JPS63210690A - Detection of metallic foreign matter - Google Patents
Detection of metallic foreign matterInfo
- Publication number
- JPS63210690A JPS63210690A JP62043084A JP4308487A JPS63210690A JP S63210690 A JPS63210690 A JP S63210690A JP 62043084 A JP62043084 A JP 62043084A JP 4308487 A JP4308487 A JP 4308487A JP S63210690 A JPS63210690 A JP S63210690A
- Authority
- JP
- Japan
- Prior art keywords
- detection
- excitation coil
- coil
- foreign matter
- insulating member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 63
- 230000005284 excitation Effects 0.000 claims abstract description 43
- 230000005291 magnetic effect Effects 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 abstract description 36
- 239000002184 metal Substances 0.000 abstract description 36
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 229910001111 Fine metal Inorganic materials 0.000 abstract description 7
- 230000002950 deficient Effects 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- -1 Polyethylene Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/344—Sorting according to other particular properties according to electric or electromagnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C2501/00—Sorting according to a characteristic or feature of the articles or material to be sorted
- B07C2501/0045—Return vending of articles, e.g. bottles
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、特に非磁性且つ非導電性を有する絶縁部材中
に混入せる微細金属を高怒度で検出する金属異物検出方
法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention particularly relates to a method for detecting metallic foreign matter, which detects fine metal mixed into a non-magnetic and non-conductive insulating member at high intensity.
(従来の技術)
高圧電カケ−プルの絶縁部材として一般に、ポリエチレ
ンが使用されているが、当該ポリエチレンの製造工程及
び運搬過程中に微細な金属の異物が混入することがある
。このような金属異物がケーブルの絶縁層に混入すると
、パンクチエアと称するケーブルの大事故を起こす虞れ
がある。特に、電カケープルは益々高圧化となりつつあ
る現状から、絶縁部材中に混入した金属異物を除去する
という要求は益々高まってくる。(Prior Art) Polyethylene is generally used as an insulating member for high-voltage electric cables, but fine metal foreign matter may get mixed into the polyethylene during its manufacturing and transportation processes. If such metal foreign matter gets mixed into the insulating layer of the cable, there is a risk of causing a serious cable accident called puncture. In particular, as electric cables are becoming increasingly high-voltage, there is an increasing demand for removing metal foreign matter mixed into insulating members.
従来、前記電カケープルの製造過程において芯線を被覆
する絶縁部材中に混入せる微小な金属例えば、銅、アル
ミニュウム等の金属片を検出する場合、第3図に示すよ
うに、所定の間隔で離隔対向して磁気回路を構成する一
対のE型コア30.31を配置し、一方のコア30の中
央部30aに励磁コイル32を、他方のコア31の両側
31b、31cに夫々第1、第2の検出コイル33.3
4を巻回して検出器35を構成し、励磁コイル32に所
定の高周波励磁電流を印加して高周波磁界を発生させ、
これらの対向する各コア30.31の間を磁界の方向と
直交させて被検査対象物即ち、前記絶縁部材を通過させ
、この時の磁界の変化を各検出コイル32.33の出力
電圧の差として検出し、当該絶縁部材中に混入せる金属
異物を検出するようにしている。Conventionally, when detecting minute pieces of metal, such as copper or aluminum, mixed into the insulating member covering the core wire in the manufacturing process of the electric cable, as shown in FIG. A pair of E-type cores 30 and 31 are arranged to form a magnetic circuit, and an excitation coil 32 is placed in the center 30a of one core 30, and a first and second coil is placed in both sides 31b and 31c of the other core 31, respectively. Detection coil 33.3
4 is wound to form a detector 35, and a predetermined high-frequency excitation current is applied to the excitation coil 32 to generate a high-frequency magnetic field.
The object to be inspected, that is, the insulating member, is passed between these opposing cores 30, 31 perpendicular to the direction of the magnetic field, and the change in the magnetic field at this time is calculated as the difference in the output voltage of each detection coil 32, 33. This is to detect metal foreign matter that may be mixed into the insulating member.
かかる検出方法に使用する前記検出器35は2つの検出
コイル33.34の出力電圧のバランス調整を行う場合
、各コア30.31の両側に配置した図示しない鉄製の
ブロック(ライナ)の位置を調整して各検出コイル33
.34の出力電圧の差がOとなるように調整する。When adjusting the balance between the output voltages of the two detection coils 33 and 34, the detector 35 used in this detection method adjusts the position of unillustrated iron blocks (liners) placed on both sides of each core 30 and 31. and each detection coil 33
.. Adjustment is made so that the difference between the output voltages of 34 becomes O.
