[go: up one dir, main page]

JPS63210647A - Mixing ratio detector for fluid such as gasoline-alcohol - Google Patents

Mixing ratio detector for fluid such as gasoline-alcohol

Info

Publication number
JPS63210647A
JPS63210647A JP4396187A JP4396187A JPS63210647A JP S63210647 A JPS63210647 A JP S63210647A JP 4396187 A JP4396187 A JP 4396187A JP 4396187 A JP4396187 A JP 4396187A JP S63210647 A JPS63210647 A JP S63210647A
Authority
JP
Japan
Prior art keywords
light
gasoline
fluid
receiving element
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4396187A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsubara
佳弘 松原
Shigeru Miyata
繁 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP4396187A priority Critical patent/JPS63210647A/en
Publication of JPS63210647A publication Critical patent/JPS63210647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To lower material cost with a reduction in the area of a photo detector, by setting the shape of the photo detector so as to correspond to a sectorial surface formed by two radial lines placing it therebetween in a circular area which is formed by light totally reflected on a light transmitter. CONSTITUTION:In a sensor 1, a voltage is applied from a control section and a light emitting element 9 emits light. Out of the light, a beam directed at a light transmitter 3 and totally reflected on the inner side thereof passes through the light transmitter 3 along the axis thereof and enters a photo detector 14 with the shape so set to cover an area C surrounded by radial lines (a) and (b) in a circular area of light by way of a glass window 11. A mixed fuel of gasoline and alcohol is flowing in contact with a circumferential surface of the light transmitter 3. Since refractive index changes as the mixing ratio of the level varies, a critical angle of light from the light emitting element 9 changes with respect to the light transmitter 3. The light entering the light emitting element 14 is converted into an electrical signal and the mixing ratio and a data related to the quantity of light entering the photo detector 14 is supplied to a control circuit according to changes in the refractive index.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、外周側面を流体が流動する透光体に向けて
光を発し、全反射により通過する光量により透光体の流
体に対する屈折率が判定できることを適用した流体混合
比検出装置に係り、特には、全反射する光を受ける受光
素子の形状が小さくて済むように改良したガソリン−ア
ルコールなどの流体混合比検出装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention emits light toward a transparent body through which a fluid flows on its outer peripheral side surface, and changes the refractive index of the transparent body with respect to the fluid by the amount of light that passes through total reflection. The present invention relates to a fluid mixture ratio detection device that is adapted to be able to determine, and in particular, to a fluid mixture ratio detection device for gasoline-alcohol, etc. that has been improved so that the shape of the light receiving element that receives totally reflected light can be small.

[従来の技術とその問題点コ 例えば、自動車の内燃機関にあっては、近年では燃料に
ガソリンとアルコールとの混合流体を用いることが考え
られている。この混合燃料で良好な機関の出力を得るに
は、混合比を連続的に検知して、この情報を自動燃焼制
御装置にフィードバックして最適の空燃比や点火時期を
確保する必要がある。
[Prior art and its problems] For example, in recent years, it has been considered to use a mixed fluid of gasoline and alcohol as fuel in internal combustion engines of automobiles. In order to obtain good engine output with this mixed fuel, it is necessary to continuously detect the mixture ratio and feed this information back to the automatic combustion control system to ensure the optimal air-fuel ratio and ignition timing.

このため燃料の混合比検出装置が必要になっており、こ
の検出装置は、両端に発光素子および受光素子を配置し
た透光体を備え、この透光体の外周面に混合燃料を流動
させるように構成している。
For this reason, a fuel mixture ratio detection device is required, and this detection device is equipped with a light-transmitting body with a light-emitting element and a light-receiving element arranged at both ends, and is designed to cause the mixed fuel to flow around the outer circumferential surface of the light-transmitting body. It is composed of

そして、発光素子により透光体に向けて光を発し、全反
射により通過する光を受光素子が受け、この素子から発
生する出力を検知している。この出力の何如により透光
体の混合燃料に対する屈折率を測定し、この屈折率に基
づいて燃料の混合比を降出している。
Then, the light emitting element emits light toward the transparent body, and the light receiving element receives the light that passes through total reflection, and detects the output generated from this element. The refractive index of the transparent body with respect to the mixed fuel is measured based on this output, and the fuel mixture ratio is determined based on this refractive index.

