JPH0933489A - Moving exciting coil type eddy current flaw detector employing squid flux meter - Google Patents
Moving exciting coil type eddy current flaw detector employing squid flux meterInfo
- Publication number
- JPH0933489A JPH0933489A JP7187296A JP18729695A JPH0933489A JP H0933489 A JPH0933489 A JP H0933489A JP 7187296 A JP7187296 A JP 7187296A JP 18729695 A JP18729695 A JP 18729695A JP H0933489 A JPH0933489 A JP H0933489A
- Authority
- JP
- Japan
- Prior art keywords
- eddy current
- coil
- exciting coil
- squid
- current flaw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 241000238366 Cephalopoda Species 0.000 title claims abstract description 27
- 230000004907 flux Effects 0.000 title claims abstract description 11
- 238000001514 detection method Methods 0.000 abstract description 10
- 230000004069 differentiation Effects 0.000 abstract 1
- 230000001939 inductive effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 3
- 230000001066 destructive effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、試験体(被検体と
もいう)を固定した状態で、SQUID磁束計を用いた
探傷を可能とした渦電流探傷装置に関する。ここでSQ
UIDとはSuperconducting Quantum Interference Dev
ice (超伝導量子干渉計)のことをいう。SQUIDは
超伝導リングとジョセフソン接合の組合わせにより構成
される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detector capable of flaw detection using a SQUID magnetometer while a test body (also referred to as a subject) is fixed. SQ here
What is UID Superconducting Quantum Interference Dev
Ice (superconducting quantum interferometer). SQUID is composed of a combination of superconducting ring and Josephson junction.
【0002】[0002]
【従来の技術】被破壊検査装置の高度化を図るため、磁
場感度が高いSQUID磁束計を用いた探傷装置が開発
されている。従来のSQUID磁束計を用いた被破壊検
査装置は、図9に示すようにSQUID1と、磁場を検
出するピックアップコイル2と、試験体(被検体)4を
移動するためのX−Yステージなどの走査装置から構成
されており、SQUID1とピックアップコイル2は、
移動に伴う環境磁場の変化などのノイズを拾わないよう
に固定し、探傷を行う場合は試験体(被検体)を走査装
置に載せて移動していた。2. Description of the Related Art In order to improve the sophistication of a device for destructive inspection, a flaw detector using a SQUID magnetometer having high magnetic field sensitivity has been developed. As shown in FIG. 9, a destructive inspection device using a conventional SQUID magnetometer includes an SQUID 1, a pickup coil 2 for detecting a magnetic field, and an XY stage for moving a test body (subject) 4. It is composed of a scanning device, and SQUID 1 and pickup coil 2 are
It was fixed so as not to pick up noise such as changes in the environmental magnetic field due to movement, and when performing flaw detection, the test body (subject) was placed on the scanning device and moved.
【0003】[0003]
【発明が解決しようとする課題】ところが上記従来のS
QUID磁束計を用いた探傷装置では、SQUID磁束
計は固定され、探傷時は試験体を走査装置に載せて試験
体側を移動させていたため探傷する試験体(被検体)の
大きさも限られ、融通性に欠けていることから探傷装置
として実用化するには現実的ではないという問題点があ
った。本発明は、これらの問題を解決することができる
装置を提供することを目的とする。However, the above-mentioned conventional S
In the flaw detector using the QUID magnetometer, the SQUID magnetometer is fixed, and the specimen was placed on the scanning device and moved on the side of the specimen at the time of flaw detection. Since it lacks in properties, there is a problem that it is not realistic to put it into practical use as a flaw detection device. The present invention aims to provide a device capable of solving these problems.
【0004】[0004]
【課題を解決するための手段】本発明に係る渦電流探傷
装置は、(A)SQUIDと磁場を検出する微分型のピ
ックアップコイルからなるSQUID磁束計と、(B)
被検体に渦電流を発生させる励磁コイルと(C)前記励
磁コイルを、前記ピックアップコイルを構成するコイル
の鎖交磁束を等しくする位置上で、被検体に沿って移動
させる手段とを備えたことを特徴とする。An eddy current flaw detector according to the present invention is (A) an SQUID magnetometer comprising a SQUID and a differential type pickup coil for detecting a magnetic field, and (B).
An exciting coil for generating an eddy current in the subject and (C) means for moving the exciting coil along the subject at a position where the interlinking magnetic flux of the coils forming the pickup coil are equalized. Is characterized by.