(発明が解決しようとする問題点)
しかしながら、上記検出器においては磁界を強めるため
に強磁性体のコア30.31により磁気回路を形成して
いるが、このような強磁性体のコアを使用すると、検出
コイル33.34のインダクタンスが急激に増大し、こ
の結果、これらの各検出コイル33.34の周波数応答
特性が著しく悪化する。即ち、周波数応答範囲が著しく
低周波域に移動してしまう。かかる検出コイルの周波数
特性を改善するためには各検出コイル33.34の巻数
を少なくすればよいが、これらの検出コイル33.34
の巻数を少なくすると、検出感度が低下するという問題
がある。(Problem to be Solved by the Invention) However, in the above detector, a magnetic circuit is formed by ferromagnetic cores 30 and 31 in order to strengthen the magnetic field, but it is difficult to use such a ferromagnetic core. Then, the inductance of the detection coils 33, 34 increases rapidly, and as a result, the frequency response characteristics of each of these detection coils 33, 34 deteriorate significantly. That is, the frequency response range shifts significantly to a lower frequency range. In order to improve the frequency characteristics of such detection coils, the number of turns of each detection coil 33.34 may be reduced;
If the number of turns is reduced, there is a problem that detection sensitivity decreases.
特に、極微細な金属異物を検査する場合には使用する励
磁電流の周波数をより高くする必要があり、このために
はコイルの周波数応答特性を高周波数域に伸ばすことが
必要とされる。その理由は、金属異物は1つの微小コイ
ルと見做され、この微小コイルの特性周波数feは次式
で近似的に求められる。In particular, when inspecting extremely fine metal foreign objects, it is necessary to increase the frequency of the excitation current used, and for this purpose it is necessary to extend the frequency response characteristics of the coil to a high frequency range. The reason is that the metallic foreign object is regarded as one microcoil, and the characteristic frequency fe of this microcoil can be approximately determined by the following equation.
f c−5066/σμr d2
ここに、σは金属異物の導電率、μ、は金属異物の比透
磁率、dは金属異物の直径を示す。但し、金属異物は直
径dの球体とする。f c-5066/σμr d2 Here, σ represents the electrical conductivity of the foreign metal object, μ represents the relative magnetic permeability of the foreign metal object, and d represents the diameter of the foreign metal object. However, the metal foreign object is assumed to be a sphere with a diameter d.
上式から明らかなように、特性周波数fcは、金属異物
の直径の自乗に逆比例し、従って、直径の小さい金属異
物即ち、極微細な金属異物を検出するためには検出コイ
ルの特性周波数の応答範囲を出来る限り高周波域にする
ことが必要不可欠である。As is clear from the above equation, the characteristic frequency fc is inversely proportional to the square of the diameter of the metal foreign object. Therefore, in order to detect a small diameter metal foreign object, that is, an extremely fine metal foreign object, the characteristic frequency fc of the detection coil must be It is essential to keep the response range as high as possible.
しかしながら、上述したように磁気回路にコアを使用す
ると検出コイルの周波数特性が低域に移動するために検
出感度が低く、微細な金属を検出することが困難である
という問題がある。However, as described above, when a core is used in a magnetic circuit, the frequency characteristics of the detection coil shift to a low frequency range, resulting in low detection sensitivity and difficulty in detecting minute metals.
また、上記従来の検出器は鉄製ブロックの温度変化、或
いは振動等によって微小な変化を生じ、斯かる微小な変
化であっても検出コイルの出力バランスが崩れてしまう
ために当該検出器のバランス調整を定期的例えば、1日
毎に行うことが必要となる。しかるに、かかるバランス
調整は手間が掛かり、毎日行うことは極めて煩雑であり
、且つ作業効率が低下する等の問題がある。In addition, the conventional detector described above causes minute changes due to temperature changes or vibrations in the iron block, and even such a minute change causes the output balance of the detection coil to collapse, so it is necessary to adjust the balance of the detector. It is necessary to perform this on a regular basis, for example, every day. However, such balance adjustment is time-consuming and extremely troublesome to perform every day, and there are problems such as a decrease in work efficiency.
本発明は上述の問題点を解決するためになされたもので
、検出感度が極めて高く微細な金属を検出可能な金属異
物検出方法を提供することを目的とする。The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a method for detecting metal foreign matter that has extremely high detection sensitivity and is capable of detecting fine metals.