ところで、受光素子は一般にシリコンの半導体から形成
されており、異物の侵入を防ぐためガラス製窓を備えた
ケース内に密封されている。このため透光体の端面と受
光素子とには必然的に所定の距離が生じてしまう。この
距離のため全反射により受光素子に入射する光の円形領
域は比較的大きくなり、この光を漏れなく全面的に受け
るために受光面積の広い受光素子を用いらざるを得ない
のが実情である。これに伴い受光素子の材料比が嵩みコ
スト的に不利になるうえに、全体の小型化を阻む一因と
なる不都合がある。
Incidentally, the light receiving element is generally made of a silicon semiconductor, and is sealed in a case equipped with a glass window to prevent foreign matter from entering. For this reason, a predetermined distance inevitably occurs between the end face of the light-transmitting body and the light-receiving element. Because of this distance, the circular area of the light that enters the photodetector due to total reflection becomes relatively large, and in order to receive this light all over without leaking, it is necessary to use a photodetector with a large photodetection area. be. As a result, the material ratio of the light-receiving element becomes bulky, which is disadvantageous in terms of cost.

[発明の目的] この発明は上記の事情に応えて成されたもので、その目
的は受光素子を面積の小さなものから形成でき材料費が
低減し、コスト的に有利で全体の小型化に繋がり、しか
も受光精度が低下することがないといった優れた効果を
有するガソリン−アルコールなどの流体混合比検出装置
を提供するにある。
[Purpose of the invention] This invention was made in response to the above-mentioned circumstances, and its purpose is to form a light-receiving element with a small area, thereby reducing material costs, which is cost-effective, and leads to overall miniaturization. The object of the present invention is to provide a device for detecting a mixture ratio of a fluid such as gasoline and alcohol, which has an excellent effect of not reducing light reception accuracy.

[問題点を解決するための手段] この発明は、外周面に互いに異種類から成る混合流体を
接触状態に流動させた棒状の透光体と、この透光体の一
端部から軸方向に入射させる光を発生する発光素子と、
前記混合流体に対する前記透光体の屈折率により該混合
流体の混合比を測定すべく前記発光素子からの光のうち
前記透光体の内側面で全反射する光を受けて出力する受
光素子とを備え、前記透光体を全反射した光が形成する
円形領域のうち少くとも二つの放射方向の線で挟まれて
形成する扇状面に対応するように、前記受光素子の形状
を設定した構成を採用している。
[Means for Solving the Problems] The present invention provides a rod-shaped transparent body in which mixed fluids of different types are made to flow in contact with each other on the outer circumferential surface, and a rod-shaped transparent body in which a mixture of fluids of different types flows in contact with each other on the outer circumferential surface, and a light-transmissive body that enters the light in the axial direction from one end of the transparent body. a light emitting element that generates light that
a light-receiving element that receives and outputs the light that is totally reflected on the inner surface of the light-transmitting body among the light from the light-emitting element in order to measure the mixing ratio of the mixed fluid based on the refractive index of the light-transmitting body with respect to the mixed fluid; , the shape of the light-receiving element is set to correspond to a fan-shaped surface formed by being sandwiched between at least two radial direction lines in a circular region formed by light totally reflected by the light-transmitting body. is adopted.

[作用および発明の効果] 上記のように構成されたこの発明によれば、透光体を全
反射した光が形成する円形領域のうち少くとも二つの放
射方向の線で挟まれて形成する扇状面に対応するように
、受光素子の形状を設定したことにより面積の小さな受
光素子で済み、材料費が削減しコスト的に有利で全体の
小型化に繋がり、それでいて、受光素子の受光量は減少
するものの、放射方向の光成分は全て網羅できることか
ら受光口の変化割合は従来どおりであり、受光精度が低
下することがないといった優れた効果を有するものであ
る。
[Operation and Effects of the Invention] According to the invention configured as described above, the fan-shaped area formed by being sandwiched between at least two lines in the radial direction in the circular area formed by the light totally reflected on the transparent body. By setting the shape of the light-receiving element to correspond to the surface, a light-receiving element with a small area can be used, which reduces material costs, is cost-effective, and leads to a smaller overall size.However, the amount of light received by the light-receiving element is reduced. However, since all the light components in the radial direction can be covered, the rate of change of the light receiving aperture remains the same as before, and the light receiving accuracy does not deteriorate, which is an excellent effect.

[実施例] 以下この発明を自動車の内燃機関に適用した一実施例を
図面を参照して説明する。
[Embodiment] An embodiment in which the present invention is applied to an internal combustion engine of an automobile will be described below with reference to the drawings.

