[go: up one dir, main page]

JPH01263536A - Apparatus of detecting content ratio of alcohol - Google Patents

Apparatus of detecting content ratio of alcohol

Info

Publication number
JPH01263536A
JPH01263536A JP63093938A JP9393888A JPH01263536A JP H01263536 A JPH01263536 A JP H01263536A JP 63093938 A JP63093938 A JP 63093938A JP 9393888 A JP9393888 A JP 9393888A JP H01263536 A JPH01263536 A JP H01263536A
Authority
JP
Japan
Prior art keywords
light
fuel
refraction
incident
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63093938A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Suzuki
鈴木 尋善
Kenji Ogawa
賢二 小河
Hiroko Maekawa
前川 ひろ子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63093938A priority Critical patent/JPH01263536A/en
Priority to US07/327,059 priority patent/US5015091A/en
Priority to EP89105249A priority patent/EP0337173B1/en
Priority to DE89105249T priority patent/DE68907766T2/en
Priority to KR1019890003972A priority patent/KR910004217B1/en
Publication of JPH01263536A publication Critical patent/JPH01263536A/en
Priority to US07/644,769 priority patent/US5074659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the precise detection of the content ratio of alcohol, by providing a light-emitting element and a one-dimensional light position detecting element at one end of a light-transmitting body and by providing a plane of refraction with fuel and a plane of reflection at the other end thereof. CONSTITUTION:A light-emitting element 4 provided at one end of a light-transmitting body 1 is driven 101 to emit a light, and an emission light 14 thereof is made to be incident at an incident angle psi at a point P0 on a plane 15 of refraction at the other end of the light-transmitting body 1 through a stop 12 and a lens 13. Since this plane 15 of refraction is in contact with fuel flowing in from a fuel inlet 17, the incident light 14 is refracted at an angle chi of refraction at the point P0 due to a difference in a refractive index between the fuel and the light-transmitting body 1. Next, the refracted light is transmitted through the fuel, reflected at a point P1 on a plane 11 of reflection, refracted again into the light-transmitting body 1 at a point P2 on the plane 15 of refraction in accordance with the relation formula between the incident angle psi and the angle chi of refraction, and made to be incident on a semiconductor position detecting element 16. Then, photocurrents i1 and i2 from electrodes I1 and I2 of the element 16 are inputted to a detecting circuit 10, amplified 102 and added up 103 thereafter, and the current i2 is divided 104 by an addition value and outputted as a voltage Vout corresponding to a position signal.

Description

【発明の詳細な説明】 〔産業上の利用分計〕 この発明は、燃焼器等に供給される燃料の性状を非接触
で判別する装置で、特に自動車等エンジンに用いられる
アルコール混合!D中のアルコール含有率を測定する装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Meter] This invention is a device that non-contactly determines the properties of fuel supplied to a combustor, etc. Especially for alcohol mixtures used in engines such as automobiles. This invention relates to a device for measuring the alcohol content in D.

〔従来の技術〕[Conventional technology]