(問題点を解決するための手段)
上記目的を達成するために本発明によれば、非磁性且つ
非導電性を有する部材で形成される絶縁部材を移送する
移送通路の途中に当該通路を囲繞させて、励磁コイルと
、当該励磁コイルの両側等距離位置に2つの検出コイル
とを配置し、前記励磁コイルに高周波電流を印加し、前
記2つの検出コイルに誘起される起電力により前記通路
内を移動する前記絶縁部材に混入せる金属異物を検出す
るようにしたものである。(Means for Solving the Problems) In order to achieve the above object, according to the present invention, in the middle of a transfer passage for transferring an insulating member formed of a non-magnetic and non-conductive member, the passage is surrounded. An excitation coil and two detection coils are arranged equidistantly on both sides of the excitation coil, and a high-frequency current is applied to the excitation coil, and the electromotive force induced in the two detection coils causes the inside of the passage to be The apparatus detects metal foreign matter that may be mixed into the moving insulating member.
(作用)
励磁コイルと検出コイルとを夫々空芯コイルとすること
により検出コイルの周波数特性を高周波域において良好
とされ、これに伴い検出感度が向上し、絶縁部材に混入
せる微細な金属の検出を可能とされる。(Function) By using air-core coils for the excitation coil and the detection coil, the frequency characteristics of the detection coil are improved in the high frequency range, and detection sensitivity is improved accordingly, making it possible to detect minute metals mixed into insulating materials. is made possible.
(実施例) 以下本発明の一実施例を添付図面に基づいて詳述する。(Example) An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
第1図は本発明の金属異物検出方法に適用する検出器を
示し、検出器lは非導電性且つ非磁性を有する絶縁パイ
プ2と当該絶縁パイプ2に巻回された励磁コイル3、検
出コイル4.5とにより構成され、励磁コイル3は絶縁
パイプ2の略中央位置に巻回され、2つの検出コイル4
.5は励磁コイル2の両側に当該励磁コイル3から等距
離隔てた位置に巻回されている。即ち、励磁コイル3は
検出コイル4と5との中間位置に配置されている。FIG. 1 shows a detector applied to the metal foreign object detection method of the present invention, and the detector l includes a non-conductive and non-magnetic insulated pipe 2, an excitation coil 3 wound around the insulated pipe 2, and a detection coil. 4.5, the excitation coil 3 is wound approximately at the center of the insulating pipe 2, and the two detection coils 4
.. 5 is wound on both sides of the excitation coil 2 at positions equidistant from the excitation coil 3. That is, the excitation coil 3 is arranged at an intermediate position between the detection coils 4 and 5.
これらの励磁コイル3と各検出コイル4.5は夫々空芯
コイルとされている。このため、検出コイル4.5のイ
ンダクタンスが小さくなり、周波数特性は著しく改善さ
れて高周波域に移動させることが可能となり、また、巻
数を大幅に増加することができる。The excitation coil 3 and each detection coil 4.5 are air-core coils. Therefore, the inductance of the detection coil 4.5 is reduced, the frequency characteristics are significantly improved, it becomes possible to move to a high frequency range, and the number of turns can be significantly increased.
各コイルの磁気回路にはコアを使用しないために励磁コ
イル2により発生される磁束密度は低くなるが、検出コ
イル4.5の巻数を増加させることにより当該磁束密度
の減少による感度の低下分を補うことができる。また、
磁気回路にコアを使用しないために温度特性が大幅に改
善されて極めて良好となる。更に、絶縁パイプ2に励磁
コイル3、検出コイル4.5を巻回するだけであるため
にこれらの各検出コイル4.5の出力電圧のバランスの
調整が容易であり、しかも、製作時に一度調整すること
により以後調整を不要となり、取り扱いが容易である。Since no core is used in the magnetic circuit of each coil, the magnetic flux density generated by the excitation coil 2 is low, but by increasing the number of turns of the detection coil 4.5, the decrease in sensitivity due to the decrease in magnetic flux density can be compensated for. It can be supplemented. Also,
Since no core is used in the magnetic circuit, the temperature characteristics are greatly improved and are extremely good. Furthermore, since the excitation coil 3 and the detection coil 4.5 are simply wound around the insulated pipe 2, it is easy to adjust the balance of the output voltage of each detection coil 4.5. This eliminates the need for subsequent adjustments and makes handling easier.
励磁コイル3は励磁回路6に接続され、各検出コイル4
.5は信号処理回路7に接続される。励磁回路6は高周
波発振回路を備え、励磁コイル3に高周波電流を印加し
て当該励磁コイル3を励磁する。信号処理回路7は例え
ば、差動増幅器を備え、2つの検出コイル4と5との誘
起起電力の差に応じた電圧を出力する。The excitation coil 3 is connected to an excitation circuit 6, and each detection coil 4
.. 5 is connected to a signal processing circuit 7. The excitation circuit 6 includes a high frequency oscillation circuit, and applies a high frequency current to the excitation coil 3 to excite the excitation coil 3. The signal processing circuit 7 includes, for example, a differential amplifier, and outputs a voltage according to the difference in induced electromotive force between the two detection coils 4 and 5.