先ず、第1図および第2図において、1は屈折率検出用
のセンサで、これは円筒状のボビン2を備え、ボビン2
内には、ガラスから成る棒状の透光体3を0−リング4
.5を介して液密に嵌合している。ボビン2の内周面に
は、この内周面に窪み2aを形成することにより透光体
3の外側面を囲繞するようにして環状空間6が形成され
ている。
First, in FIGS. 1 and 2, reference numeral 1 denotes a sensor for detecting a refractive index, which is equipped with a cylindrical bobbin 2.
Inside, a rod-shaped transparent body 3 made of glass is attached to an O-ring 4.
.. 5 and are fluid-tightly fitted. An annular space 6 is formed in the inner peripheral surface of the bobbin 2 so as to surround the outer surface of the transparent body 3 by forming a recess 2a in the inner peripheral surface.

また、ボビン2の外側面には、出ロ用ロ体7および入ロ
用ロ体8が環状空間6にそれぞれ連通するように立設さ
れている。ボビン2の上端開口部には、発光素子9を有
するキャップ10が嵌め込ま机、この状態で発光素子9
は透光体3の上端面中央に対向する。また、ボビン2の
下端開口部には、ガラス製の窓11を有するケース12
が嵌合され、窓11は透光体3の下端面に近接状態に対
向している。このケース12は内部に窒素ガスなどが封
入された密閉構造を成し、ガラス窓11と平行状態に薄
肉な基板13を配設している。この状態で基板13上に
は、シリコンの半導体から成る平板状の受光素子14が
透光体3の下端面に対向するように設けられている。こ
の受光素子14は下記のように構成されている。すなわ
ち、発光素子9から後述するように、透光体3を全反射
により通過した光がガラス窓11を介して基板13上に
投射する円形領域Cを第2図に示すごとく設定する。
Further, on the outer surface of the bobbin 2, an ejection roller body 7 and an input roller body 8 are erected so as to communicate with the annular space 6, respectively. A cap 10 having a light emitting element 9 is fitted into the upper end opening of the bobbin 2. In this state, a cap 10 having a light emitting element 9 is fitted.
is opposed to the center of the upper end surface of the transparent body 3. Further, a case 12 having a glass window 11 is provided at the lower end opening of the bobbin 2.
are fitted, and the window 11 faces the lower end surface of the transparent body 3 in a close state. The case 12 has a sealed structure in which nitrogen gas or the like is sealed, and a thin substrate 13 is disposed parallel to the glass window 11. In this state, a flat light receiving element 14 made of a silicon semiconductor is provided on the substrate 13 so as to face the lower end surface of the transparent body 3 . This light receiving element 14 is constructed as follows. That is, a circular area C is set as shown in FIG. 2, in which light from the light emitting element 9, which has passed through the light transmitting body 3 by total reflection, is projected onto the substrate 13 via the glass window 11, as will be described later.

さらに、同図に二点鎖線で示すように、先の円形領域C
を全域に渡って覆い尽くすような矩形領域Rを想定する
。そして、円形領域Cの中心から、例えば45度の角度
をなす二本の放射方向の線a1bと矩形領域Rとで囲ま
れて形成され、円形領域Cの扇状面に対応する領域を受
光素子14の形状と1ノでいる(第2図に斑点模様で示
す)。この場合、矩形領域1(は円形領域Cに外接する
状態でもよく、FIi剣方同方向が成す角度は45度に
は限らない。
Furthermore, as shown by the two-dot chain line in the figure, the previous circular area C
Assume a rectangular region R that completely covers the entire area. Then, from the center of the circular region C, a region surrounded by two radial lines a1b forming an angle of 45 degrees and a rectangular region R, and corresponding to the fan-shaped surface of the circular region C, is used as the light receiving element 14. The shape is the same as that of 1 (shown by the dotted pattern in Figure 2). In this case, the rectangular area 1 may be circumscribed to the circular area C, and the angle formed by the FIi sword direction is not limited to 45 degrees.

このように構成されたセンサ1は後述する第4図の電子
式燃料噴射装置において燃料タンク20とプレッシャレ
ギュレータ23とを連結するパイプ23aに入ロ用ロ体
8および出ロ用ロ体7を介して取り付けられている。こ
の状態では、ガソリンとアルコールとの混合燃料がパイ
プ23aから環状空間6内に入り透光体3の外側面に接
触している。
The sensor 1 configured as described above is connected to a pipe 23a connecting a fuel tank 20 and a pressure regulator 23 through an inlet body 8 and an outlet body 7 in an electronic fuel injection system shown in FIG. 4, which will be described later. installed. In this state, the mixed fuel of gasoline and alcohol enters the annular space 6 from the pipe 23a and contacts the outer surface of the transparent body 3.