【0005】すなわち、本発明のSQUID磁束計を用
いた渦電流探傷装置は、ピックアップコイルを、励磁コ
イルの発生する磁場をキャンセルするように、その形状
および配置を決め、励磁コイルをその励磁信号がピック
アップコイルでキャンセルされるような位置で、移動さ
せることにより渦電流探傷装置を構成したことを特徴と
するものである。従って、試験体(被検体)を固定した
ままで、SQUID磁束計により渦電流探傷を行うこと
ができる。That is, in the eddy current flaw detector using the SQUID magnetometer of the present invention, the shape and arrangement of the pickup coil are determined so as to cancel the magnetic field generated by the exciting coil, and the exciting coil receives the exciting signal. The eddy current flaw detector is constructed by moving the pickup coil at a position where it is canceled by the pickup coil. Therefore, eddy current flaw detection can be performed with the SQUID magnetometer while the test body (subject) is fixed.
【0006】[0006]
【発明の実施の形態】本発明の実施の形態を図1〜図8
に示す。図1は、本発明の第1の実施の形態を示すSQ
UID磁束計を用いた渦電流探傷装置を示す。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention is shown in FIGS.
Shown in FIG. 1 is a SQ showing a first embodiment of the present invention.
1 shows an eddy current flaw detector using a UID magnetometer.
【0007】図1において、1はSQUIDで磁場信号
を電気信号に変換するものである。2は磁場を検出する
ピックアップコイルで、八の字型の一次微分型コイルと
なっている。In FIG. 1, reference numeral 1 is an SQUID for converting a magnetic field signal into an electric signal. Reference numeral 2 is a pickup coil for detecting a magnetic field, which is an eight-shaped primary differential coil.
【0008】3は励磁コイルで、試験体に渦電流を発生
させながら移動していくが、その励磁信号は、励磁コイ
ルとピックアップコイルの位置関係からピックアップコ
イルによって信号としてはキャンセルされる。Reference numeral 3 denotes an exciting coil, which moves while generating an eddy current in the test body, but the exciting signal is canceled as a signal by the pickup coil due to the positional relationship between the exciting coil and the pickup coil.
【0009】上記のように構成された渦電流探傷装置で
は、励磁コイル3を、図1の(B)、(C)のように矢
印の方向に動かしたとき、その発生磁場はピックアップ
コイル2でキャンセルされるので、SQUID1では検
出されない。In the eddy current flaw detector constructed as described above, when the exciting coil 3 is moved in the direction of the arrow as shown in FIGS. 1B and 1C, the generated magnetic field is picked up by the pickup coil 2. Since it is canceled, it is not detected in SQUID1.
【0010】励磁コイル3は、試験体4に渦電流を発生
させながら移動するので、励磁コイルが通過する地点に
きずが存在すれば、渦電流に乱れが生じ、これによって
発生する磁場の乱れを、ピックアップコイル2を介して
SQUID1で検出することができる。よってきず検出
が可能となる。Since the exciting coil 3 moves while generating an eddy current in the test body 4, if there is a flaw at the point where the exciting coil passes, the eddy current is disturbed, and the resulting disturbance of the magnetic field is caused. , SQUID 1 can be detected via the pickup coil 2. Therefore, it becomes possible to detect flaws.
【0011】また、図2のように励磁コイル3をピック
アップコイル2の周りを回転させることによって、きず
検出を行うこともできる。その理由は、励磁コイル3
を、その発生する磁場がピックアップコイル2でキャン
セルできる位置で、ピックアップコイル2を中心軸とし
て回転させ、磁場を円筒試料5に発生させ、円筒試料5
にきずがあると、渦電流に乱れが生じ、ピックアップコ
イル部分における磁場分布のバランスが壊れ、磁場の変
化が検出されるためである。よってきずの検出が可能と
なる。Further, flaw detection can be performed by rotating the excitation coil 3 around the pickup coil 2 as shown in FIG. The reason is that the exciting coil 3
At a position where the generated magnetic field can be canceled by the pickup coil 2, the pickup coil 2 is rotated about the central axis to generate a magnetic field in the cylindrical sample 5,
This is because if there is a flaw in the eddy current, the eddy current is disturbed, the balance of the magnetic field distribution in the pickup coil portion is broken, and a change in the magnetic field is detected. Therefore, the flaw can be detected.
【0012】次にピックアップコイル2の形状につき説
明する。SQUID磁束計における磁気信号の検出は、
融通性、雑音対策も考慮して直接SQUIDリングで拾
うのではなく、必要な信号だけを拾うためにピックアッ
プコイルが使われる。そのピックアップコイルの形状
は、目的に応じて種々のものが考えられているが、一般
に図3に示す一次微分型コイルか、図4に示す二次微分
型コイルである。Next, the shape of the pickup coil 2 will be described. The detection of the magnetic signal in the SQUID magnetometer is
A pickup coil is used to pick up only a necessary signal instead of picking it up directly by the SQUID ring in consideration of flexibility and noise countermeasures. Although various shapes of the pickup coil have been considered depending on the purpose, they are generally the primary differential type coil shown in FIG. 3 or the secondary differential type coil shown in FIG.
