to be published in Phys.
s, Rev, Lett, ), Ll Kashi, La-Ha-
Cu-0 has a low Tc of 3G-35, and a low V
-Ba-Cu・0 has a high ↑C of 98, but the material synthesis method is difficult, and the reproducibility of properties is difficult, as some exhibit superconductivity and others do not under the same synthesis conditions. There was a drawback.

(発明が解決しようとする問題点) 本発明の目的は、上記の欠点を除くため、Tcが高くか
つ合成が容易な新しい超伝導性材料を提供することにあ
る。
(Problems to be Solved by the Invention) An object of the present invention is to provide a new superconducting material that has a high Tc and is easy to synthesize, in order to eliminate the above-mentioned drawbacks.

(問題点を解決するための手段) 本発明は、原料として酸化物、炭酸塩等を用い、焼成に
よりLu−Ba−Cu−0からなる超伝導物質を得る。
(Means for Solving the Problems) The present invention uses oxides, carbonates, etc. as raw materials and obtains a superconducting material composed of Lu-Ba-Cu-0 by firing.

(実施例) [実施例1〕 Lu2O3、BaCG3、CuOを試薬として(1−x
):’2x:2(ここで、O’x’l)のモル比で焼成
用原料を秤量、混合後、900ΦCの温度において酸素
中ないし空気中で12時間焼成してLu−Ba−Cu−
0酸化物を得た。
(Example) [Example 1] Using Lu2O3, BaCG3, and CuO as reagents (1-x
):'2x:2 (here, O'x'l) raw materials for firing were weighed and mixed, and then fired at a temperature of 900ΦC in oxygen or air for 12 hours to form Lu-Ba-Cu-
0 oxide was obtained.

これらの酸化物は、複数の相からなる混合物であり、そ
の一つとして、La3Ba3Cu6014. +(L、
Er−RakhO他、 J、5olid 5tate 
Chew、、 37,151−156.1981)のよ
うなペロプスカイト型化合物を含む、この酸化物の抵抗
率の温度変化を調べたところ、Xが0.33(第2図の
lで示した組成)から0.82 (第2図の2で示した
組成)のl!Ii囲でTcが80に以上の超伝導性を示
すことがわかった。その1例として、Xが0.5の場合
を第1図に示す、第1因に示すようにこの物質は、Tc
が90にの超伝導性をもつ、これらの酸化物は、Tcが
80に以上と高いため冷却に液体ヘリウムより価格が1
0分の!安い液体窒素(沸点77に)が使用できる可能
性があり、また、合成法が単純で特性の再現性に優れる
という効果がある。
These oxides are mixtures of multiple phases, one of which is La3Ba3Cu6014. +(L,
Er-RakhO et al., J, 5olid 5tate
Chew, 37, 151-156.1981), we investigated the temperature change in the resistivity of this oxide, which contains a perovskite type compound such as ) to 0.82 (composition indicated by 2 in Figure 2) l! It was found that superconductivity with Tc of 80 or more was exhibited in the Ii range. As an example, the case where X is 0.5 is shown in Figure 1.As shown in the first factor, this substance has Tc
These oxides have a superconductivity of 90%, and their Tc is as high as 80%, making them cheaper than liquid helium for cooling.
0 minutes! There is a possibility that cheap liquid nitrogen (boiling point 77) can be used, and the synthesis method is simple and the reproducibility of characteristics is excellent.

[実施例2] Lu2(13、BaC03、CuOを試薬として(1−
x):3(l−に):5xのモル比で焼成用原料を秤量
、混合後、900@Cの温度において酸素中ないし空気
中で12時間焼成してLu−Ba−Cu−0酸化物を得
た。これらの酸化物も実施例1に示した酸化物と同様、
複数の相からなる混合物であるが、これらの酸化物の抵
抗率の温度変化を調べたところ、Xが0.29 (第2
図の3で示した組成)から0.5s (第2図の4で示
した組成)の1!囲でTcが80に以上の超伝導性を示
すことがわかった。
[Example 2] Using Lu2 (13, BaC03, CuO as a reagent (1-
After weighing and mixing the raw materials for firing at a molar ratio of x):3(l-):5x, they were fired at a temperature of 900@C in oxygen or air for 12 hours to form Lu-Ba-Cu-0 oxide. I got it. These oxides are similar to the oxides shown in Example 1,
Although it is a mixture consisting of multiple phases, when we investigated the temperature change in resistivity of these oxides, we found that X was 0.29 (second
(composition shown as 3 in the figure) to 0.5s (composition shown as 4 in Fig. 2) 1! It was found that the superconductivity with Tc of 80 or higher was observed.