近年、米国や欧州等の各国で石油の消費量の低減化を図
るため、ガソリン中にアルコールを混合した燃料が自動
車用として普及しつつある。このようなアルコール混合
燃料をガソリン燃料の空燃比にマツチングされたエンジ
ンにそのまま用いると、アルコールがガソリンに比べ理
論空燃比が小さい等に起因して空燃比がリーン化するた
め、アルコール混合燃料中のアルコール含有率を検出し
て燃料噴射弁等のアクチュエータを制御し、アルコール
含有率に応じて空燃比、点火時期等をyi整する。従来
、上記のようなアルコール含有率検知装置としては、例
えば特開昭57−51920号公報に記載されたものが
知られている。この装置を第7図、第8図について説明
する。第7図は従来のアルコール含有率検知装置を備え
た燃料制御系の構成図であって、Aはアルコール含有率
検知装置、20はエンジン、21は燃料噴射弁、22は
燃料タンク、23は燃料ポンプで、燃料供給パイプ24
を介して高圧フィルタ25に接続されている。26は上
記燃料噴射弁21の燃料分配管、27は燃圧レギュレー
タで、燃料リターンパイプ28が燃料タンク22に導か
れている。29は空燃比センサ、30は点火プラグ、3
1はエンジン回転センサ、32は吸気圧センサ、33は
スロットル弁、34はエアクリーナである。35は制御
装置であって、アルコール含有率検知装置Aの信号、空
燃比センサ29の信号、エンジンの状態量であるエンジ
ン回転センサ31および吸気圧センサ32等の信号が入
力され、入力に応じた割部量で燃料噴射弁21、点火プ
ラグ30を駆動する。
In recent years, in order to reduce petroleum consumption in countries such as the United States and Europe, fuel made by mixing alcohol with gasoline has become popular for use in automobiles. If such an alcohol-mixed fuel is used as is in an engine that has been matched to the air-fuel ratio of gasoline, the air-fuel ratio will become lean due to the fact that the stoichiometric air-fuel ratio of alcohol is smaller than that of gasoline. The alcohol content rate is detected to control actuators such as fuel injection valves, and the air-fuel ratio, ignition timing, etc. are adjusted according to the alcohol content rate. Conventionally, as an alcohol content detection device as described above, the one described in, for example, Japanese Unexamined Patent Publication No. 57-51920 is known. This apparatus will be explained with reference to FIGS. 7 and 8. FIG. 7 is a configuration diagram of a fuel control system equipped with a conventional alcohol content detection device, where A is the alcohol content detection device, 20 is the engine, 21 is the fuel injection valve, 22 is the fuel tank, and 23 is the fuel. With the pump, fuel supply pipe 24
The high pressure filter 25 is connected to the high pressure filter 25 via the high pressure filter 25. 26 is a fuel distribution pipe for the fuel injection valve 21, 27 is a fuel pressure regulator, and a fuel return pipe 28 is led to the fuel tank 22. 29 is an air-fuel ratio sensor, 30 is a spark plug, 3
1 is an engine rotation sensor, 32 is an intake pressure sensor, 33 is a throttle valve, and 34 is an air cleaner. Reference numeral 35 denotes a control device into which signals from the alcohol content detection device A, signals from the air-fuel ratio sensor 29, and signals from the engine rotation sensor 31 and intake pressure sensor 32, which are state variables of the engine, are input, and the control device controls the control device according to the inputs. The fuel injection valve 21 and the spark plug 30 are driven by the divided amount.

燃料タンク22にアルコール混合燃料が給油されると、
エンジンの始動と共に、アルコール混合燃料はポンプ2
3で加圧され燃料供給バイブ24、高圧フィルタ25全
通してアルコール含有率検知装置Aに導かれてアルコー
ル含有率が測定される。
When the fuel tank 22 is filled with alcohol mixed fuel,
When the engine starts, alcohol mixed fuel is pumped to pump 2.
3, and is led to the alcohol content detection device A through the fuel supply vibrator 24 and the high pressure filter 25, where the alcohol content is measured.

その後、燃料は分配管26に流入し、一部が燃料噴射弁
21よりエンジンに供給され、他は燃圧レギュレータ2
7、燃料リターンパイプ28を通ってタンク22へ戻さ
れる。燃圧レギュレータ27は燃料噴射弁21の噴射燃
料量に関らず、分配管26までの圧力を常に一定値に保
持する。アルコール含有率検知装置Aで測定されたアル
コール含有率が制御装置35に入力されると、制御装置
35はエンジン回転センサ31および吸気圧センサ32
等の信号によりエンジン状態を判定し、噴射弁21の開
弁時間を制御してエンジンに供給する燃料量を変化させ
、空燃比センサ29により空燃比を検出して上記エンジ
ン状態に応じた目標値となるよう空燃比をフィードバッ
ク制御し、また、エンジン状態に応じて点火プラグ30
の点火時期を制御している。
Thereafter, the fuel flows into the distribution pipe 26, a part of which is supplied to the engine through the fuel injection valve 21, and the rest is supplied to the engine through the fuel pressure regulator 2.
7. The fuel is returned to the tank 22 through the fuel return pipe 28. The fuel pressure regulator 27 always maintains the pressure up to the distribution pipe 26 at a constant value, regardless of the amount of fuel injected by the fuel injection valve 21. When the alcohol content measured by the alcohol content detection device A is input to the control device 35, the control device 35 detects the engine rotation sensor 31 and the intake pressure sensor 32.
The engine condition is determined based on signals such as the above, the opening time of the injection valve 21 is controlled to change the amount of fuel supplied to the engine, the air-fuel ratio is detected by the air-fuel ratio sensor 29, and the target value is determined according to the engine condition. The air-fuel ratio is feedback-controlled so that the spark plug 30 is adjusted according to the engine condition.
controls the ignition timing of the