【0013】一次型微分コイルは、二つのコイルを差動
接続することにより、空間的に一様な磁場を消すことが
できる。すなわち、一次型微分コイルは、環境ノイズを
低減し、ピックアップコイル近傍の必要な磁気信号だけ
を検出できる。The first-order differential coil can eliminate a spatially uniform magnetic field by differentially connecting the two coils. That is, the first-order type differential coil can reduce environmental noise and detect only a necessary magnetic signal in the vicinity of the pickup coil.
【0014】次にピックアップコイル2に対して、磁場
キャンセルできる励磁コイル3の位置について説明す
る。ピックアップコイル2は、二つのコイルが差動接続
されている。Next, the position of the exciting coil 3 that can cancel the magnetic field with respect to the pickup coil 2 will be described. Two coils are differentially connected to the pickup coil 2.
【0015】このため、二つのコイルの鎖交磁束が等し
ければピックアップコイル2の出力は0となる。図5に
より具体的に説明すると、ピックアップコイル2を構成
する二つのコイルが、面積、巻線数とも等しいとき、二
つのコイルの中心と励磁コイルの中心を結んだ直線の距
離が等しくなるような位置において励磁コイルを動かす
と、二つのコイルの鎖交磁束の差は0となり、励磁コイ
ルからの磁場はキャンセルされる。Therefore, if the interlinkage magnetic fluxes of the two coils are equal, the output of the pickup coil 2 becomes zero. More specifically, referring to FIG. 5, when the two coils forming the pickup coil 2 have the same area and the same number of windings, the distances of the straight lines connecting the centers of the two coils and the exciting coil are equal. When the exciting coil is moved at the position, the difference between the interlinking magnetic fluxes of the two coils becomes 0, and the magnetic field from the exciting coil is canceled.
【0016】これは図6においても同様で、ピックアッ
プコイル2を構成する2つのコイルから等しい距離にあ
り、かつピックアップコイル2の軸に垂直な面で励磁コ
イルを垂直にして動かせば、ピックアップコイル2を構
成する二つのコイルの鎖交磁束の差は0となり、磁場は
キャンセルされる。This is the same as in FIG. 6, and if the exciting coil is moved vertically on a plane that is at the same distance from the two coils constituting the pickup coil 2 and is perpendicular to the axis of the pickup coil 2, The difference between the interlinkage magnetic fluxes of the two coils constituting the above becomes 0, and the magnetic field is canceled.
【0017】次に、どの様な手段によって、励磁コイル
3を移動若しくは回転させるのかにつき説明する。励磁
コイル3の移動装置は、まず励磁コイル3から磁場がピ
ックアップコイルでキャンセルされる位置を決めてお
き、その位置を移動するように装置をセットする。Next, the means for moving or rotating the exciting coil 3 will be described. The moving device of the exciting coil 3 first determines a position where the magnetic field from the exciting coil 3 is canceled by the pickup coil, and sets the device so as to move the position.
【0018】図7は、励磁コイルを移動する1例とし
て、ネジの回転による移動装置を示す。 これは、X−
Yステージ等に用いられている機構である。ただし、ネ
ジを回転させるモータは磁気を発生するので、SQUI
Dに影響しないようにSQUIDを充分離すか、モータ
自身をシールドする必要がある。FIG. 7 shows a moving device by rotating a screw as an example of moving the exciting coil. This is X-
This is a mechanism used for the Y stage and the like. However, since the motor that rotates the screw generates magnetism, SQUI
It is necessary to separate the SQUID so as not to affect D or shield the motor itself.
【0019】基本的に、励磁コイルの移動装置は非磁性
体でなければならない。またモータを使わない方法に
は、油圧や、エアーを用いる方法もある。図8は、励磁
コイル3を円筒などの回転体に装着し、回転体をモータ
で駆動することにより、励磁コイル3を、固定したピッ
クアップコイル2の周りで回転させるものである。ただ
し、この場合もモータはSQUIDから充分離すか、シ
ールドで覆う必要がある。Basically, the exciter coil moving device must be a non-magnetic material. Further, as a method that does not use a motor, there is a method that uses hydraulic pressure or air. In FIG. 8, the exciting coil 3 is mounted on a rotating body such as a cylinder, and the rotating body is driven by a motor to rotate the exciting coil 3 around the fixed pickup coil 2. However, also in this case, the motor needs to be charged and separated from the SQUID or covered with a shield.