つぎに、第3図において、受光素子14、補償用受光素
子106および発光素子9との電気接続関係について述
べる。
Next, referring to FIG. 3, the electrical connections among the light receiving element 14, the compensation light receiving element 106, and the light emitting element 9 will be described.

受光素子9の発光量は環境温度に応じて変化する。また
、測定用受光素子14の出力電圧は、測定用の混合液の
混合比が一定でも環境に応じて変わる。そこで本実施例
の温度補償回路206は、補償用受光素子106の出力
が一定となるように発光素子9の発光量を制御し出力用
受光素子14の出力を一定に保つ発光量補償回路部26
1と、該発光層補償回路部261による発光素子9への
給電量により混合の温度変化による臨界角の補償を行う
受光量補償回路262とからなる。
The amount of light emitted by the light receiving element 9 changes depending on the environmental temperature. Further, the output voltage of the measurement light receiving element 14 changes depending on the environment even if the mixing ratio of the measurement liquid mixture is constant. Therefore, the temperature compensation circuit 206 of this embodiment controls the light emission amount of the light emitting element 9 so that the output of the compensation light receiving element 106 becomes constant, and the light emission amount compensation circuit section 26 keeps the output of the output light receiving element 14 constant.
1, and a received light amount compensation circuit 262 that compensates for a critical angle due to a change in mixing temperature based on the amount of power supplied to the light emitting element 9 by the light emitting layer compensation circuit section 261.

発光量補償回路261は、補償用受光素子106の受光
量を電圧値に変換する第1光迅測定部263と、該第1
光量測定部263の出力がBATlの値と等しくなるよ
うに、その出力を発光素子9に印加する制御部264と
からなる。
The light emission amount compensation circuit 261 includes a first light speed measuring section 263 that converts the amount of light received by the compensation light receiving element 106 into a voltage value, and
The control unit 264 applies the output of the light amount measurement unit 263 to the light emitting element 9 so that the output becomes equal to the value of BATl.

第1光呈測定部263は、補償用受光素子106の両端
子の電位差を入力とする第1オペアンプOP1と、抵抗
体R1、R2とからなり、発光素子9の発光間が増加す
ると(混合比センサ1の環境温度が低下するると)、第
1オペアンプOP1の出力が増加する。
The first light presentation measuring section 263 is composed of a first operational amplifier OP1 which inputs the potential difference between both terminals of the compensation light receiving element 106, and resistors R1 and R2. When the environmental temperature of the sensor 1 decreases), the output of the first operational amplifier OP1 increases.

制御部264は、前記第1オペアンプOP1の出力と第
1電池B A T 1の基rI!電圧とを入力し、出力
を制御する第2オペアンプOP2と、ハンチング防止用
のコンデンサC1および抵抗体R3とからなり、発光素
子9の発光間が増加すると(混合センサ1の環境温度が
低下すると)、発光素子9への供給電圧を小さくし、発
光素子9の発光量が減少するとく混合比セン+J1の環
境温度が高くなると)、発光素子9への供給電圧を大き
くする。
The control unit 264 controls the output of the first operational amplifier OP1 and the base rI! of the first battery BAT1! It consists of a second operational amplifier OP2 that inputs a voltage and controls the output, a capacitor C1 for hunting prevention, and a resistor R3, and when the time between light emission of the light emitting element 9 increases (when the environmental temperature of the mixed sensor 1 decreases) , the voltage supplied to the light emitting element 9 is decreased, and when the amount of light emitted by the light emitting element 9 decreases (as the environmental temperature of the mixture ratio sen+J1 increases), the voltage supplied to the light emitting element 9 is increased.

これにより、混合比センサ1の環境湿度が変化しても、
発光素子9の発光量は測定用受光素子14の出力が・一
定となるようにされる。
As a result, even if the environmental humidity of the mixture ratio sensor 1 changes,
The amount of light emitted by the light emitting element 9 is set such that the output of the measuring light receiving element 14 is constant.

