JPS63215945A - Mixing ratio detector for fluid such as gasoline-alcohol - Google Patents
Mixing ratio detector for fluid such as gasoline-alcoholInfo
- Publication number
- JPS63215945A JPS63215945A JP4966687A JP4966687A JPS63215945A JP S63215945 A JPS63215945 A JP S63215945A JP 4966687 A JP4966687 A JP 4966687A JP 4966687 A JP4966687 A JP 4966687A JP S63215945 A JPS63215945 A JP S63215945A
- Authority
- JP
- Japan
- Prior art keywords
- light
- emitting element
- light emitting
- gasoline
- transparent body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 title claims description 14
- 239000000446 fuel Substances 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000003502 gasoline Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 239000005304 optical glass Substances 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 239000002828 fuel tank Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、外周側面を流体が流動する透光体に向けて
光を発し、全反射により通過する光層により透光体の流
体に対する屈折率が判定できることを適用した液体混合
比検出装置に係り、特には、発光素子の温度特性を補償
できるように改良したガソリン−アルコールなどの液体
混合比検出装置に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention emits light toward a transparent body through which a fluid flows on the outer peripheral side surface, and refracts the fluid against the transparent body by a light layer that passes through by total reflection. The present invention relates to a liquid mixture ratio detection device to which a ratio can be determined, and particularly to a liquid mixture ratio detection device for gasoline-alcohol, etc., which is improved so as to be able to compensate for the temperature characteristics of a light emitting element.
[従来の技術とその問題点]
例えば、自動型の内燃機関にあっては、近年では燃料に
ガソリンとアルコールとの混合流体を用いることが考え
られている。この混合燃料で良好な機関の出力を得るに
は、混合比を連続的に検知して、この情報を自動燃焼制
御装置にフィードバックして最適の点火時期を確保する
必要がある。[Prior art and its problems] For example, in automatic internal combustion engines, in recent years it has been considered to use a mixed fluid of gasoline and alcohol as fuel. In order to obtain good engine output with this mixed fuel, it is necessary to continuously sense the mixture ratio and feed this information back to the automatic combustion control system to ensure optimal ignition timing.
このため燃料の混合比検出装置が必要になっており、こ
の検出装置は、両端に発光素子および受光素子を配置し
た透光体を備え、この透光体の外周面に混合燃料を流動
させるように構成している。For this reason, a fuel mixture ratio detection device is required, and this detection device is equipped with a light-transmitting body with a light-emitting element and a light-receiving element arranged at both ends, and is designed to cause the mixed fuel to flow around the outer circumferential surface of the light-transmitting body. It is composed of
そして、発光素子により透光体に向けて光を発し、全反
射により通過する光を受光素子が受け、この素子から発
生する出力を検知している。この出力の何如により透光
体の混合燃料に対する屈折率を測定し、この屈折率に基
づいて燃料の混合比を算出している。Then, the light emitting element emits light toward the transparent body, and the light receiving element receives the light that passes through total reflection, and detects the output generated from this element. The refractive index of the transparent body with respect to the mixed fuel is measured based on this output, and the fuel mixture ratio is calculated based on this refractive index.
ところで、センサの主要構成要素である受光素子および
発光素子の光電特性は、センサの配置された環lI湿温
度変動に伴い変化し、また、混合液との接触面における
透光体の臨界角(屈折率)も温度変動につれて変化する
ので、何らかの温度補償手段を講じないと、センサに高
い計測精度を維持できなくなる恐れがある。したがって
、近年では、比較的簡素な構成で温度補償機能を付与で
きるセンサの登場が期待されている。、
[発明の目的]
この発明は上記の事情に応えて成されたもので、その目
的は比較的簡素な構成で発光素子の温度補償が実現でき
て高い測定N度が維持され、コスト的に有利で全体の小
型化に繋がるといった優れた効果を有するガソリン−ア
ルコールなどの液体混合比検出装置を提供するにある。By the way, the photoelectric characteristics of the light-receiving element and the light-emitting element, which are the main components of the sensor, change with changes in the humidity and temperature of the ring in which the sensor is arranged, and the critical angle ( Since the refractive index (refractive index) also changes with temperature fluctuations, there is a risk that the sensor will not be able to maintain high measurement accuracy unless some kind of temperature compensation means is taken. Therefore, in recent years, it is expected that a sensor that can provide a temperature compensation function with a relatively simple configuration will appear. , [Object of the Invention] This invention was made in response to the above-mentioned circumstances, and its purpose is to realize temperature compensation of a light emitting element with a relatively simple configuration, maintain a high measurement N degree, and reduce cost. It is an object of the present invention to provide a device for detecting a mixture ratio of liquids such as gasoline and alcohol, which has an excellent effect of being advantageous and leading to miniaturization of the whole.