[実施例3] Lu2O3、BaCO3、CuOを試薬として(1−x
):2x:2xのモル比で焼成用原料を秤量、混合後、
900・Cの温度において酸素中ないし空気中で12時
間焼成してLu−Ba−Cu−0酸化物を得た。これら
の酸化物も実施例1に示した酸化物と同様、複数の相か
らなる混合物であるが、これらの酸化物の抵抗率の温度
変化を調べたところ、Xが0.25 (第2図の6で示
した組成)から0.82 (第2図の6で示した組成)
のII II t’ Tcが80に以上の超伝導性を示
すことがわかった。
[Example 3] Using Lu2O3, BaCO3, and CuO as reagents (1-x
): 2x: After weighing and mixing the raw materials for firing at a molar ratio of 2x,
A Lu-Ba-Cu-0 oxide was obtained by firing in oxygen or air at a temperature of 900.degree. C. for 12 hours. Like the oxide shown in Example 1, these oxides are mixtures consisting of multiple phases, but when we investigated the temperature change in resistivity of these oxides, we found that X was 0.25 (Fig. 2). (composition shown in 6 in Figure 2) to 0.82 (composition shown in 6 in Figure 2)
It was found that the II II t' Tc of 80% or higher exhibits superconductivity.

[実施例4] Lu2O3、BaCO3、CuOを試薬として第2図の
lと4.4と2.2と6.6と3.3と6.6とlを結
んだ線で囲ま゛れる領域の組成をもつ焼成用原料を秤量
、混合後、900°Cの温度において酸素中ないし空気
中て12時間焼成して得た酸化物の抵抗率を調べたとこ
ろ、これらの酸化物もTcが80に以上の超伝導性をも
つことがわかった。
[Example 4] Using Lu2O3, BaCO3, and CuO as reagents, the area surrounded by the line connecting l, 4.4, 2.2, 6.6, 3.3, 6.6, and l in Fig. 2 was prepared. After weighing and mixing raw materials for firing having the same composition, we investigated the resistivity of the oxides obtained by firing them at a temperature of 900°C in oxygen or air for 12 hours, and found that these oxides also had a Tc of 80. It was found that it has superconductivity of

(発明の効果) 以上説明したようにLu−8a−Cu・0酸化物は、T
cが80に以上と高く、合成も容易で特性の再現性に優
れるため、超伝導材料として使用で寝る利点がある。
(Effect of the invention) As explained above, Lu-8a-Cu.0 oxide has T
It has a high c of 80 or more, is easy to synthesize, and has excellent reproducibility of properties, so it has the advantage of being used as a superconducting material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Lu2O3:8aCO3:CuO= 0.5
:l: 1(14,3:28.6:57.1)の組成を
もつ焼成物の抵抗率の温度変化を示す図である。 第2図は、Lu203−BaO−CuO3元系で超伝導
性を示す組成領域を示す図である。ここで、1.2.3
.4.5,6は、各々、Lu2O3:BaO:CuO=
 20:20:60、 4.7:42.9:52.4.
16.6:49.6:33.8.9.2:27.5:8
3.3.42.8:2B、6:2B、6.5.2:47
.4:47.4の組成を示す。 図面の浄書(内容に変更なし) 賀51 圀 Lα2θ。 峯2面
Figure 1 shows Lu2O3:8aCO3:CuO=0.5
FIG. 2 is a diagram showing a temperature change in resistivity of a fired product having a composition of :l: 1 (14, 3: 28.6: 57.1). FIG. 2 is a diagram showing a composition region exhibiting superconductivity in the Lu203-BaO-CuO ternary system. Here, 1.2.3
.. 4.5 and 6 are respectively Lu2O3:BaO:CuO=
20:20:60, 4.7:42.9:52.4.
16.6:49.6:33.8.9.2:27.5:8
3.3.42.8:2B, 6:2B, 6.5.2:47
.. 4:47.4. Engraving of drawings (no changes in content) Ka51 Kuni Lα2θ. Mine 2nd side

Claims (5)