受光量補償回路部262は、発光素子9の供給電圧の変
換を行う電圧ホOア265と、測定用受光素子]4の受
光量を電圧値に変換する第2光量測定部266と、該光
量測定部266の出力値より前記電圧ホロ7265の出
力値の減算を行う減算部267とからなる。
The received light amount compensation circuit section 262 includes a voltage source 265 that converts the voltage supplied to the light emitting element 9, a second light amount measuring section 266 that converts the amount of light received by the measuring light receiving element 4 into a voltage value, and and a subtraction section 267 that subtracts the output value of the voltage holo 7265 from the output value of the measurement section 266.

電圧ホロア265は発光素子9からの入力電圧と自己出
力とを入力し、第3オペアンプ○P3と、抵抗体R4、
R5からなり、環境温度変化に対応した値とされる発光
素子9からの入力電圧を電圧降下なしに出力として取出
すことができる。
The voltage follower 265 inputs the input voltage from the light emitting element 9 and its own output, and connects the third operational amplifier ○P3, the resistor R4,
R5, the input voltage from the light emitting element 9, which has a value corresponding to changes in environmental temperature, can be taken out as an output without voltage drop.

第2光量測定部266は、測定用受光素子14の両端子
の電位差を入力とする第4オペアンプOP4と、抵抗体
R6,R7、R8とからなる。この第4オペアンプOP
4の出力は、測定される混合液中のアルコール率が高く
なるにつれて高くなる。一方、混合液の混合比が一定で
あるとすると、混合比センサ1の環境温度が高くなるに
つれて第4オペアンプOP4の出力電圧が小さくなる。
The second light amount measuring section 266 includes a fourth operational amplifier OP4 that receives as input the potential difference between both terminals of the measuring light receiving element 14, and resistors R6, R7, and R8. This fourth operational amplifier OP
The output of No. 4 increases as the alcohol percentage in the mixture to be measured increases. On the other hand, assuming that the mixing ratio of the liquid mixture is constant, the output voltage of the fourth operational amplifier OP4 becomes smaller as the environmental temperature of the mixing ratio sensor 1 becomes higher.

減算部267は、第3オペアンプOP3の出力と、第4
オペアンプOP4の分圧による出力とを入力し、第4オ
ペアンプOP4の分圧値より第3オペアンプ○P3の出
力値を引いた値を出力する第5オペアンプOP5と抵抗
体R9、R10、R11とからなり、減算部267の出
力は、混合液の温度変化による臨界角の補償が行われた
ものとする。
The subtraction unit 267 outputs the output of the third operational amplifier OP3 and the fourth operational amplifier OP3.
A fifth operational amplifier OP5 inputs the output of the divided voltage of the operational amplifier OP4 and outputs a value obtained by subtracting the output value of the third operational amplifier ○P3 from the divided voltage value of the fourth operational amplifier OP4, and resistors R9, R10, and R11. It is assumed that the output of the subtraction unit 267 has been compensated for the critical angle due to the temperature change of the mixed liquid.

つぎに、第4図は、このセンサ1を適用した電子式燃料
噴射装置が組み込まれた自動車用エンジンの作動制御シ
ステム図である。この第4図において、37はエンジン
シリンダ、50はエンジンのキースイッチ−151は制
御回路、55は電源としての蓄電池、20は燃料タンク
である。21は燃料ポンプ、23は燃料タンク20から
バイブ23aを介して接続されたプレッシャレギュレー
タで、パイプ23a内には、本発明に関わるセンサ1が
設けられている。24はインジェクタ、26は」−ルド
スタートインジエクタ、25はイグニションコイル、3
0はエアクリーナ、31はエフバルブ、32はエアフロ
ーメータ、33はスロットルバルブ、34はスロットル
バルブポジションセンサ、35は吸気管、36は排気管
である。また、52は酸素センサ、53はエンジン冷却
水温センサである。
Next, FIG. 4 is a diagram of an operation control system for an automobile engine incorporating an electronic fuel injection device to which this sensor 1 is applied. In FIG. 4, 37 is an engine cylinder, 50 is an engine key switch, 151 is a control circuit, 55 is a storage battery as a power source, and 20 is a fuel tank. 21 is a fuel pump, 23 is a pressure regulator connected to the fuel tank 20 via a vibrator 23a, and a sensor 1 according to the present invention is provided in the pipe 23a. 24 is an injector, 26 is a cold start injector, 25 is an ignition coil, 3
0 is an air cleaner, 31 is an F valve, 32 is an air flow meter, 33 is a throttle valve, 34 is a throttle valve position sensor, 35 is an intake pipe, and 36 is an exhaust pipe. Further, 52 is an oxygen sensor, and 53 is an engine coolant temperature sensor.