[問題点を解決するための手段]
この発明は、外周面に互いに異種類から成る混合流体を
接触状態に流動させた棒状の透光体と、この透光体の−
・端部から軸方向に入射させる光を発生する発光素子と
、前記混合流体に対する前記透光体の屈折率により該混
合流体の混合比を測定すべく前記発光素子からの光のう
ち前記透光体の内側面で全反射する光を受けて出力する
受光素子とを備え、前記発光素子を演算増幅器の出力端
子に接続するとともに、前記発光素子の温度特性を補う
ための電気抵抗体を該発光素子と直列に接続した構成を
採用している。[Means for Solving the Problems] The present invention provides a rod-shaped transparent body in which mixed fluids of different types are made to flow in contact with each other on its outer peripheral surface, and a light-transmitting body of this transparent body.
- A light emitting element that generates light incident in the axial direction from an end, and a light transmitting element among the light from the light emitting element in order to measure the mixing ratio of the mixed fluid based on the refractive index of the transparent body with respect to the mixed fluid. a light receiving element that receives and outputs light that is totally reflected on the inner surface of the body; the light emitting element is connected to an output terminal of an operational amplifier; and an electric resistor for compensating for the temperature characteristics of the light emitting element is connected to the light emitting element. A configuration in which the device is connected in series is adopted.
[作用および発明の効果]
上記のように構成されたこの発明によれば、発光素子を
演算増幅器の出力端子に接続するとともに、発光素子の
温度特性を補うための電気抵抗体を発光素子と直列に接
続することにより発光素子の温度補償機能が発揮されて
高い測定精度が維持され、しかも発光素子を演算素子に
接続するといった比較的簡素な構成で済みコスト的に有
利で全体の小型化に繋がるといった優れた効果を有する
ものである。[Operation and Effects of the Invention] According to the invention configured as described above, the light emitting element is connected to the output terminal of the operational amplifier, and an electric resistor for compensating for the temperature characteristics of the light emitting element is connected in series with the light emitting element. By connecting the light emitting element to the arithmetic element, the temperature compensation function of the light emitting element is exerted and high measurement accuracy is maintained.Moreover, it requires a relatively simple configuration of connecting the light emitting element to the arithmetic element, which is advantageous in terms of cost and leads to overall miniaturization. It has such excellent effects.
[実施例]
以下この発明を自動車の内燃機関に適用した一実施例を
図面を参照して説明する。[Embodiment] An embodiment in which the present invention is applied to an internal combustion engine of an automobile will be described below with reference to the drawings.
先f1第1図において、1は屈折率検出用のセンサで、
これは円筒状のボビン2を備え、ボビン2内には、光学
ガラスから成る棒状の透光体3を0−リング4.5を介
して液密に嵌合している。f1 In FIG. 1, 1 is a sensor for detecting the refractive index,
This includes a cylindrical bobbin 2, into which a rod-shaped transparent body 3 made of optical glass is fitted liquid-tightly via an O-ring 4.5.
ボビン2の内周面には、この内周面に窪み2aを形成す
ることにより透光体3の外側面を囲繞するようにして環
状中+ff16が形成されている。また、ボビン2の外
側面には、出ロ用ロ体7および入ロ用ロ体8が環状空間
6にそれぞれ連通するように立設されている。ボビン2
の上端開口部には、発光素子9を有するキャップ10が
嵌め込まれ、この状態で発光素子9は透光体3の上端面
中央に対向する。また、ボビン2の下端開口部には、ガ
ラス製の窓11を有するケース12が嵌合され、窓11
は透光体3の下端面に近接状態に対向している。このケ
ース12は内部に窒素ガスなどが封入された密閉構造を
成し、ガラス窓11と平行状態に薄肉な基板13を配設
している。この状態で基板13上には、シリコンの半導
体から成る平板状の受光素子14が透光体3の下端面に
対向するように設けられている。An annular center +ff16 is formed on the inner peripheral surface of the bobbin 2 so as to surround the outer surface of the transparent body 3 by forming a recess 2a in the inner peripheral surface. Further, on the outer surface of the bobbin 2, an ejection roller body 7 and an input roller body 8 are erected so as to communicate with the annular space 6, respectively. Bobbin 2
A cap 10 having a light emitting element 9 is fitted into the upper end opening, and in this state, the light emitting element 9 faces the center of the upper end surface of the transparent body 3. Further, a case 12 having a glass window 11 is fitted into the lower end opening of the bobbin 2.
is opposed to the lower end surface of the transparent body 3 in a close state. The case 12 has a sealed structure in which nitrogen gas or the like is sealed, and a thin substrate 13 is disposed parallel to the glass window 11. In this state, a flat light receiving element 14 made of a silicon semiconductor is provided on the substrate 13 so as to face the lower end surface of the transparent body 3 .
