JPS6320892A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPS6320892A JPS6320892A JP61166181A JP16618186A JPS6320892A JP S6320892 A JPS6320892 A JP S6320892A JP 61166181 A JP61166181 A JP 61166181A JP 16618186 A JP16618186 A JP 16618186A JP S6320892 A JPS6320892 A JP S6320892A
- Authority
- JP
- Japan
- Prior art keywords
- grating
- semiconductor laser
- laser device
- wavelength
- periods
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 230000001902 propagating effect Effects 0.000 claims description 5
- 230000010355 oscillation Effects 0.000 abstract description 10
- 238000009826 distribution Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000000644 propagated effect Effects 0.000 abstract description 2
- 238000002310 reflectometry Methods 0.000 abstract 1
- 238000005253 cladding Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 102100032047 Alsin Human genes 0.000 description 1
- 101710187109 Alsin Proteins 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1206—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
- H01S5/1215—Multiplicity of periods
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、単一波長で発振する半導体レーザ装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device that oscillates at a single wavelength.
第2図(a)は分1tj帰還形レーザとして知られてい
る半導体レーザ装置の構造を示す図である。この図にお
いて、1.2はそれぞれpおよびn、電4M、3はキャ
リア注入によりレーザ媒質となる活性層、4はn型の光
ガイド層、6,7はそれぞれp型およびn型のクラッド
層で、活性層3および光ガイド層4よりも屈折率の低い
材料で構成され°Cいる。FIG. 2(a) is a diagram showing the structure of a semiconductor laser device known as a minute 1tj feedback type laser. In this figure, 1 and 2 are p and n electrons, respectively, 3 is an active layer that becomes a laser medium by carrier injection, 4 is an n-type optical guide layer, and 6 and 7 are p-type and n-type cladding layers, respectively. It is made of a material with a lower refractive index than the active layer 3 and the light guide layer 4 at .degree.
8はグレーティングである。8 is a grating.
この半導体レーザ装置では、活性層3°、光ガイド層4
およびクラッド層6,7の4層でスラブ型の導波路を構
成しており、光は中央の活性層3および光ガイド層4の
近傍に閉じ込められて伝搬する。In this semiconductor laser device, the active layer is 3°, the optical guide layer is 4°
A slab-type waveguide is composed of four layers, cladding layers 6 and 7, and light is propagated while being confined in the vicinity of the central active layer 3 and optical guide layer 4.
さて、分布帰還形レーザの持(散はグレーティング8に
あり、ここでは、光ガイド層4とクラッド層7の界面に
周期的な凹凸を設けて形成しているが、光の伝搬方向に
対し周期的な屈折率変化が設けられているところに本質
がある。グし−y−(ング8の周期Aは伝搬する光の波
長を^とすると、八−T(λ/n) ・m
に設定される。ここで、nは等価屈折率−C1光の伝搬
定数βに対し、
n=βλ72π mは正の整数である。Now, the main feature of a distributed feedback laser is the grating 8, which is formed by providing periodic irregularities on the interface between the light guide layer 4 and the cladding layer 7. The essence lies in the fact that a refractive index change is provided.The period A of the groove 8 is set to 8-T(λ/n) ・m, where the wavelength of the propagating light is ^. Here, n is the equivalent refractive index - the propagation constant β of C1 light, n=βλ72π m is a positive integer.
である。It is.
次に動作について説明する。Next, the operation will be explained.
光が導波路に従って伝搬すると周期的な屈折率変動を受
けることにな呼、特定の方向(角度)に回折される。光
の波長がグレーティング8の周期と前述の式を満足する
条件では(この波長をブラッグ波長と称する)、180
’後方に回折される。When light propagates along a waveguide, it undergoes periodic refractive index fluctuations and is diffracted in a specific direction (angle). Under the condition that the wavelength of the light satisfies the period of the grating 8 and the above formula (this wavelength is called the Bragg wavelength), 180
'It is diffracted backwards.
すなわら反射が生ずる。したがって、この反射を使い正
の帰還をかけることによりレーザ発振が生ずるが、特定
の面からの反射でな(、分布的に反射が生ずるので、分
布帰還形レーザと呼ばれている。特定の波長しか反射し
ないわけであるから発振波長の選択性もよく、単一波長
発振レーザとして開発が進められている。In other words, a reflection occurs. Therefore, laser oscillation is generated by applying positive feedback using this reflection, but it is not due to reflection from a specific surface (reflection occurs in a distributed manner, so it is called a distributed feedback laser. Since it only reflects light, the selectivity of the oscillation wavelength is good, and development as a single wavelength oscillation laser is progressing.