【0020】[0020]
(1)本発明によれば、試験体(被検体)を動かすこと
なく、SQUID磁束計により、渦電流探傷が可能にな
る。 (2)そのため、従来装置に比べ融通性が広がり、移動
が不可能な試験体(被検体)や、大きくて走査装置に載
せることができない様な試験体(含、実機)の探傷がで
きるようになる。(1) According to the present invention, eddy current flaw detection can be performed by the SQUID magnetometer without moving the test body (subject). (2) Therefore, it is possible to detect a test object (inspection object) that cannot be moved and a test object (including an actual device) that is too large to be placed on the scanning device because it has more flexibility than the conventional device. become.
【図1】本発明の第1の実施の形態を示すSQUID磁
束計を用いた渦電流探傷装置。FIG. 1 is an eddy current flaw detector using a SQUID magnetometer showing a first embodiment of the present invention.
【図2】円筒導体に対して本発明を用いた探傷装置を示
す図。FIG. 2 is a diagram showing a flaw detection device using the present invention for a cylindrical conductor.
【図3】一次微分コイルを示す図。FIG. 3 is a diagram showing a primary differential coil.
【図4】二次微分コイルを示す図。FIG. 4 is a diagram showing a secondary differential coil.
【図5】ピックアップコイルの鎖交磁束の説明図(その
1)。FIG. 5 is an explanatory view (1) of the interlinkage magnetic flux of the pickup coil.
【図6】ピックアップコイルの鎖交磁束の説明図(その
2)。FIG. 6 is an explanatory diagram of a magnetic flux linkage of the pickup coil (No. 2).
【図7】励磁コイルの移動装置(その1)。FIG. 7 shows a moving device of an exciting coil (No. 1).
【図8】励磁コイルの移動装置(その2)。FIG. 8 shows a moving device of an exciting coil (No. 2).
【図9】従来のSQUID磁束計を用いた渦電流探傷装
置を示す図。FIG. 9 is a view showing an eddy current flaw detector using a conventional SQUID magnetometer.
1…SQUID、 2…ピックアップコイル、 3…励磁コイル、 4…試験体(被検体)、 5…円筒試料、 10…ネジ、 11…モータ、 12…磁気シールド。 1 ... SQUID, 2 ... Pickup coil, 3 ... Excitation coil, 4 ... Test object (subject), 5 ... Cylindrical sample, 10 ... Screw, 11 ... Motor, 12 ... Magnetic shield.
Claims (1)
微分型のピックアップコイル(2)からなるSQUID
磁束計と、(B)被検体(4)に渦電流を発生させる励
磁コイル(3)と、(C)前記励磁コイル(3)を、前
記ピックアップコイル(2)を構成するコイルの鎖交磁
束を等しくする位置上で、被検体(4)に沿って移動さ
せる手段とを備えたことを特徴とする渦電流探傷装置。1. A SQUID comprising (A) an SQUID (1) and a differential type pickup coil (2) for detecting a magnetic field.
The magnetic flux meter, (B) the exciting coil (3) for generating an eddy current in the subject (4), and (C) the exciting coil (3), the interlinkage magnetic flux of the coils forming the pickup coil (2). And a means for moving the object along the subject (4) at a position where they are equal to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7187296A JPH0933489A (en) | 1995-07-24 | 1995-07-24 | Moving exciting coil type eddy current flaw detector employing squid flux meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7187296A JPH0933489A (en) | 1995-07-24 | 1995-07-24 | Moving exciting coil type eddy current flaw detector employing squid flux meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0933489A true JPH0933489A (en) | 1997-02-07 |
Family
ID=16203522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7187296A Withdrawn JPH0933489A (en) | 1995-07-24 | 1995-07-24 | Moving exciting coil type eddy current flaw detector employing squid flux meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0933489A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002296238A (en) * | 2001-03-30 | 2002-10-09 | Iwate Prefecture | Squid magnetic imaging device |
JP2003149208A (en) * | 2001-11-09 | 2003-05-21 | Japan Science & Technology Corp | Nondestructive inspecting apparatus |
JP2003149212A (en) * | 2001-11-09 | 2003-05-21 | Japan Science & Technology Corp | Nondestructive inspecting apparatus |
JP2008111753A (en) * | 2006-10-31 | 2008-05-15 | Osaka Univ | Rail inspection device |
JP2009103534A (en) * | 2007-10-22 | 2009-05-14 | Okayama Univ | Magnetic measuring device |
JP2014219371A (en) * | 2013-05-11 | 2014-11-20 | 国立大学法人岡山大学 | Magnetic characteristic evaluation device |
WO2020032040A1 (en) | 2018-08-06 | 2020-02-13 | 東芝エネルギーシステムズ株式会社 | Eddy current flaw detection device and eddy current flaw detection method |
CN111351844A (en) * | 2020-03-16 | 2020-06-30 | 中国工程物理研究院材料研究所 | Eddy current detection device based on superconducting quantum interferometer |
-
1995
- 1995-07-24 JP JP7187296A patent/JPH0933489A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002296238A (en) * | 2001-03-30 | 2002-10-09 | Iwate Prefecture | Squid magnetic imaging device |