このように構成されたセンサ1は後述する第3図の電子
式燃料噴射装置において燃料タンク20とプレッシャレ
ギル−タ23とを連結するバイブ23aに入ロ用ロ体8
および出ロ用ロ体7を介して取り付けられている。この
状態では、ガソリンとアルコールとの混合燃料がパイプ
23aから環状空間6内に入り透光体3の外側面に接触
している。The sensor 1 configured as described above is used as an inlet body 8 for a vibrator 23a connecting a fuel tank 20 and a pressure regulator 23 in an electronic fuel injection system shown in FIG. 3, which will be described later.
and is attached via an ejection roller body 7. In this state, the mixed fuel of gasoline and alcohol enters the annular space 6 from the pipe 23a and contacts the outer surface of the transparent body 3.
つぎに、第2図において、発光素子9が組込まれた温度
補償用の電気回路りについて述べる。Next, referring to FIG. 2, an electric circuit for temperature compensation in which the light emitting element 9 is incorporated will be described.
演算増幅器100は、蓄電池Bを電源とするとともに、
発光素子9を出力端子100bに接続している。そして
、電圧降下用の電気抵抗体101を発光素子9に直列に
接続している。非反転入力端子100aには蓄電池Bを
抵抗にて分圧した電圧を印加し、反転入力1oocは出
力端子100bに接続している。The operational amplifier 100 uses the storage battery B as a power source, and
The light emitting element 9 is connected to the output terminal 100b. An electric resistor 101 for voltage drop is connected in series to the light emitting element 9. A voltage obtained by dividing the storage battery B using a resistor is applied to the non-inverting input terminal 100a, and the inverting input 1ooc is connected to the output terminal 100b.
つぎに、第3図は、このセンサ1を適用した電子式燃料
噴射装置が組み込まれた自動車用エンジンの作動制御シ
ステム図である。この第3図において、37はエンジン
シリンダ、50はエンジンのキースイッチ、51は制御
回路、55は電源としての蓄電池、20は燃料タンクで
ある。21は燃料ポンプ、23は燃料タンク20からパ
イプ23aを介して接続されたプレッシャレギュレータ
で、パイプ23a内には、本発明に係かるセンサ1が設
けられている。24はインジェクタ、26はコールドス
タートインジェクタ、25はイグニシ]ンコイル、30
はエアクリーナ、31はエアバルブ、32はエアフロー
メータ、33はスロットルバルブ、34はスロットルバ
ルブポジションセンサ、35は吸気管、36は排気管で
ある。また、52は酸素センサ、53はエンジン冷却水
温センサである。Next, FIG. 3 is a diagram of an operation control system of an automobile engine incorporating an electronic fuel injection device to which this sensor 1 is applied. In FIG. 3, 37 is an engine cylinder, 50 is an engine key switch, 51 is a control circuit, 55 is a storage battery as a power source, and 20 is a fuel tank. 21 is a fuel pump, 23 is a pressure regulator connected to the fuel tank 20 via a pipe 23a, and the sensor 1 according to the present invention is provided in the pipe 23a. 24 is an injector, 26 is a cold start injector, 25 is an ignition coil, 30
31 is an air cleaner, 31 is an air valve, 32 is an air flow meter, 33 is a throttle valve, 34 is a throttle valve position sensor, 35 is an intake pipe, and 36 is an exhaust pipe. Further, 52 is an oxygen sensor, and 53 is an engine coolant temperature sensor.
つぎに、上記の構成をセンサ1の作動とともに説明する
。Next, the above configuration will be explained along with the operation of the sensor 1.