第8図は上記アルコール含有率検知装置Aの詳細な断面
図を示し、1は光学ガラス等で形成された円柱状の透光
体、2はケース、3は透光体1とケース2間の燃料シー
ル、4はLEDなとの発光素子、5はフォトダイオード
からなる受光素子、6は燃料室、6aは燃料入口、6b
は燃料出口である。7aは全反射光、7bは屈折光、1
0は発光素子4を駆動し受光素子5の受光量を測定する
検知回路である。透光体1の外周面は燃料室6で燃料と
均一に接している。発光素子4より発しな光は透光体1
の外周面、すなわち燃料との境界面への入射角が全反射
角φ=arcSIN (Nf/Nd)以上の光7aは全
反射されて受光素子5に達し、入射角が全反射角ψより
小さい光7bは燃料中に屈折透過するため、受光素子5
は境界面への入射角が全反射角ψ以上となる光のみを受
光する。燃料中のアルコール含有率が変化すると、燃料
の屈折率Nfが変化し全反射角φが変わるため、受光素
子5の受光量が変化する。この受光量の変化を検知回路
10で測定することにより燃料中のアルコール含有率が
求められる。
FIG. 8 shows a detailed sectional view of the alcohol content detection device A, in which 1 is a cylindrical transparent body made of optical glass or the like, 2 is a case, and 3 is a space between transparent body 1 and case 2. Fuel seal, 4 is a light emitting element such as an LED, 5 is a light receiving element consisting of a photodiode, 6 is a fuel chamber, 6a is a fuel inlet, 6b
is the fuel outlet. 7a is totally reflected light, 7b is refracted light, 1
0 is a detection circuit that drives the light emitting element 4 and measures the amount of light received by the light receiving element 5. The outer peripheral surface of the transparent body 1 is in uniform contact with the fuel in the fuel chamber 6. The light emitted from the light emitting element 4 is transmitted through the transparent body 1.
The light 7a whose incidence angle on the outer circumferential surface of Since the light 7b is refracted and transmitted through the fuel, the light receiving element 5
receives only light whose incident angle on the boundary surface is greater than or equal to the total reflection angle ψ. When the alcohol content in the fuel changes, the refractive index Nf of the fuel changes and the total reflection angle φ changes, so the amount of light received by the light receiving element 5 changes. By measuring this change in the amount of light received by the detection circuit 10, the alcohol content in the fuel can be determined.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、かかる従来のアルコール含有率検知装置
においては、発光素子4の発光量、受光素子5の受光感
度、ピーク感度周波数が温度により変化するため、エン
ジンの発熱、それによる燃料温度の上昇等で検知装置の
温度が変わると受光素子5の受光量も変化し、燃料中の
アルコール含有率が正確に求められないといった欠点が
あった。
However, in such a conventional alcohol content detection device, the amount of light emitted by the light emitting element 4, the light receiving sensitivity of the light receiving element 5, and the peak sensitivity frequency change depending on the temperature, so detection is detected based on engine heat generation and the resulting rise in fuel temperature. When the temperature of the device changes, the amount of light received by the light-receiving element 5 also changes, and the alcohol content in the fuel cannot be determined accurately.

また、一般に透光体1の屈折率Ndの制約より全反射角
ψが余り小さく出来ないため、透光体1をあまり短くで
きず、装置を小形化できないという問題点があった。こ
れらの理由により、従来のアルコール含有率検知装置は
エンジンと離間させて設置せざるを得ないため、特にエ
ンジン始動の際等、実際に燃料噴射弁21より噴射され
る燃料のアルコール含有率を遅滞なく検出することが不
可能であり、特にアルコール含有率の異なる燃料の給油
後のエンジン始動の際等においては、アルコール含有率
検知装置Aの燃料室6と燃料分配管26内のアルコール
含有率に差がでる始動モードも予想され、かかる場合に
は最悪エンジンが始動できないという不具合が出現する
ことも予想される。
Furthermore, because the angle of total reflection ψ cannot generally be made too small due to the restriction of the refractive index Nd of the light-transmitting body 1, there is a problem that the light-transmitting body 1 cannot be made very short and the device cannot be miniaturized. For these reasons, conventional alcohol content detection devices have to be installed separately from the engine, so they delay the alcohol content of the fuel actually injected from the fuel injection valve 21, especially when starting the engine. Especially when starting the engine after refueling with fuel with a different alcohol content, the alcohol content in the fuel chamber 6 and fuel distribution pipe 26 of the alcohol content detection device A may vary. It is expected that there will be different starting modes, and in such a case, it is expected that in the worst case, a problem will occur where the engine cannot be started.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るアルコール含有率検知装置は、透光体の
一端に発光素子と一次元光位置検知素子を設け、他端に
燃料との屈折面と反射面を設けたものである。
The alcohol content detection device according to the present invention includes a light emitting element and a one-dimensional optical position detection element provided at one end of a transparent body, and a refractive surface and a reflective surface for refraction of fuel at the other end.