ところが、実際にはわずかであるが反射する光の波長に
幅があり、このために、レーザ利得も幅を持っている第
2図(b)は、利得幅内にある共振モードを示したもの
で、利得ピーク (ブラッグ波長)を挾んで両側に対称
的に共振モードが位置する。利得の低いモードは発振し
ないので問題ないが、最大利得のモードが2つあること
は間躍であり、通常、この2つのモードのどちらか、ま
たは双方で発振が起きろ。However, in reality, there is a slight width in the wavelength of the reflected light, and for this reason, the laser gain also has a width. Figure 2 (b) shows the resonance mode within the gain width. The resonant modes are located symmetrically on both sides of the gain peak (Bragg wavelength). There is no problem because the mode with low gain does not oscillate, but having two modes with the maximum gain is a big deal, and oscillation usually occurs in one or both of these two modes.
上記のような従来の半導体レーザ装置では、2つの最大
利得のモードの一方を選ぶために左右の端面における反
射率を変丸で波長−利7FJ特性を非対称にしたり、グ
レーティング8の位相を途中でπだけ変えることにより
、利得ピークに共振モードをシフトさせる方法が考えら
れている。しかし、左右の端面における反射率を変える
方法は、必ずしも常に十分なモード選択性が得られず安
定性に欠ける。またグレーティング8の位相を途中でπ
だけ変える方法は、位相を変えること自体に高度な技術
を要し正確にπだけ変えることが難しいため、歩留りが
低く必ずしも安定に単一モードを選択できないという問
題点があった。In the conventional semiconductor laser device as described above, in order to select one of the two modes with the maximum gain, the reflectance at the left and right end faces is changed to make the wavelength-gain 7FJ characteristic asymmetrical, or the phase of the grating 8 is changed midway. A method has been considered in which the resonance mode is shifted to the gain peak by changing only π. However, the method of changing the reflectance at the left and right end faces does not always provide sufficient mode selectivity and lacks stability. Also, the phase of grating 8 is changed to π
The method of changing only π requires advanced technology to change the phase itself, and it is difficult to change exactly π, which has the problem of low yield and not necessarily being able to select a single mode stably.
この発明は、かかる問題点を解決するためになされたも
ので、容易な製造工程で製作が可能で、歩留りが高く、
かつ安定な単一モード選択性を有する半導体レーザ装置
を得ることを目的とする。This invention was made to solve these problems, and it can be manufactured using an easy manufacturing process, has a high yield, and
It is an object of the present invention to obtain a semiconductor laser device having stable single mode selectivity.
この発明に係る半導体レーザ装置は、伝搬する光に対し
て少な(とも2種類の周期で屈折率変化を与えろグレー
ティングを導波路内に備えたものである。The semiconductor laser device according to the present invention is provided with a grating in a waveguide that provides a small change in refractive index (with two types of periods) to propagating light.
この発明においては、それぞれのグレーティングがそれ
ぞれのブラッグ波長で利得を与え、これらが重なること
により波長−利得分布が非対称になる。In this invention, each grating provides a gain at a respective Bragg wavelength, and when these gratings overlap, the wavelength-gain distribution becomes asymmetric.
第1図(a)はこの発明の半導体レーザ装置の一実施例
の構造を示す図である。この図において、第2図(、)
と同一符号は同″一部分を示し、5はp型の光ガイド層
、9は前記グレーティング8とわずかに周期が異なるグ
レーティングであり、形成する凹凸の形状は、サイン形
でも矩形でもあるいは他の任意の形状でもよいが、導波
されろ光の強度が十分強い位置に形成する必要がある。FIG. 1(a) is a diagram showing the structure of an embodiment of a semiconductor laser device of the present invention. In this figure, Figure 2 (,)
The same reference numerals indicate the same parts, 5 is a p-type light guide layer, 9 is a grating whose period is slightly different from that of the grating 8, and the shape of the unevenness to be formed may be a sine shape, a rectangle, or any other arbitrary shape. However, it is necessary to form it at a position where the intensity of the guided light is sufficiently strong.
第1図(a)から明らかなように、この装置は第2図(
a)に示した半導体レーザ装置内に新たにグレーティン
グ9を付加した構造であるから、製造工程上特に困難は
なく、歩留りを落とす要因はない。As is clear from Fig. 1(a), this device is as shown in Fig. 2(a).
Since the structure is such that the grating 9 is newly added to the semiconductor laser device shown in a), there is no particular difficulty in the manufacturing process, and there is no factor that would reduce the yield.