キースイッチ50の操作に伴いエンジンが起動し、制御
回路51に給電される。これに伴い燃料タンク20内の
ガソリンとアルコールとの混合燃料が燃料ポンプ21に
より燃料配管22を介してインジェクタ24に供給され
る。インジェクタ24は、制御回路51によりエンジン
の運転条件などに最適となるように計算された時期およ
び量で吸気管35内に噴射する。When the key switch 50 is operated, the engine is started and power is supplied to the control circuit 51. Accordingly, the mixed fuel of gasoline and alcohol in the fuel tank 20 is supplied to the injector 24 via the fuel pipe 22 by the fuel pump 21. The injector 24 injects into the intake pipe 35 at a time and in an amount calculated by the control circuit 51 to be optimal for the operating conditions of the engine.
一方、センサ1においては、蓄電池Bから演算増幅器1
00(電圧が印加され、増幅された電圧が出力端子n、
+aを介して発光素子9に与えられて発光素子9が光を
発する。このような発光素子9からの光のうち、第1図
に示すように透光体3に指向し、その内周側面で全反射
した光は透光体3を軸方向に通過してガラス窓11を介
して受光素子14に入射する。On the other hand, in sensor 1, from storage battery B to operational amplifier 1
00 (voltage is applied and the amplified voltage is output terminal n,
+a to the light emitting element 9, and the light emitting element 9 emits light. Of the light emitted from the light emitting element 9, as shown in FIG. The light enters the light receiving element 14 via the light receiving element 11 .
このとき、透光体3の外周面にはガソリンとアルコール
との混合燃料が接触状態に流動しており、ガソリンとア
ルコールとの混合比が変動する毎に、混合燃料の屈折率
が変化するため透光体3に対する発光素子9からの光の
臨界角が変る。そして、屈折率の変化からガソリンとア
ルコールとの混合比と受光素子14に入射する光量との
関係があらかじめ用意されて、これらのデータが制御回
路51に入力されている。At this time, the mixed fuel of gasoline and alcohol is flowing in contact with the outer peripheral surface of the transparent body 3, and the refractive index of the mixed fuel changes every time the mixing ratio of gasoline and alcohol changes. The critical angle of light from the light emitting element 9 with respect to the transparent body 3 changes. The relationship between the mixture ratio of gasoline and alcohol and the amount of light incident on the light receiving element 14 is prepared in advance from the change in the refractive index, and these data are input to the control circuit 51.
しかして、受光素子14に入射した光は電流に変換され
て演算増幅器(図示せず)から入力部51aを介して制
御回路51に供給される。この出力の大きさにより制御
回路51がインジェクタ24に対する最適の噴射量およ
び最適の噴射時期を計算してエンジンの出力を良好に維
持するものである。Thus, the light incident on the light receiving element 14 is converted into a current and supplied from an operational amplifier (not shown) to the control circuit 51 via the input section 51a. Based on the magnitude of this output, the control circuit 51 calculates the optimal injection amount and optimal injection timing for the injector 24 to maintain a good engine output.
ところで、発光素子9および受光素子14の光電特性は
、センサ1の配置された環境温度の変動に伴い変化し、
また、混合液との接触面における透光体3の臨界角(屈
折率)も温度変動につれて変化するので、何らかの温度
補償手段を講じないと、センサ1に高い副側精度を維持
できなくなる恐れがある。By the way, the photoelectric characteristics of the light emitting element 9 and the light receiving element 14 change with fluctuations in the environmental temperature in which the sensor 1 is placed.
In addition, the critical angle (refractive index) of the transparent body 3 at the surface in contact with the mixed liquid changes as the temperature changes, so unless some kind of temperature compensation measure is taken, there is a risk that the sensor 1 will not be able to maintain high side accuracy. be.
この対策のため上記の構成によれば、発光素子9を温度
補償回路りに組込んだので、発光素子9および受光素子
14の光電特性、および混合液の屈折率が周囲温度の上
昇にともなって変動し、結果的にセンサ1の出力が図4
に示すように下降する事情にあっても、発光素子9の電
圧降下(VLED)が図5に示すように下降するため、
発光素子9および電気抵抗体101を流れる電流Iによ
る電気抵抗体101に生じる電圧降下(Vd )は第6
図に示す如く増加するように制御されるので電流Iは増
加し、発光素子9、受光素子14の光電特性および混合
液の屈折率の変動が第7図に示すように補償される。こ
のため周囲温度の変動に略関係無く、センサ1の正確な
計測精度の維持に寄与することができるものである。As a countermeasure against this, according to the above configuration, the light emitting element 9 is incorporated into the temperature compensation circuit, so that the photoelectric characteristics of the light emitting element 9 and the light receiving element 14 and the refractive index of the mixed liquid change as the ambient temperature rises. As a result, the output of sensor 1 is as shown in Figure 4.