〔作 用〕[For production]

この発明においては、透光体の一端に設けた発光素子か
ら発した光は、透光体の他端の燃料との屈折面に入射さ
せて燃料中に屈折させ、さらに反射面で反射させたのち
、再び屈折面に入射させて透光体中に屈折させ一次元光
位置検知素子に入射させてアルコール含有率の変化によ
る燃料の屈折率の変化を一次元光位置検知素子上の光入
射位置変化として測定するものである。
In this invention, the light emitted from the light emitting element provided at one end of the transparent body is incident on the refractive surface with the fuel at the other end of the transparent body, is refracted into the fuel, and is further reflected at the reflective surface. After that, the light is incident on the refractive surface again, refracted into the light-transmitting body, and incident on the one-dimensional optical position sensing element, and the change in the refractive index of the fuel due to the change in alcohol content is detected at the light incident position on the one-dimensional optical position sensing element. It is measured as a change.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明によるアルコール含有率検知装置の構成図
であって、1は従来例の装置と同じ円柱状の透光体であ
るが、異なる点は柱状の一方の端部が円柱軸に対し所定
角度でカットされており、屈折面15を形成している。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a configuration diagram of the alcohol content detection device according to the present invention, and 1 is the same cylindrical transparent body as the conventional device, but the difference is that one end of the column is positioned at a predetermined position with respect to the cylinder axis. It is cut at an angle and forms a refractive surface 15.

11は反射面、2は絞り、13はレンズ、14は発光素
子4の放射光、16は一次元光位置検知素子であって、
ここでは半導体装置検出素子(以下、PSDという。)
を用いた場合を示す。17は燃料流入口であり、また検
知回路10は発光素子4を、駆動する定電流駆動部10
1、PSD16の光電流の前置増幅部102、加算部1
03、除算部104よねなる。
11 is a reflective surface, 2 is an aperture, 13 is a lens, 14 is emitted light from the light emitting element 4, and 16 is a one-dimensional optical position detection element,
Here, semiconductor device detection element (hereinafter referred to as PSD)
The case is shown below. Reference numeral 17 denotes a fuel inlet, and the detection circuit 10 includes a constant current drive section 10 that drives the light emitting element 4.
1. Photocurrent preamplifier 102 of PSD 16, adder 1
03, the division section 104 is divided.

透光体1の一端に配した発光素子4が定電流駆動部10
1により駆動されて発光すると、放射光14は絞り12
を通り、レンズ13で集光されつつ、透光体1の他端の
屈折面15に20点にて入射角ψで入射する。屈折面1
5は燃料流入口17より流入した燃料と接しているため
、入射光14は20点で燃料の屈折率Nfと透光体1の
屈折率Ndとの差により、屈折角Z = arcsIN
 (Nd/NfXSINψ)で屈折する。po点で屈折
角χで屈折した光は燃料中を透過して、前記反射面11
の21点にて反射され、再度燃料中を透過したのち、再
び屈折面15に22点で入射し入射角ψと屈折角χとの
関係式に従って透光体1内に屈折して発光素子4と同じ
側に配置されたPSD16に到達する。レンズ13はP
SD16上で放射光14が集光きれるように焦点距離が
選定されている。なお、その他の符号は第8図に示した
従来例と相当部分を示すので説明は省略する。
A light emitting element 4 arranged at one end of the transparent body 1 is a constant current driver 10.
1 to emit light, the emitted light 14 passes through the aperture 12
The light passes through the lens 13 and enters the refractive surface 15 at the other end of the transparent body 1 at an incident angle ψ at 20 points. Refracting surface 1
5 is in contact with the fuel flowing in from the fuel inlet 17, so the incident light 14 has a refraction angle Z = arcsIN due to the difference between the refractive index Nf of the fuel and the refractive index Nd of the transparent body 1 at 20 points.
It is refracted at (Nd/NfXSINψ). The light refracted at the refraction angle χ at point po transmits through the fuel and reaches the reflecting surface 11.
After being reflected at 21 points, it passes through the fuel again, enters the refractive surface 15 again at 22 points, and is refracted into the light-transmitting body 1 according to the relational expression between the incident angle ψ and the refraction angle χ, and is reflected into the light-emitting element 4. The PSD 16 is located on the same side as the PSD 16. Lens 13 is P
The focal length is selected so that the synchrotron radiation 14 can be completely focused on the SD 16. Note that the other symbols indicate parts corresponding to those in the conventional example shown in FIG. 8, and therefore their explanation will be omitted.