JP2003149208A (en) * | 2001-11-09 | 2003-05-21 | Japan Science & Technology Corp | Nondestructive inspecting apparatus |
JP2003149212A (en) * | 2001-11-09 | 2003-05-21 | Japan Science & Technology Corp | Nondestructive inspecting apparatus |
JP2008111753A (en) * | 2006-10-31 | 2008-05-15 | Osaka Univ | Rail inspection device |
JP2009103534A (en) * | 2007-10-22 | 2009-05-14 | Okayama Univ | Magnetic measuring device |
JP2014219371A (en) * | 2013-05-11 | 2014-11-20 | 国立大学法人岡山大学 | Magnetic characteristic evaluation device |
WO2020032040A1 (en) | 2018-08-06 | 2020-02-13 | 東芝エネルギーシステムズ株式会社 | Eddy current flaw detection device and eddy current flaw detection method |
US11598750B2 (en) | 2018-08-06 | 2023-03-07 | Toshiba Energy Systems & Solutions Corporation | Eddy current flaw detection device and eddy current flaw detection method |
CN111351844A (en) * | 2020-03-16 | 2020-06-30 | 中国工程物理研究院材料研究所 | Eddy current detection device based on superconducting quantum interferometer |
CN111351844B (en) * | 2020-03-16 | 2023-11-03 | 中国工程物理研究院材料研究所 | Vortex detecting device based on superconducting quantum interferometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6150809A (en) | Giant magnetorestive sensors and sensor arrays for detection and imaging of anomalies in conductive materials | |
US6850053B2 (en) | Device for measuring the motion of a conducting body through magnetic induction | |
US5589772A (en) | Non-destructive eddy current sensor having a squid magnetic sensor and selectively positionable magnets | |
US5414353A (en) | Method and device for nondestructively inspecting elongated objects for structural defects using longitudinally arranged magnet means and sensor means disposed immediately downstream therefrom | |
EP2682762A1 (en) | Current transducer for measuring an electrical current, magnetic transducer and current leakage detection system and method | |
WO2000008458A1 (en) | Eddy-current flaw detector probe | |
US5554933A (en) | Polar coordinates sensor probe for testing material surrounding fastener holes | |
US5537037A (en) | Apparatus with cancel coil assembly for cancelling a field parallel to an axial direction to the plural coils and to a squid pick up coil | |
JPH06324021A (en) | Non-destructive inspection device | |
JPH09145810A (en) | Superconducting quantum interference device fluxmeter and non-destructive inspection device | |
US7659717B2 (en) | Sensor for measuring magnetic flux | |
US6377040B1 (en) | Eddy current probe and process for checking the edges of metal articles | |
JPH0933489A (en) | Moving exciting coil type eddy current flaw detector employing squid flux meter | |
WO2017154141A1 (en) | Device for detecting flaw in floor slab | |
JPH10197493A (en) | Eddy-current flow detecting probe | |
US6265871B1 (en) | Device for generating eddy current induction and detection by means of the axes of permeability within a toroid/torus core | |
CN1441246A (en) | Magnetic nondestructive detection method and equipment for oxide inside austenite stainless steel pipe | |
US3940688A (en) | Device for testing the magnetic properties of a magnetic material | |
US4924181A (en) | Device having electromagnet for providing a magnetic field inclined with respect to the transportation direction of a ferromagnetic body for non-destructive, magnetic testing of the body | |
US4132949A (en) | Method and apparatus for the continuous, contactless testing of an elongated conductor which consists at least partially of superconductive material | |
CN104764800B (en) | One kind is based on the series connection magnetized piston ring remanent magnetism method of detection of closed type and device | |
Tanaka et al. | Two-channel HTS SQUID gradiometer system for detection of metallic contaminants in lithium-ion battery | |
JPH10507527A (en) | Non-destructive material testing apparatus and method | |
Enokizono et al. | Crack size and shape determination by moving magnetic field type sensor | |
JPH0815229A (en) | High resolution eddy current flaw detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021001 |