因みに、本発明の検出器1と第3図に示す従来のコアを
使用した検出器35との実験結果を第1表に示す。Incidentally, Table 1 shows the experimental results of the detector 1 of the present invention and the detector 35 using the conventional core shown in FIG.
ここに、検出器lの絶縁バイブ2の内径を2゜I、励磁
コイル3の巻数を100回、各検出コイル4.50巻数
を夫々1000回、励磁コイル3の励磁電流の周波数を
500kHzとし、検出器35の励磁コイル32の巻数
を20回、各検出コイル33.34の巻数を夫々42回
、励磁コイル32の励磁電流の周波数を300kHzと
する。Here, the inner diameter of the insulating vibrator 2 of the detector L is 2°I, the number of turns of the excitation coil 3 is 100, the number of turns of each detection coil 4.50 is 1000, and the frequency of the excitation current of the excitation coil 3 is 500kHz. The number of turns of the excitation coil 32 of the detector 35 is 20, the number of turns of each detection coil 33 and 34 is 42, and the frequency of the excitation current of the excitation coil 32 is 300 kHz.
また、検出すべきサンプル(金属異物)9として銅球を
使用し、当該サンプル9を検出器1.35内を自然落下
させて通過させる。そして、このサンプル9の直径D−
を変化させたときの各検出器1.35の出力電圧(mV
)を対比したものである。Further, a copper ball is used as the sample (metallic foreign object) 9 to be detected, and the sample 9 is allowed to fall naturally and pass through the detector 1.35. And the diameter D- of this sample 9
The output voltage (mV) of each detector 1.35 when changing the
).
第1表 この実験結果から以下のことが判明した。Table 1 The results of this experiment revealed the following.
(1) 直径の大きいサンプルに対しては検出器1と
35との出力電圧は略同じである。即ち、このときの検
出感度は双方とも略同じである。(1) For large diameter samples, the output voltages of detectors 1 and 35 are approximately the same. That is, the detection sensitivity at this time is approximately the same for both.
(2)従来の検出B35の出力は、サンプルの直径りの
約4,7乗に比例する。即ち、出力電圧Eは、E”D”
’ で表される。(2) The output of the conventional detection B35 is proportional to about the 4.7th power of the diameter of the sample. That is, the output voltage E is E"D"
' Represented by '.
(3) 一方、本発明の検出器lの出力は、銅球の直
径りの約2.6乗に比例する。即ち、出力電圧Eは、E
OCD客・6で表される。(3) On the other hand, the output of the detector l of the present invention is proportional to about the 2.6th power of the diameter of the copper ball. That is, the output voltage E is E
OCD customer - Represented by 6.
(4)検出器35はサンプル9の直径りが0.16n+
m以下では検出不能であるが、本発明の検出器1は検出
可能であり、サンプル9の直径りが0.16m+wのと
きには約125 a+V、0.1mo+のときには約
37mVとなる。(4) The detector 35 has a diameter of 0.16n+ for the sample 9.
Although it is undetectable below m, the detector 1 of the present invention can detect it, and when the diameter of the sample 9 is 0.16 m+w, it is about 125 a+V, and when it is 0.1 mo+, it is about 37 mV.
従って、サンプル9の直径りが0.5anよりも小さい
場合には、本発明の検出器1の検出感度は従来の検出器
35に比して極めて高くなることは明らかである。Therefore, it is clear that when the diameter of the sample 9 is smaller than 0.5 an, the detection sensitivity of the detector 1 of the present invention is extremely higher than that of the conventional detector 35.
第2図は第1図に示す検出器1を通用して絶縁部材中に
混入せる金属異物の検出方法を実施するための検出装置
の一例を示す。金属異物検出装置10は架台11と、ダ
ンパ12と、シェード13と、選別ボックス14と、パ
ケットエ5と、当S亥パケット15を駆動する電磁弁1
6及び前記金属検出器1により構成される。ダンパ12
は被検査物例えば、前記絶縁部材25を貯溜するもので
、架台11の上方位置に配置されその底部を略円錐形を
なして縮径され中央の孔にはシュート13の上端を接続
される。このシュート13は垂下され、下端を選別ボッ
クス14の上端中央に臨んで開口する。このシュート1
3は非導電性且つ非磁性を有する部材により形成され、
検出器lに電気的及び磁気的影響を与えないようにされ
ている。FIG. 2 shows an example of a detection apparatus for carrying out the method of detecting metal foreign matter mixed into an insulating member through the detector 1 shown in FIG. The metal foreign object detection device 10 includes a frame 11, a damper 12, a shade 13, a sorting box 14, a packet 5, and a solenoid valve 1 that drives the S-packet 15.