第2図はPSD 16の光位置検出原理の説明図で、P
SDはシリコンフォトダイオードを応用した光重心位置
検出素子で、抵抗層(P層)、中間層、N層の3層で構
成されており、光スポットが入射すると、入射位置より
光電流i1.i2が均一な抵抗層を通り、各々電極II
、12に分割して流れ、光電流i1.i2は電極までの
距離に逆比例して分割出力される。今、電極11から光
入射位置までの距離をXとし、PSDの電極間距離をL
とすルト、位置XI!X=LXi2/ (il+i2)
 テ与えられる。この時位置Xは入射光の重心に一致す
るため、光スポットは必ずしも微小径とする必要はない
Figure 2 is an explanatory diagram of the optical position detection principle of PSD 16.
SD is an optical gravity center position detection element using a silicon photodiode, and is composed of three layers: a resistive layer (P layer), an intermediate layer, and an N layer.When a light spot is incident, a photocurrent i1. i2 passes through a uniform resistive layer, each electrode II
, 12, and the photocurrent i1. i2 is divided and output in inverse proportion to the distance to the electrode. Now, let the distance from the electrode 11 to the light incidence position be X, and the distance between the electrodes of the PSD be L.
Ruto, position XI! X=LXi2/ (il+i2)
Te is given. At this time, since the position X coincides with the center of gravity of the incident light, the light spot does not necessarily have to have a minute diameter.

第1図において、PSD i 6の各電極11.12か
らの光電流i1.i2は、検知回路10に入力され、前
置増幅部102で増幅された後、11と12が加算部1
03で加算され、12と前記加算結果より除算部104
で除算i 2/ (i 1+ i 2)が行われて、位
置信号Xに相当した電圧Voutとして出力される。燃
料中のアルコール含有率の変化に従い燃料の屈折率Nf
が変化すると、屈折面15における屈折角χが変化する
ため、発光素子4の放射光14のPSD16上への入射
位置Xが変化し、検知回路の出力電圧Voutはアルコ
ール含有率に応じた値となる。
In FIG. 1, the photocurrents i1.1 from each electrode 11.12 of PSD i6. i2 is input to the detection circuit 10, amplified by the preamplifier 102, and then 11 and 12 are input to the adder 1.
03, and from the addition result 12, the division unit 104
Dividing i 2/(i 1 + i 2) is performed and output as a voltage Vout corresponding to the position signal X. The refractive index Nf of the fuel changes as the alcohol content in the fuel changes.
When this changes, the refraction angle χ at the refraction surface 15 changes, so the incident position X of the emitted light 14 of the light emitting element 4 on the PSD 16 changes, and the output voltage Vout of the detection circuit changes to a value according to the alcohol content. Become.

第3図は、透光体1として屈折率Nd=1.52の光学
ガラスBK7を使用し入射角ψ=45°とした構造にお
ける、ガソリン燃料中のメチルアルコール含有率に対す
る出力電圧■Outの変化を示した。
Figure 3 shows the change in output voltage ■Out with respect to the methyl alcohol content in gasoline fuel in a structure in which optical glass BK7 with a refractive index Nd = 1.52 is used as the transparent body 1 and the incident angle ψ = 45°. showed that.

ガソリンに比較してメチルアルコールの屈折率が小さい
ため、メチルアルコール含有率が大なるにつれPSD1
6への光入射位置は電極■1側に移り光電流11の方が
大となるので、出力電圧Voutはメチルチルコール含
有率に反比例する。エンジンの発熱、それによる燃料温
度の上昇等で検知装置!Aの温度が変わると、発光素子
4の発光量、PSD16の総光電流量は変化するが、ア
ルコール含有率は光電流の比で与えられるため、検知装
置Aの温度変化によらず常に正確に、連続的に燃料中の
アルコール含有率を検知できる。また、アルコール含有
率の検知は結局屈折面15の一部でおこなわわろことか
ら、従来装置に比較して透光体の全長を短縮できるため
検知部を小形化ずろことができるという利点がある。
Since the refractive index of methyl alcohol is smaller than that of gasoline, as the methyl alcohol content increases, the PSD1
Since the light incident position on the electrode 6 shifts to the electrode 1 side and the photocurrent 11 becomes larger, the output voltage Vout is inversely proportional to the methyl thylcol content. A device that detects engine heat generation and the resulting rise in fuel temperature! When the temperature of the detection device A changes, the amount of light emitted by the light emitting element 4 and the total photocurrent amount of the PSD 16 change, but since the alcohol content is given as a ratio of photocurrents, it is always accurate regardless of the temperature change of the detection device A. It can continuously detect the alcohol content in fuel. Furthermore, since the alcohol content is ultimately detected on a part of the refractive surface 15, the overall length of the light-transmitting body can be shortened compared to conventional devices, so there is an advantage that the detection section can be made smaller.