つぎに、上記の構成をセンサ1の作動とともに説明する
Next, the above configuration will be explained along with the operation of the sensor 1.

キースイッチ50の操作に伴いエンジンが起動し、制御
回路51に給電される。これに伴い燃料タンク20内の
ガソリンとアルコールとの混合燃料が燃料ポンプ21に
より燃料配管22を介してインジェクタ24に供給され
る。インジェクタ24は、制御回路51によりエンジン
の運転条件などに最適となるように計算された時期およ
び量で吸気管35内に噴射する。
When the key switch 50 is operated, the engine is started and power is supplied to the control circuit 51. Accordingly, the mixed fuel of gasoline and alcohol in the fuel tank 20 is supplied to the injector 24 via the fuel pipe 22 by the fuel pump 21. The injector 24 injects into the intake pipe 35 at a time and in an amount calculated by the control circuit 51 to be optimal for the operating conditions of the engine.

一方、センサ1においては、第3図の制御部264から
発光素子9に電圧が印加され、発光素子9が光を発する
。このような発光素子9からの光のうち、第1図に示す
ように透光体3に指向し、その内周側面で全反射した光
は透光体3を軸方向に通過してガラス窓11を介して受
光素子14に入射する。
On the other hand, in the sensor 1, a voltage is applied from the control section 264 in FIG. 3 to the light emitting element 9, and the light emitting element 9 emits light. Of the light emitted from the light emitting element 9, as shown in FIG. The light enters the light receiving element 14 via the light receiving element 11 .

このとき、透光体3の外周面にはガソリンとアルコール
との混合燃料が接触状態に流動しており、ガソリンとア
ルコールとの混合比が変動する毎に、混合燃料の屈折率
が変化するため透光体3に対する発光素子9からの光の
臨界角が変る。そして、屈折率の変化からガソリンとア
ルコールとの混合比と受光素子14に入射する光量との
関係があらかじめ用意されて、これらのデータが制御回
路51に入力されている。
At this time, the mixed fuel of gasoline and alcohol is flowing in contact with the outer peripheral surface of the transparent body 3, and the refractive index of the mixed fuel changes every time the mixing ratio of gasoline and alcohol changes. The critical angle of light from the light emitting element 9 with respect to the transparent body 3 changes. The relationship between the mixture ratio of gasoline and alcohol and the amount of light incident on the light-receiving element 14 is prepared in advance from the change in the refractive index, and these data are input to the control circuit 51.

しかして、受光素子14に入射した光は、第3図の第4
オペアンプOP4から出力され、減算部267により第
3オペアンプOP3の出力と第4オペアンプOP4の分
圧による出力とが入力され、第5オペアンプOP5から
第4オペアンプOP4の分圧値と第3オペアンプOP3
の出力値との差に相当する出力が温度補償出力として入
力部51aを介して制御回路51に供給される。この出
力の大きさにより制御回路51がインジェクタ24に対
する最適の噴射量および最適の噴射時期を計算してエン
ジンの出力を良好に維持するものである。
Therefore, the light incident on the light receiving element 14 is
The subtracter 267 inputs the output of the third operational amplifier OP3 and the divided voltage output of the fourth operational amplifier OP4, and the divided voltage value of the fifth operational amplifier OP5 to the fourth operational amplifier OP4 and the third operational amplifier OP3.
An output corresponding to the difference between the output value and the output value is supplied to the control circuit 51 via the input section 51a as a temperature compensation output. Based on the magnitude of this output, the control circuit 51 calculates the optimal injection amount and optimal injection timing for the injector 24 to maintain a good engine output.

ところで、上記の構成によれば、光の円形領域Cにおい
て、放射方向の線a、bにより囲まれた領域部分を網羅
するように、受光素子14の形状を設定したので、円形
領ICを全面的に囲むような受光面積を設けなければな
らない従来の受光素子と相違し、受光素子14が小さく
て済み材料費が節約でき製造コスト的に有利で、全体の
コンパクト化に繋がる。しかも、受光素子14は、放射
方向に全ての光成分を含んでいるので、受光素子14の
検出漏れがなく常に精度の高い検出が行なわれる。
By the way, according to the above configuration, the shape of the light receiving element 14 is set so as to cover the area surrounded by the lines a and b in the radiation direction in the circular area C of light. Unlike conventional light-receiving elements, which require a light-receiving area that surrounds the light-receiving area, the light-receiving element 14 is small, which saves material costs and is advantageous in terms of manufacturing costs, leading to overall compactness. Furthermore, since the light-receiving element 14 includes all the light components in the radiation direction, highly accurate detection is always performed without any omissions in the detection of the light-receiving element 14.