6 and the metal detector 1. Damper 12
is for storing the object to be inspected, for example, the insulating member 25, and is placed above the pedestal 11, the bottom of which is reduced in diameter to form a substantially conical shape, and the upper end of the chute 13 is connected to the hole in the center. This chute 13 is hung down and opens with its lower end facing the center of the upper end of the sorting box 14. This shoot 1
3 is formed of a non-conductive and non-magnetic member,
The detector l is kept free from electrical and magnetic influences.
選別ボックス14は架台11の下部位置11aの略中央
に且つ前記ダンパ12の下方位置に配置され、その上端
14aを開口され、下端を吐出口14b、14Cの2股
に形成され、一方の吐出口14bを良品の吐出口、他方
の吐出口14Cを不良品の吐出口とされる。良品吐出口
14bは例えば、前記電カケープルの被覆工程の移送通
路に、不良品吐出口14Cは廃品回収容器(共に図示せ
ず)に接続される。The sorting box 14 is arranged approximately at the center of the lower position 11a of the pedestal 11 and below the damper 12, and has an open upper end 14a, and a lower end formed into two discharge ports 14b and 14C, one of which is a discharge port. The discharge port 14b is designated as a discharge port for non-defective products, and the other discharge port 14C is designated as a discharge port for defective products. The non-defective product outlet 14b is connected, for example, to a transfer path for the electrical cable coating process, and the defective product outlet 14C is connected to a waste product collection container (both not shown).
パケット15は選別ボックス14内中央にその上部を軸
16により揺動可能に軸支されて収納されており、上端
15aを下端15bよりも僅かに大径の筒体とされてい
る。このパケット15は上端15aを揺動位置に拘らず
常にシュート13の下端に臨んで開口し、実線で示す一
側に揺動されると下端15bを良品吐出口14bに、2
点鎖線で示す他側に揺動されると不良品吐出口14Cに
夫々臨んで開口される。The packet 15 is housed in the center of the sorting box 14, with its upper portion being pivotably supported by a shaft 16, and the upper end 15a is a cylinder having a slightly larger diameter than the lower end 15b. This packet 15 always opens with its upper end 15a facing the lower end of the chute 13 regardless of the swinging position, and when it swings to one side shown by the solid line, its lower end 15b opens to the non-defective discharge port 14b, and the second
When they are swung to the other side indicated by the dotted chain line, they are opened facing the respective defective product discharge ports 14C.
電磁弁17はパケット15を揺動させるもので、ロンド
18を介してパケット15の回動輪16に連結される。The electromagnetic valve 17 swings the packet 15 and is connected to the rotating wheel 16 of the packet 15 via the iron 18 .
この電磁弁17は消勢時にはパケット15を実線で示す
位置に保持して当該パケット15の下端15bを良品吐
出口14bに連通させ、付勢されると2点鎖線の位置に
揺動させて下端15bを不良品吐出口14cに連通させ
る。When the electromagnetic valve 17 is deenergized, it holds the packet 15 at the position shown by the solid line and communicates the lower end 15b of the packet 15 with the non-defective discharge port 14b, and when it is energized, it swings to the position shown by the two-dot chain line and the lower end 15b is communicated with the defective product discharge port 14c.
検出器1は架台11の略中央にシールドケース20を介
して配置され、当該シールドケース2゜は防振部材例え
ばスプリング21を介して中央部11a上に載置されて
いる。この検出器1は前記第1図に示す検出器と同様に
構成されており、絶縁パイプ2は非導電性且つ非磁性部
材により形成され、シュート13に外嵌されている。こ
の絶縁パイプ2をシュート13に外嵌することにより、
各コイル3〜5の充填効率の向上が図られる。この絶縁
パイプ2に巻回された励磁コイル3及び検出コイル4.
5は夫々制御回路22に接続される。The detector 1 is placed approximately in the center of the pedestal 11 via a shield case 20, and the shield case 2° is placed on the center portion 11a via a vibration isolating member such as a spring 21. This detector 1 is constructed in the same manner as the detector shown in FIG. By fitting this insulated pipe 2 onto the chute 13,
The filling efficiency of each coil 3 to 5 is improved. An excitation coil 3 and a detection coil 4 are wound around this insulated pipe 2.
5 are connected to the control circuit 22, respectively.