第4図はアルコール含有率検知装置の検知部の構成図で
あり、128は絞り12と発光素子4およびレンズ13
の保持機能を持ったホルダである。
FIG. 4 is a configuration diagram of the detection unit of the alcohol content detection device, and 128 is the aperture 12, the light emitting element 4, and the lens 13.
It is a holder with a holding function.

透光体1は一方の端部が所定の厚さを残して円柱軸に対
し所定角度で楔状にカットシて屈折面15を形成し、透
光体1の一方の端面に金m蒸着等により反射面119!
形成させて裏面鏡としである。
The light-transmitting body 1 is cut into a wedge shape at a predetermined angle with respect to the cylinder axis, leaving a predetermined thickness at one end to form a refractive surface 15, and a reflective surface is formed on one end surface of the light-transmitting body 1 by depositing gold or the like. Face 119!
It is formed to serve as a mirror on the back.

また、透光体1は燃料シール3でケース2との間で燃料
側と絶縁され、ケース2はパツキン等を介して燃料分配
管26等の燃料噴射弁21に近い高圧側管路に取付けら
れる。
Further, the transparent body 1 is insulated from the fuel side by a fuel seal 3 between the case 2 and the case 2, and the case 2 is attached to a high-pressure side pipe near the fuel injection valve 21, such as a fuel distribution pipe 26, through a packing or the like. .

第5図はこの発明の他の実施例を示す検知部の構成図で
、反射面11を別の板状の透光体18の表面に金M膜蒸
着等により形成させI−のち、耐油性のあるプラスチッ
クあるいはセラミック薄膜等の透光性保II膜19をコ
ーティングして表面繞としたものである。このようにす
れば、透光体1の研磨面が少なくなり、@磨コストを低
減できるため、検知部をより安価に作ることができる。
FIG. 5 is a configuration diagram of a detection section showing another embodiment of the present invention, in which the reflective surface 11 is formed on the surface of another plate-shaped transparent body 18 by gold M film vapor deposition, etc. The surface is coated with a light-transmitting retaining II film 19 made of a certain plastic or ceramic thin film. In this way, the polishing surface of the transparent body 1 is reduced, and the polishing cost can be reduced, so that the detection section can be manufactured at a lower cost.

まt二、この実施例では板状の透光体18の表面に反射
面11を形成し1=が、透光体1の裏面に同様な方法で
反射向11を形成してもよく、このJ:うにすると、透
光性保護膜19は不要となる。
Second, in this embodiment, the reflective surface 11 is formed on the surface of the plate-shaped transparent body 18, but the reflective surface 11 may be formed on the back surface of the transparent body 1 in a similar manner. J: If this is done, the light-transmitting protective film 19 becomes unnecessary.

第6図はこの発明のさらに他の実施例の検知部の構成図
であって、反射面11をケース2の基体部材2 a l
lに形成さ」l・たものであり、金属製の基体部材2a
の表面Tifaにより、あるいは基体部材2aに他の金
属膜をメツキあるいは蒸着等により積層して形成でとる
。このようにすれば、部品の削減により検知部をさらに
安価にできるど共に、検知部を一層小型化T!きる。
FIG. 6 is a configuration diagram of a detection section according to still another embodiment of the present invention, in which the reflecting surface 11 is connected to the base member 2 a l of the case 2.
The base member 2a is formed into a metal base member 2a.
The surface of the substrate member 2a is formed by Tifa, or by laminating another metal film on the base member 2a by plating or vapor deposition. In this way, the detection part can be made even more inexpensive by reducing the number of parts, and the detection part can also be made smaller. Wear.