つぎに、本発明の他の実施例を第5図および第6図を参
照して説明する。
Next, another embodiment of the present invention will be described with reference to FIGS. 5 and 6.

これらの実施例が、上記の実施例と相違するところは、
受光素子の形状を変えたことである。
These examples differ from the above examples in the following points:
This is because the shape of the light-receiving element has been changed.

すなわち、第5図のものでは、受光素子15の形状は、
円形領l#ICにおける放射方向の線a、bが成す角度
が90度となるように設定している。
That is, in the one shown in FIG. 5, the shape of the light receiving element 15 is as follows.
The angle formed by the lines a and b in the radial direction in the circular region l#IC is set to be 90 degrees.

−・方、第6図の受光素子16の形状は、円形領域Cに
おける放射方向の線a、bが成す角度が180度となる
ように設定している。
On the other hand, the shape of the light receiving element 16 in FIG. 6 is set so that the angle formed by the lines a and b in the radiation direction in the circular region C is 180 degrees.

このように設定しても同様の効果が得られる。A similar effect can be obtained by setting in this way.

なお、この場合、同・−・部分には同一符号を付して相
違する部分のみ説明した。
In this case, the same parts have been given the same reference numerals and only the different parts have been described.

なお、受光素子の形状を設定する時には、円形領域Cの
放射方向の線が成す角度は、上記実施例のものだけに限
定されないことは勿論である。
When setting the shape of the light receiving element, it goes without saying that the angle formed by the line in the radiation direction of the circular region C is not limited to that of the above embodiment.

また、透光体3の両端に受光素子14および発光素子9
が配置されたものだけに限定されず、透光体の−・方の
端面だけに受光素子および発光素子を配置したものにも
適用できる。
In addition, a light receiving element 14 and a light emitting element 9 are provided at both ends of the transparent body 3.
The present invention is not limited to those in which a light-receiving element and a light-emitting element are arranged only on the - side end face of a transparent body.

さらには、ガソリンとアルコールとの混合燃料のみに限
定されず、混合比に代って成分の濃淡を問う他の流体に
も適用できる。この場合には、自動中エンジンに代って
、食品工業界にて、食品や動物の飼お1の製造T稈で食
塩や砂糖の濃度を連続監視するシス1ムに適用できるも
のである。
Furthermore, the present invention is not limited to mixed fuels of gasoline and alcohol, but can also be applied to other fluids in which the concentration of components is considered instead of the mixing ratio. In this case, instead of an automatic medium engine, it can be applied to a system in the food industry that continuously monitors the concentration of salt or sugar in a manufacturing T culm for food or animal feed.

その他、具体的な実施にあたっては、この発明の要旨を
逸脱しない範囲で種々変更できる。
In addition, various changes can be made in the specific implementation without departing from the gist of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパイプとともに示すセンサの断面図、第2図は
受光素子の形状を示す平面図、第3図は電気結線図、第
4図は自動車エンジンにおける電子式燃料噴射装置の作
動制御システム図、第5図および第6図は本発明の他の
実施例を示す第2図相当図である。 図中  1・・・センサ 12・・・ケース 9・・・
発光素子 14.15.16・・・受光素子 3・・・
透光体C・・・円形領域
Figure 1 is a cross-sectional view of the sensor shown with a pipe, Figure 2 is a plan view showing the shape of the light receiving element, Figure 3 is an electrical wiring diagram, and Figure 4 is a diagram of the operation control system of an electronic fuel injection device in an automobile engine. , FIG. 5, and FIG. 6 are views corresponding to FIG. 2 showing other embodiments of the present invention. In the diagram 1...Sensor 12...Case 9...
Light emitting element 14.15.16... Light receiving element 3...
Translucent body C...circular area

Claims (1)