制御回路22は励磁コイル2に高周波電流を印加する励
磁する励磁回路、各検出コイル3.4に誘起される起電
力により絶縁パイプ2内を通過する絶縁部材25中に混
入せる微小金属異物の有無を検出し、金属異物を検出し
た時には当該検出した時から一定時間Tdの後所定時間
Tの開駆動信号Sを出力する信号処理回路(共に図示せ
ず)を備え、前記信号処理回路は駆動信号Sを前記電磁
弁17に印加して当該電磁弁1Gを駆動する。The control circuit 22 is an excitation circuit that applies a high-frequency current to the excitation coil 2, and detects the presence or absence of minute metal foreign matter that is mixed into the insulating member 25 passing through the insulating pipe 2 by the electromotive force induced in each detection coil 3.4. and a signal processing circuit (both not shown) that outputs an open drive signal S for a predetermined time T after a predetermined time Td from the time of detection when a metal foreign object is detected, and the signal processing circuit outputs an open drive signal S for a predetermined time T. S is applied to the electromagnetic valve 17 to drive the electromagnetic valve 1G.
前記一定時間Tdは絶縁部材25に混入せる金属異物が
検出された位置即ち、検出器1からシェード13の下端
にいたるまでの時間であり、シュート13内を流下する
絶縁部材25の流下速度、検出器1のパケット15から
の高さ等により決定され、前記所定時間Tは絶縁部材2
5の当該金属異物を混入する部分のみを除去する時間で
あり、金属異物の検出時間、絶縁部材25の流下速度等
により決定される。この時間Tは一般に極短時間である
。The certain time period Td is the time from the position where the metal foreign matter to be mixed into the insulating member 25 is detected, that is, from the detector 1 to the lower end of the shade 13. The predetermined time T is determined by the height of the container 1 from the packet 15, etc.
5, which is the time for removing only the portion that contains the metal foreign matter, and is determined by the detection time of the metal foreign matter, the flow rate of the insulating member 25, and the like. This time T is generally extremely short.
以下に絶縁部材に混入せる金属異物の検出方法について
説明する。A method for detecting metal foreign matter mixed into an insulating member will be described below.
ダンパ12内に投入された絶縁部材25は自重によりシ
ュート13内を流下してパケット15にする。検出器1
は当該絶縁部材25内に金属異物を検出しないときには
各検出コイル4.5の出力は平衡状態にあり、制御回路
22は駆動信号Sを出力せず、電磁弁16は消勢状態に
あり、パケット15は実線で示す位置に保持されている
。この結果、絶縁部材25はシュート13内を流下して
パケット15に流入し、当該パケット15の下端15b
から良品吐出口14bに導かれ、前述した被覆工程に移
送される。The insulating member 25 thrown into the damper 12 flows down the chute 13 due to its own weight and becomes a packet 15. Detector 1
When no metal foreign matter is detected in the insulating member 25, the output of each detection coil 4.5 is in a balanced state, the control circuit 22 does not output the drive signal S, the solenoid valve 16 is in a deenergized state, and the packet 15 is held at the position shown by the solid line. As a result, the insulating member 25 flows down inside the chute 13 and flows into the packet 15, and the lower end 15b of the packet 15
from there to the non-defective discharge port 14b and transferred to the above-mentioned coating process.
今、時刻tにおいて検出器1が絶縁部材25内に混入せ
る金属異物を検出した場合には、制御回路22は当該時
刻tから前記一定時間Tdの後、所定時間Tの開駆動信
号Sを出力する。この駆動信号Sが出力されるまでの時
間Ta2間に、検出器1からシュート13の下端に至る
までの当該シュート13内を流下する金属異物を混入し
ない1色縁部材25が良品吐出口14bに導かれる。そ
して、前記時刻tから時間Tdの後、絶縁部材25の異
物を混入する部分がシュート13の下端に達する。この
時、電磁弁16が所定時間Tの間付勢され、パケット1
5が2点鎖線で示す位置に揺動され、下端15bを不良
品吐出口14cに臨んで開口される。この結果、前記絶
縁部材25の前記金属異物を混入せる部分が当該パケッ
ト15を介して不良品吐出口14Cに導かれる。Now, when the detector 1 detects a metal foreign substance mixed into the insulating member 25 at time t, the control circuit 22 outputs the open drive signal S for a predetermined time T after the predetermined time Td from the time t. do. During the time Ta2 until this drive signal S is output, the one-color edge member 25, which does not contain metal foreign matter flowing down the chute 13 from the detector 1 to the lower end of the chute 13, reaches the non-defective discharge port 14b. be guided. Then, after a time Td from the time t, the portion of the insulating member 25 into which foreign matter is mixed reaches the lower end of the chute 13. At this time, the solenoid valve 16 is energized for a predetermined time T, and the packet 1
5 is swung to the position shown by the two-dot chain line, and the lower end 15b is opened facing the defective product discharge port 14c. As a result, the portion of the insulating member 25 into which the metal foreign matter is mixed is guided to the defective product outlet 14C via the packet 15.