なお上記各実施例では一次元光位置検知素子16として
PSDを用いた場合を示1.たが、フォ1−ダイ4−ド
アレイ、COD等の位置検知素子を用いても同様の効果
が期待でさることは当業者にとって明らかである。また
、透光体1の燃料側との絶縁も燃料シール3によらず透
光体1とケース2間をシール剤の充填、接着等により、
まh、透光体1の周面をメタライズした後ケース2と溶
接、ロウ付けする等によっても行うことができろ。
In each of the above embodiments, 1. shows a case where a PSD is used as the one-dimensional optical position detection element 16. However, it is clear to those skilled in the art that the same effect can be expected even if a position sensing element such as a 1-die 4-door array or a COD is used. In addition, insulation from the fuel side of the translucent body 1 can be achieved by filling the space between the translucent body 1 and the case 2 with a sealant, adhering, etc., without relying on the fuel seal 3.
Well, this could also be done by metallizing the peripheral surface of the transparent body 1 and then welding or brazing it to the case 2.

さらにまた、上記実施例では燃料中のアルコール含有率
の検知について示したが、他の液体の屈折率測定用装置
どしても広く適用可能である。
Furthermore, although the above embodiment describes the detection of the alcohol content in fuel, it is also widely applicable to devices for measuring the refractive index of other liquids.

〔発明の効榮] 以上説明したようにこの発明によス1.げ、透光体の一
端に発光素子と一次元光位置検知素子を設け、他端に燃
料どの屈折面ど反射面を設けt:ことにより、検知装置
の小形化が図ね、かつ検知装置が燃料噴射弁の近くの管
路に配設できろt−め、燃料噴射弁の噴射燃料中のア、
++−コール含有率を常に遅滞なく連続的に検知できる
。また、検知装置の温度変化に関わらず精度よ(アルコ
ール含有率を検知できろ。
[Advantages of the Invention] As explained above, the present invention has the following advantages:1. A light emitting element and a one-dimensional optical position detection element are provided at one end of the transparent body, and a reflective surface such as a refraction surface for fuel is provided at the other end. It can be installed in the pipe near the fuel injection valve, so that the a,
++-Coal content can always be detected continuously without delay. Also, the accuracy of the detection device is important regardless of temperature changes (it should be able to detect alcohol content).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるアルコール含有率検
知装置の構成図、第2図はPSDの光位置検出原理の説
明図、第3図はガソリン燃料中のメタノーノ1、含有率
に対する出力電圧変化図、第4図はアルコール含有率検
知装置の検知部の断面図、第5図は他の実施例による検
知部の断面図、第6図はさらに他の実施例による検知部
の断面図、第7図は従来のアルコール含有率検知装置を
伶え)2燃料制御系の構成図、第8図は従来のアルコー
ル含有率検知装置の構成図である。 1・透光体、2・ケース、4・・・発光素子、1゜・・
検知回路、11・・反射面、12 絞り、13・レンズ
、14・放射光、15・・屈折面、IG ・−次元先位
W検知素子、17・・燃料流入口、18−板状の透光体
、19 ・透光性保護膜。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 1 is a block diagram of an alcohol content detection device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the optical position detection principle of PSD, and Fig. 3 is an output voltage for methanol content in gasoline fuel. FIG. 4 is a sectional view of the detection unit of the alcohol content detection device, FIG. 5 is a sectional view of the detection unit according to another embodiment, and FIG. 6 is a sectional view of the detection unit according to another embodiment. FIG. 7 is a block diagram of a conventional alcohol content detection device) 2 fuel control system, and FIG. 8 is a block diagram of a conventional alcohol content detection device. 1. Translucent body, 2. Case, 4... Light emitting element, 1°...
Detection circuit, 11. Reflection surface, 12 Aperture, 13. Lens, 14. Synchrotron radiation, 15. Refraction surface, IG.-Dimension forward W detection element, 17.. Fuel inlet, 18. Plate-shaped transparent Light body, 19 ・Transparent protective film. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 燃料の屈折率を検出して燃料中のアルコール含有率を検
知する装置において、透光体の一端に発光素子と一次元
光位置検知素子を設け、他端に燃料との屈折面と反射面
を設け、上記発光素子より屈折面に入射させた屈折光を
反射面に反射させたのち、再び屈折面に入射させ、この
屈折光を一次元位置検知素子に入射するようにしたこと
を特徴とするアルコール含有率検知装置。
In a device that detects the alcohol content in fuel by detecting the refractive index of the fuel, a light-emitting element and a one-dimensional optical position detection element are provided at one end of the transparent body, and a refractive surface and a reflective surface that meet the fuel are provided at the other end. The refracted light that is incident on the refracting surface from the light emitting element is reflected on the reflective surface, and then the refracted light is incident on the refracting surface again, and the refracted light is incident on the one-dimensional position sensing element. Alcohol content detection device.
JP63093938A 1988-04-03 1988-04-14 Apparatus of detecting content ratio of alcohol Pending JPH01263536A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63093938A JPH01263536A (en) 1988-04-14 1988-04-14 Apparatus of detecting content ratio of alcohol
US07/327,059 US5015091A (en) 1988-04-13 1989-03-22 Device for detecting alcoholic content
EP89105249A EP0337173B1 (en) 1988-04-13 1989-03-23 Device for detecting alcoholic content
DE89105249T DE68907766T2 (en) 1988-04-13 1989-03-23 Device for determining the alcohol content.
KR1019890003972A KR910004217B1 (en) 1988-04-03 1989-03-29 Alcohol content detection device
US07/644,769 US5074659A (en) 1988-04-13 1991-01-23 Device for detecting alcoholic content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63093938A JPH01263536A (en) 1988-04-14 1988-04-14 Apparatus of detecting content ratio of alcohol