【特許請求の範囲】[Claims] (1)Lu−Ba−Cu−Oからなる超伝導性物質。(1) A superconducting material consisting of Lu-Ba-Cu-O. (2)上記物質のうち、Lu_2O_3:BaO:Cu
O=(1−x):2x:2からなる組成において、xが
0.33から0.82の範囲で規定される特許請求の範
囲第1項記載の超伝導性物質。
(2) Among the above substances, Lu_2O_3:BaO:Cu
The superconducting material according to claim 1, wherein x is defined in the range of 0.33 to 0.82 in a composition consisting of O=(1-x):2x:2.
(3)上記物質のうち、Lu_2O_3:BaO:Cu
O=(1−x):3(1−x):5xからなる組成にお
いて、xが0.29から0.58の範囲で規定される特
許請求の範囲第1項記載の超伝導性物質。
(3) Among the above substances, Lu_2O_3:BaO:Cu
The superconducting material according to claim 1, wherein x is defined in the range of 0.29 to 0.58 in a composition consisting of O=(1-x):3(1-x):5x.
(4)上記物質のうち、Lu_2O_3:BaO:Cu
O=(1−x):2x:2xからなる組成において、x
が0.25から0.82の範囲で規定される特許請求の
範囲第1項記載の超伝導性物質。
(4) Among the above substances, Lu_2O_3:BaO:Cu
In the composition consisting of O=(1-x):2x:2x, x
The superconducting material according to claim 1, wherein the superconducting material is defined in the range of 0.25 to 0.82.
(5)上記物質のうち、Lu_2O_3−BaO−Cu
O系でLu_2O_3:BaO:CuO=20:20:
60、9.2:27.5:63.3、4.7:42.9
:52.4、5.2:47.4:47.4、16.6:
49.6:33.8、42.8:28.6:28.6で
示される組成を結んだ領域の中にある組成をもつ特許請
求の範囲第1項、第2項、第3項、第4項いずれか記載
の超伝導性物質。
(5) Among the above substances, Lu_2O_3-BaO-Cu
In O system, Lu_2O_3:BaO:CuO=20:20:
60, 9.2:27.5:63.3, 4.7:42.9
:52.4, 5.2:47.4:47.4, 16.6:
49.6:33.8, 42.8:28.6:28.6 having a composition within the region connecting the compositions shown in Claims 1, 2, and 3, The superconducting substance according to any of item 4.
JP62057369A 1987-03-12 1987-03-12 Superconductive material Pending JPS63225527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057369A JPS63225527A (en) 1987-03-12 1987-03-12 Superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057369A JPS63225527A (en) 1987-03-12 1987-03-12 Superconductive material

Publications (1)

Publication Number Publication Date
JPS63225527A true JPS63225527A (en) 1988-09-20

Family

ID=13053674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057369A Pending JPS63225527A (en) 1987-03-12 1987-03-12 Superconductive material

Country Status (1)

Country Link
JP (1) JPS63225527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230526A (en) * 1987-03-18 1988-09-27 Kazuo Fueki Compound superconductor and its manufacturing method
JPS643059A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPH01141819A (en) * 1987-10-05 1989-06-02 American Teleph & Telegr Co <Att> Superconductive material and method for its manu

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502903A (en) * 1987-01-12 1990-09-13 ユニヴァーシティ オヴ ヒューストン・ユニヴァーシティ パーク Superconductivity in rectangular planar compound systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502903A (en) * 1987-01-12 1990-09-13 ユニヴァーシティ オヴ ヒューストン・ユニヴァーシティ パーク Superconductivity in rectangular planar compound systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230526A (en) * 1987-03-18 1988-09-27 Kazuo Fueki Compound superconductor and its manufacturing method
JPS643059A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPH01141819A (en) * 1987-10-05 1989-06-02 American Teleph & Telegr Co <Att> Superconductive material and method for its manu

Similar Documents

Publication Publication Date Title
Presland et al. General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors
KR920005518B1 (en) Devices and systems based on superconducting material
Michel et al. Neutron diffraction structure determination of the “1212”-series TlBa2Ca1− xNdxCu2O7− δ
JPH0643268B2 (en) Oxide high temperature superconductor
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
Kawashima et al. New series of oxide superconductors, BSr2Can− 1CunO2n+ 3 (n= 3∼ 5), prepared at high pressure
EP0701980B1 (en) Oxide superconductor and method for manufacturing the same
CN1037796A (en) The new method and the new product that relate to yttrium-alkali soil-bismuth-Cu oxide
JPS63225527A (en) Superconductive material
US5446017A (en) Superconductive copper-containing oxide materials of the formula Ap Bq Cu2 O4±r
US5716907A (en) Rock-salt/infinite layer chlorine-containing oxide superconductor and manufacturing method of the same
JPS63225525A (en) Superconductive material
US6630425B1 (en) Devices and systems based on novel superconducting material
Subramanian et al. New oxide superconductors
JPS63225573A (en) Superconductive material
JPS63225526A (en) Super conductive material
CA1341237C (en) Superconducting metal oxide compositions and process for manufacture
Shrivastava Crystal structures of cuprate based superconducting materials
US5108986A (en) Substituted YiBa2 Cu3 oxide superconductor
US5599775A (en) (Hg Cu)Bg2 Ca2 Cu3 Oy oxide superconductor and method of preparing the same
Xianhui et al. (Bi, M) Sr 2 (R, Ce) n Cu 2 O y (M= Cu, Cd; R= Nd, Gd; n= 1, 2, and 3): A family of superconductors that exhibit superconductivity at T c≃ 20 K for n= 3 with double fluorite blocks and monolayer (Bi, M) O sheets
JP2778100B2 (en) Oxide superconducting material and method for producing the same
RU2111570C1 (en) High-temperature superconductor
CN1009139B (en) New Layered Copper Oxide Superconductors
JP2763075B2 (en) Oxide superconductor