前記所定時間Tの後、電磁弁17が消勢されるとパケッ
ト15は再び実線で示す位置に揺動されて下端15bを
良品吐出口14bに臨んで開口され、シュート13を流
下して当該パケット15内に流入せる絶縁部材25を良
品吐出口14aに導く。このようにして、絶縁部材25
の前記金属異物を混入する部分のみが除去される。After the predetermined time T, when the electromagnetic valve 17 is deenergized, the packet 15 is swung again to the position shown by the solid line, the lower end 15b is opened facing the non-defective discharge port 14b, and the packet flows down the chute 13 and the packet is The insulating member 25 flowing into the insulating member 15 is guided to the non-defective discharge port 14a. In this way, the insulating member 25
Only the portion of the metal contaminant that contains the metal foreign matter is removed.
尚、本実施例においては電カケープルを被覆する絶縁部
材に混入せる微細金属部材を検出する場合についてつい
て記述したが、これに限るものではなく、他の非導電性
且つ非磁性を存する部材に混入せる微細金属の検出に適
用することができることは勿論である。Although this embodiment describes the case of detecting fine metal parts mixed into an insulating member covering an electric cable, the detection is not limited to this. Of course, the present invention can be applied to the detection of fine metals.
(発明の効果)
以上説明したように本発明によれば、非磁性且つ非導電
性を有する部材で形成されるkfiM部材を移送する移
送通路の途中に当該通路を囲繞させて、励磁コイルと、
当該励磁コイルの両側等距離位置に2つの検出コイルと
を配置し、前記励磁コイルに高周波電流を印加し、前記
2つの検出コイルに誘起される起電力により前記通路内
を移動する前記絶縁部材に混入せる金属異物を検出する
ようにしたので、前記検出コイルの周波数特性を高周波
域に移動させることができると共にこれらの各検出コイ
ルの巻数を大幅に増加させることが可能となり、これに
伴い検出悪魔を従来に比して大幅に高くすることができ
、この結果、前記絶縁部材に混入せる極めて微細な金属
異物の検出が可能となる。更に、前記各コイルを空芯コ
イルとすることにより温度特性を大幅に改善することが
可能となり、且つ前記検出コイルのバランスの調整は製
作時に調整すれば以後不要となり、取り扱いが容易であ
る等の優れた効果がある。(Effects of the Invention) As described above, according to the present invention, an excitation coil is provided in the middle of a transfer passage for transferring a kfiM member formed of a non-magnetic and non-conductive member, surrounding the passage.
Two detection coils are placed equidistantly on both sides of the excitation coil, a high frequency current is applied to the excitation coil, and the electromotive force induced in the two detection coils causes the insulating member to move within the passage. Since the metal foreign matter that can be mixed in is detected, the frequency characteristics of the detection coils can be moved to a high frequency range, and the number of turns of each of these detection coils can be significantly increased. can be made significantly higher than in the past, and as a result, it becomes possible to detect extremely fine metal foreign matter that may be mixed into the insulating member. Furthermore, by using air-core coils for each of the coils, it is possible to significantly improve the temperature characteristics, and if the balance of the detection coils is adjusted at the time of manufacture, it is no longer necessary, making handling easier. It has excellent effects.
第1図は本発明に係る金属異物の検出方法に適用する検
出器の一実施例を示す斜視図、第2図は本発明に係る金
属異物の検出方法を実施する検出装置の一実施例を示す
図、第3図は従来の金属異物の検出器を示す図である。
1・・・検出器、2・・・絶縁パイプ、3・・・励磁コ
イル、4.5・・・検出コイル、6・・・信号処理回路
、7・・・励磁回路、9・・・サンプル、10・・・検
出装置、11・・・架台、12・・・ダンパ、13・・
・シュート、14・・・選別ボックス、15・・・パケ
ット、16・・・電磁弁、22・・・制御回路、25・
・・絶縁部材。
第1図
第3図FIG. 1 is a perspective view showing an embodiment of a detector applied to the method for detecting metal foreign objects according to the present invention, and FIG. The figure shown in FIG. 3 is a diagram showing a conventional metal foreign object detector. DESCRIPTION OF SYMBOLS 1...Detector, 2...Insulating pipe, 3...Excitation coil, 4.5...Detection coil, 6...Signal processing circuit, 7...Excitation circuit, 9...Sample , 10... Detection device, 11... Frame, 12... Damper, 13...
・Chute, 14... Sorting box, 15... Packet, 16... Solenoid valve, 22... Control circuit, 25...