Publications (1)

Publication Number Publication Date
JPH01263536A true JPH01263536A (en) 1989-10-20

Family

ID=14096376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63093938A Pending JPH01263536A (en) 1988-04-03 1988-04-14 Apparatus of detecting content ratio of alcohol

Country Status (1)

Country Link
JP (1) JPH01263536A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4103873A1 (en) * 1990-02-08 1991-08-14 Mitsubishi Electric Corp DEVICE FOR DETECTING THE ALCOHOL CONCENTRATION
JPH0397651U (en) * 1990-01-26 1991-10-08
JPH03101453U (en) * 1990-02-05 1991-10-23
JPH03101452U (en) * 1990-02-05 1991-10-23
JPH03101450U (en) * 1990-02-05 1991-10-23
JPH03101451U (en) * 1990-02-05 1991-10-23
JPH03104846U (en) * 1990-02-09 1991-10-30
JPH03114046U (en) * 1990-03-08 1991-11-22

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397651U (en) * 1990-01-26 1991-10-08
JPH03101453U (en) * 1990-02-05 1991-10-23
JPH03101452U (en) * 1990-02-05 1991-10-23
JPH03101450U (en) * 1990-02-05 1991-10-23
JPH03101451U (en) * 1990-02-05 1991-10-23
DE4103873A1 (en) * 1990-02-08 1991-08-14 Mitsubishi Electric Corp DEVICE FOR DETECTING THE ALCOHOL CONCENTRATION
JPH03104846U (en) * 1990-02-09 1991-10-30
JPH03114046U (en) * 1990-03-08 1991-11-22

Similar Documents

Publication Publication Date Title
US5015091A (en) Device for detecting alcoholic content
KR940002500B1 (en) Apparatus for detecting alcohol concentration
JP4948117B2 (en) Fuel property detection device
EP0441056B1 (en) Optical fuel composition sensor
JP4906583B2 (en) Fuel property detection device
JPH01263536A (en) Apparatus of detecting content ratio of alcohol
US4962746A (en) Mixing liquid ratio detector device
US4895444A (en) Detector device for mixing ratio for gasoline and alcohol or the like
JPH02184743A (en) Apparatus for measuring particle load in flue or exhaust gas of combustion process
JPH04169839A (en) Alcohol-content detecting apparatus
JPH01262442A (en) Alcohol content detector
JPH0440343A (en) Alcohol content detecting device
EP0281337B1 (en) A detector device for mixing ratio for petrol and alcohol or the like
JPH03233347A (en) Detector for alcohol content
JP2001132511A (en) Air-fuel ratio control device for internal combustion engine
JPH0452679Y2 (en)
JPH01207647A (en) Detecting device for liquid mixing ratio of gasoline and alcohol or the like
JPS63210645A (en) Mixing ratio detector for fluid such as gasoline-alcohol
JPS62276438A (en) Mixing ratio sensor for alcohol mixed fuel
JPH0610654B2 (en) Alcohol content detector
JPH0247487Y2 (en)
JPS63210647A (en) Mixing ratio detector for fluid such as gasoline-alcohol
JPH02141645A (en) Detector of mixing ratio of mixed liquid
JPH0549178B2 (en)
JPH01196542A (en) Fluid mixing ratio detector for gasoline/alcohol or the like