【特許請求の範囲】 1)外周面に互いに異種類から成る混合流体を接触状態
に流動させた棒状の透光体と、 この透光体の一端部から軸方向に入射させる光を発生す
る発光素子と、 前記混合流体に対する前記透光体の屈折率により該混合
流体の混合比を測定すべく前記発光素子からの光のうち
前記透光体の内側面で全反射する光を受けて出力する受
光素子とを備え、 前記透光体を全反射した光が形成する円形領域のうち少
くとも二つの放射方向の線で挟まれて形成する扇状面に
対応するように、前記受光素子の形状を設定したことを
特徴とするガソリン−アルコールなどの流体混合比検出
装置。 2)前記流体は内燃機関の燃料であり、ガソリンとアル
コールから成ることを特徴とする特許請求の範囲第1項
に記載のガソリン−アルコールなどの流体混合比検出装
置。 3)前記透光体は円柱状の光学ガラスから成っているこ
とを特徴とする特許請求の範囲第1項に記載のガソリン
−アルコールなどの流体混合比検出装置。
[Scope of Claims] 1) A rod-shaped transparent body in which mixed fluids of different types are made to flow in contact with each other on the outer peripheral surface, and a light emitting device that generates light that is incident in the axial direction from one end of the transparent body. receiving and outputting light from the light emitting element that is totally reflected on the inner surface of the transparent body in order to measure the mixing ratio of the mixed fluid based on the refractive index of the transparent body with respect to the mixed fluid; a light-receiving element, the shape of the light-receiving element is configured to correspond to a fan-shaped surface formed by being sandwiched between at least two radial direction lines in a circular area formed by light totally reflected by the light-transmitting body; A fluid mixture ratio detection device for gasoline-alcohol, etc., characterized in that: 2) The device for detecting a mixture ratio of a fluid such as gasoline and alcohol according to claim 1, wherein the fluid is a fuel for an internal combustion engine and is composed of gasoline and alcohol. 3) The apparatus for detecting a mixture ratio of a fluid such as gasoline and alcohol according to claim 1, wherein the transparent body is made of cylindrical optical glass.
JP4396187A 1987-02-26 1987-02-26 Mixing ratio detector for fluid such as gasoline-alcohol Pending JPS63210647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4396187A JPS63210647A (en) 1987-02-26 1987-02-26 Mixing ratio detector for fluid such as gasoline-alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4396187A JPS63210647A (en) 1987-02-26 1987-02-26 Mixing ratio detector for fluid such as gasoline-alcohol

Publications (1)

Publication Number Publication Date
JPS63210647A true JPS63210647A (en) 1988-09-01

Family

ID=12678303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4396187A Pending JPS63210647A (en) 1987-02-26 1987-02-26 Mixing ratio detector for fluid such as gasoline-alcohol

Country Status (1)

Country Link
JP (1) JPS63210647A (en)

Similar Documents

Publication Publication Date Title
US4770129A (en) Sensor for mixing ratio of gasoline and alcohol
KR910004217B1 (en) Alcohol content detection device
US5126570A (en) Sensor and method for measuring alcohol concentration in an alcohol-gasoline mixture
US5110205A (en) Apparatus for detecting alcohol concentration
JP2008286531A (en) Fuel property detection device
US20080246955A1 (en) Method of detecting alcohol concentration and alcohol concentration detecting apparatus
US5157453A (en) Liquid content detecting device for alcohol regular gasoline and premium gasoline fuel mixture
US4895444A (en) Detector device for mixing ratio for gasoline and alcohol or the like
JPH01257245A (en) Measuring apparatus for mixing ratio of fuel for internal combustion engine
JPH04169839A (en) Alcohol-content detecting apparatus
JPS63210647A (en) Mixing ratio detector for fluid such as gasoline-alcohol
JPH01263536A (en) Apparatus of detecting content ratio of alcohol
JPS63210645A (en) Mixing ratio detector for fluid such as gasoline-alcohol
EP0281337B1 (en) A detector device for mixing ratio for petrol and alcohol or the like
JP2008281546A (en) Liquid fuel property detection method and liquid fuel property detection device used therefor
JPS63215945A (en) Mixing ratio detector for fluid such as gasoline-alcohol
JPS62180244A (en) Mixing ratio sensor for alcohol mixed fuel
JPH01207647A (en) Detecting device for liquid mixing ratio of gasoline and alcohol or the like
JPH0452679Y2 (en)
JPS62276438A (en) Mixing ratio sensor for alcohol mixed fuel
JPS63287540A (en) Detector for fluid mixing ratio of alcohols
JPS62112040A (en) Sensor for gasoline-alcohol mixture ratio
JPS62127646A (en) Sensor for gasoline-alcohol mixture ratio
JPH01262442A (en) Alcohol content detector
JPH0440343A (en) Alcohol content detecting device