...Insulating material. Figure 1 Figure 3
Claims (1)
を移送する移送通路の途中に当該通路を囲繞させて、励
磁コイルと、当該励磁コイルの両側等距離位置に2つの
検出コイルとを配置し、前記励磁コイルに高周波電流を
印加し、前記2つの検出コイルに誘起される起電力によ
り前記通路内を移動する前記絶縁部材に混入せる金属異
物を検出することを特徴とする金属異物検出方法。In the middle of a transfer path for transferring an insulating member made of a non-magnetic and non-conductive member, an excitation coil and two detection coils are arranged at equal distances on both sides of the excitation coil, surrounding the transfer path. A method for detecting metallic foreign objects, characterized in that a high frequency current is applied to the excitation coil, and metallic foreign objects mixed into the insulating member moving in the passage are detected by electromotive force induced in the two detection coils. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62043084A JPS63210690A (en) | 1987-02-27 | 1987-02-27 | Detection of metallic foreign matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62043084A JPS63210690A (en) | 1987-02-27 | 1987-02-27 | Detection of metallic foreign matter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63210690A true JPS63210690A (en) | 1988-09-01 |
Family
ID=12653971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62043084A Pending JPS63210690A (en) | 1987-02-27 | 1987-02-27 | Detection of metallic foreign matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63210690A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0395981U (en) * | 1990-01-23 | 1991-09-30 | ||
JPH064687U (en) * | 1992-02-28 | 1994-01-21 | 東洋ナッツ食品株式会社 | Metallic foreign material detection device for granular food |
JP2015175639A (en) * | 2014-03-13 | 2015-10-05 | アンリツ産機システム株式会社 | Metal detector |
JP2017015451A (en) * | 2015-06-29 | 2017-01-19 | 株式会社荏原製作所 | Metal detection sensor and method of detecting metal using the same |
JP2019012085A (en) * | 2018-10-22 | 2019-01-24 | 株式会社荏原製作所 | Metal detection sensor and method of detecting metal using the same |
-
1987
- 1987-02-27 JP JP62043084A patent/JPS63210690A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0395981U (en) * | 1990-01-23 | 1991-09-30 | ||
JPH064687U (en) * | 1992-02-28 | 1994-01-21 | 東洋ナッツ食品株式会社 | Metallic foreign material detection device for granular food |
JP2015175639A (en) * | 2014-03-13 | 2015-10-05 | アンリツ産機システム株式会社 | Metal detector |
JP2017015451A (en) * | 2015-06-29 | 2017-01-19 | 株式会社荏原製作所 | Metal detection sensor and method of detecting metal using the same |
US10739488B2 (en) | 2015-06-29 | 2020-08-11 | Ebara Corporation | Metal detection sensor and metal detection method using same |
JP2019012085A (en) * | 2018-10-22 | 2019-01-24 | 株式会社荏原製作所 | Metal detection sensor and method of detecting metal using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10739488B2 (en) | Metal detection sensor and metal detection method using same | |
US20180243756A1 (en) | Variable frequency eddy current metal sorter | |
JP2018031768A (en) | Metal detection device | |
Nagel et al. | Electrodynamic sorting of industrial scrap metal | |
JPS63210690A (en) | Detection of metallic foreign matter | |
JPH06174696A (en) | Magnetizer for detecting flaw using magnetic powder | |
JPH06148139A (en) | Defect detecting device | |
JP3140105B2 (en) | Electromagnetic induction type inspection equipment | |
JPH0933489A (en) | Moving exciting coil type eddy current flaw detector employing squid flux meter | |
JPH10232222A (en) | Foreign product detector | |
RU2486618C1 (en) | Method of demagnetisation of ferromagnetic materials and device to this effect | |
Tanaka et al. | Two-channel HTS SQUID gradiometer system for detection of metallic contaminants in lithium-ion battery | |
JP6079648B2 (en) | Foreign object detection device and detection method thereof | |
JPH0411187Y2 (en) | ||
JP2006068647A (en) | Magnetic separator for granular material | |
Tanaka et al. | High Tc SQUID system for detection of small metallic contaminant in industrial products | |
JP2000258396A (en) | Magnetic member-detecting device | |
JP2019012085A (en) | Metal detection sensor and method of detecting metal using the same | |
US2678421A (en) | Magnetic inspection apparatus and method | |
JP2768906B2 (en) | Adjustment method of foreign object detection coil device of transport sorting machine and transport sorting machine | |
CN219051656U (en) | Novel magnetic separation equipment | |
JPH09175624A (en) | Electromagnetic vibrating feeder | |
JPH112625A (en) | Detecting device of abnormal article | |
JPS62276454A (en) | Method for detecting foreign matter in ferromagnetic body | |
SU769647A1 (en) | Method of process inspection of sintered ferrite blanks for magnetic properties |