Even if the voltage drops as shown in FIG. 5, the voltage drop of the light emitting element 9 (VLED) falls as shown in FIG.
The voltage drop (Vd) generated in the electrical resistor 101 due to the current I flowing through the light emitting element 9 and the electrical resistor 101 is the sixth
Since the current I is controlled to increase as shown in the figure, the current I increases, and the fluctuations in the photoelectric characteristics of the light emitting element 9 and the light receiving element 14 and the refractive index of the mixed liquid are compensated for as shown in FIG. Therefore, it is possible to contribute to maintaining accurate measurement accuracy of the sensor 1 almost regardless of fluctuations in ambient temperature.
それでいながら、湿度補償回路りおいては、演算増幅器
100を設け、発光素子9に電気抵抗体101を直列接
続するといった簡素な構成で済み、全体の構造が大型に
ならずコンパクトにでき、コスト的にも有利である。However, the humidity compensation circuit requires a simple configuration such as providing an operational amplifier 100 and connecting an electric resistor 101 in series to the light emitting element 9, and the overall structure does not become large and can be made compact, reducing costs. It is also advantageous.
なお、透光体3の両側に受光素子14および発光素子9
がそれぞれ配置されたものだけに限定されず、透光体の
一方の端面だけに受光素子および発光素子を配置したも
のにも適用できる。Note that a light receiving element 14 and a light emitting element 9 are provided on both sides of the transparent body 3.
The present invention is not limited to those in which the light-receiving element and the light-emitting element are arranged only on one end surface of the light-transmitting body.
さらには、ガソリンとアルコールとの混合燃料のみに限
定されず、混合比に代って成分の濃淡を問う他の流体に
も適用できる。この場合には、自動車エンジンに代って
、食品工業界にて、食品や動物の飼料の製造工程で食塩
や砂糖の濃度を連続監視するシステムに適用できるもの
である。Furthermore, the present invention is not limited to mixed fuels of gasoline and alcohol, but can also be applied to other fluids in which the concentration of components is considered instead of the mixing ratio. In this case, it can be applied to systems that continuously monitor the concentration of salt and sugar in the food and animal feed manufacturing process in the food industry instead of automobile engines.
その他、具体的な実施にあたっては、この発明の要旨を
逸脱しない範囲で種々変更できる。In addition, various changes can be made in the specific implementation without departing from the gist of the invention.
第1図はパイプとともに示すセンサの縦断面図、第2図
は温度補償回路の電気結線図、第3図は自動車エンジン
における電子式燃料噴射装置の作動制御システム図、第
4図は電圧が温度上昇とともに変化する様子を示すグラ
フ、第5図は発光素子の電圧降下が温度の上野とともに
変化する様子を示すグラフ、第6図は電気抵抗体による
電圧降下を発光素子の電圧降下で制御する様子を示すグ
ラフ、第7図は屈折率が温度変化につれて補償される様
子を示すグラフである。
図中 1・・・センサ −2・・・ケース 9・・・
発光素子 14・・・受光素子 3・・・透光体 D・
・・温度補償回路 101・・・電気抵抗体 100・
・・演算増幅器Figure 1 is a vertical cross-sectional view of the sensor shown together with the pipe, Figure 2 is an electrical wiring diagram of the temperature compensation circuit, Figure 3 is a diagram of the operation control system of an electronic fuel injection device in an automobile engine, and Figure 4 is a diagram showing the voltage and temperature. A graph showing how the voltage drop of the light emitting element changes as the temperature rises. Figure 5 is a graph showing how the voltage drop of the light emitting element changes with the temperature. Figure 6 shows how the voltage drop due to the electric resistor is controlled by the voltage drop of the light emitting element. FIG. 7 is a graph showing how the refractive index is compensated as the temperature changes. In the diagram 1...Sensor -2...Case 9...
Light emitting element 14... Light receiving element 3... Translucent body D.
・・Temperature compensation circuit 101 ・・Electric resistor 100・
・Operation amplifier
Claims (1)
に流動させた棒状の透光体と、 この透光体の一端部から軸方向に入射させる光を発生す
る発光素子と、 前記混合流体に対する前記透光体の屈折率により該混合
流体の混合比を測定すべく前記発光素子からの光のうち
前記透光体の内側面で全反射する光を受けて出力する受
光素子とを備え、 前記発光素子を演算増幅器の出力端子に接続するととも
に、前記発光素子の温度特性を補うための電気抵抗体を
該発光素子と直列に接続し、一定電圧を印加したことを
特徴とするガソリン−アルコールなどの流体混合比検出
装置。 2)前記流体は内燃機関の燃料であり、ガソリンとアル
コールから成ることを特徴とする特許請求の範囲第1項
に記載のガソリン−アルコールなどの流体混合比検出装
置。 3)前記透光体は円柱状の光学ガラスから成っているこ
とを特徴とする特許請求の範囲第1項に記載のガソリン
−アルコールなどの液体混合比検出装置。[Scope of Claims] 1) A rod-shaped transparent body in which mixed fluids of different types are made to flow in contact with each other on the outer peripheral surface, and a light emitting device that generates light that is incident in the axial direction from one end of the transparent body. receiving and outputting light from the light emitting element that is totally reflected on the inner surface of the transparent body in order to measure the mixing ratio of the mixed fluid based on the refractive index of the transparent body with respect to the mixed fluid; a light-receiving element, the light-emitting element is connected to an output terminal of an operational amplifier, an electric resistor for compensating for the temperature characteristics of the light-emitting element is connected in series with the light-emitting element, and a constant voltage is applied. Features: A device for detecting fluid mixture ratios such as gasoline and alcohol. 2) The device for detecting a mixture ratio of a fluid such as gasoline and alcohol according to claim 1, wherein the fluid is a fuel for an internal combustion engine and is composed of gasoline and alcohol. 3) The device for detecting a mixture ratio of a liquid such as gasoline and alcohol according to claim 1, wherein the transparent body is made of cylindrical optical glass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4966687A JPS63215945A (en) | 1987-03-04 | 1987-03-04 | Mixing ratio detector for fluid such as gasoline-alcohol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4966687A JPS63215945A (en) | 1987-03-04 | 1987-03-04 | Mixing ratio detector for fluid such as gasoline-alcohol |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63215945A true JPS63215945A (en) | 1988-09-08 |
Family
ID=12837494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4966687A Pending JPS63215945A (en) | 1987-03-04 | 1987-03-04 | Mixing ratio detector for fluid such as gasoline-alcohol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63215945A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018119896A (en) * | 2017-01-27 | 2018-08-02 | 大陽日酸株式会社 | Liquid level measurement method |
-
1987
- 1987-03-04 JP JP4966687A patent/JPS63215945A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018119896A (en) * | 2017-01-27 | 2018-08-02 | 大陽日酸株式会社 | Liquid level measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4770129A (en) | Sensor for mixing ratio of gasoline and alcohol | |
US20080246955A1 (en) | Method of detecting alcohol concentration and alcohol concentration detecting apparatus | |
US8089629B2 (en) | Fuel property detection apparatus | |
US4895444A (en) | Detector device for mixing ratio for gasoline and alcohol or the like | |
JPH01257245A (en) | Measuring apparatus for mixing ratio of fuel for internal combustion engine | |
JPH04169839A (en) | Alcohol-content detecting apparatus | |
JPS63215945A (en) | Mixing ratio detector for fluid such as gasoline-alcohol | |
JPS6291840A (en) | Fuel property detector | |
JP2008281546A (en) | Liquid fuel property detection method and liquid fuel property detection device used therefor | |
EP0281337B1 (en) | A detector device for mixing ratio for petrol and alcohol or the like | |
JPH01263536A (en) | Apparatus of detecting content ratio of alcohol | |
US4912319A (en) | Detector device for mixing ratio for gasoline and alcohol or the like | |
JPS63210647A (en) | Mixing ratio detector for fluid such as gasoline-alcohol | |
US4095462A (en) | Device for detecting the air-fuel ratio of an internal combustion engine | |
JPS62127646A (en) | Sensor for gasoline-alcohol mixture ratio | |
JPS62180244A (en) | Mixing ratio sensor for alcohol mixed fuel | |
JPH0247487Y2 (en) | ||
JPS63287540A (en) | Detector for fluid mixing ratio of alcohols | |
JPH01207647A (en) | Detecting device for liquid mixing ratio of gasoline and alcohol or the like | |
JPS62180245A (en) | Mixing ratio sensor for alcohol mixed liquid | |
JPS62127647A (en) | Sensor for gasoline-alcohol mixture ratio | |
JPH0452679Y2 (en) | ||
EP0433080B1 (en) | Apparatus for measuring the mix ratio of a composite liquid | |
JPH01196542A (en) | Fluid mixing ratio detector for gasoline/alcohol or the like | |
JPH01262442A (en) | Alcohol content detector |