次に動作について説明する。Next, the operation will be explained.
pおよびn電極1,2に電圧を加えて電流を流すと、活
性層3にキャリアが注入されレーザ媒質となる。活性層
3.光ガイド層4,5およびクラッドrfi6,7の各
層で形成される屈折率差による導波路は、光をその中央
部の活性層3および光ガイドJi!f4,5の近分に閉
じ込めながら紙面の左右方向に伝搬する。この時、伝搬
する光は光ガイドF14とクラッド層7との境界のグレ
ーティング8と、光ガイド層5とクラッド層6の境界の
グレーティング9の周期的な屈折率変化を同時に受ける
。When a voltage is applied to the p and n electrodes 1 and 2 and a current is caused to flow, carriers are injected into the active layer 3, which becomes a laser medium. Active layer 3. The waveguide formed by the optical guide layers 4, 5 and the clad RFI 6, 7 layers due to the difference in refractive index transmits light to the active layer 3 in the center and the optical guide Ji! It propagates in the horizontal direction of the page while being confined in the vicinity of f4,5. At this time, the propagating light is simultaneously subjected to periodic refractive index changes of the grating 8 at the boundary between the light guide F14 and the cladding layer 7 and the grating 9 at the boundary between the light guide layer 5 and the cladding layer 6.
グレーティング9の周期は伝搬する先の波長に対し、
・〜÷+−(λ/n) ・m
となっており、ブラッグ波長の光は後方に分布的に反射
され、レーザ発振のための正帰還が1りられる。たt!
シ、グレーティング8,9の周期がわずかに異なってい
るため、反射率の波長分布が単一のグレーティングの場
合と異なり非対称的になる。The period of the grating 9 is ・~÷+−(λ/n) ・m with respect to the wavelength of the propagation destination, and the light at the Bragg wavelength is reflected backward in a distributed manner, providing positive feedback for laser oscillation. You can get 1. Tat!
Since the periods of the gratings 8 and 9 are slightly different, the wavelength distribution of reflectance becomes asymmetrical unlike in the case of a single grating.
したがって、第1図(b)に示すように、波長−利得特
性も非対称的なものとなり、最大利得の縮退が解ける。Therefore, as shown in FIG. 1(b), the wavelength-gain characteristics also become asymmetrical, and the degeneracy of the maximum gain is resolved.
レーザ発振は最大利得の共振モードで生ずるから、それ
が1つになることにより単一モード発振が1’Jられる
。Since laser oscillation occurs in the resonance mode with the maximum gain, single mode oscillation is achieved by 1'J by combining them into one.
なお、上記実施例では、グレーティング8,9がそれぞ
れ活性層3の両側にある例を示したが、光の分布内にあ
ればどこにあってもよい。また1つのグレーティングで
2種類の周期で屈折率変化を持つものを用いてもよい。In the above embodiment, the gratings 8 and 9 are located on both sides of the active layer 3, but they may be located anywhere within the light distribution. Alternatively, a single grating having refractive index changes in two types of periods may be used.
例えば単一周期のグレーティングが
a ;a oX Slnω、x
で表されるとすると、
a=aosin ωox+alsin IJJI!なろ
凹凸を持つ1つのグレーティングでも同様の効果が得ら
れる。For example, if a single-period grating is represented by a;a oX Slnω,x, then a=aosin ωox+alsin IJJI! A similar effect can be obtained with a single grating having unevenness.
また上記実施例では、便宜上グし・−ティング8゜9が
導波路全域にわたっているものについて述べたが、必ず
しもこれに限らず、一部に形成されているものでも同様
の効果が得られ、2つのグレーティング8,9が位置的
に重なって対向している必要もない。In addition, in the above embodiment, for convenience, the case where the gouging 8°9 extends over the entire waveguide is described, but this is not necessarily limited to this, and the same effect can be obtained even if the gouging is formed in a part of the waveguide. There is no need for the two gratings 8 and 9 to overlap and face each other.
さらに、周期はZPfi類に限定する必要もな(,3種
類以上あっても同様の効果が得られることは非対称性の
観点より明らかである。Furthermore, there is no need to limit the period to the ZPfi class (it is clear from the asymmetry point of view that the same effect can be obtained even if there are three or more types.
この発明は以上説明したとおり、伝搬する光に対して少
な(とも2種類の周期で屈折率変化を与えるグレーティ
ングを導波路内に備えたので、容易な製造工程で製作が
可能で、歩留りが高く、かつ安定な単一モードで発振す
る半導体レーザ装置が得られるという効果がある。As explained above, this invention is equipped with a grating in the waveguide that changes the refractive index at two different periods for the propagating light, so it can be manufactured through an easy manufacturing process and has a high yield. , and a semiconductor laser device that oscillates in a stable single mode can be obtained.
第1図(a)、(b)はこの発明の半導体レーザ装置の
一実施例の構造を示す図およびその波長−利得特性を示
す図、第2図(a)、(b)は従来の半導体レーザ装置
の構造を示す図およびその波長−利得特性を示す図であ
る。
図において、1はp電極、2は、、 Ti極、3は活性
層、4,5は光ガイド層、6,7はクラッド層、8.9
はグレーティングである。
なお、各図中の同一符号は同一または相当部分を示す。
代理人 大 岩 増 雄 (外2名)第1図
(b)
□波長
第2図
(a)
一洩畏
手続補正書(自発)
1、事件の表示 特願昭ti 1−166181号
2、発明の名称 半導体レーデ装置3、補正をする
者
事件との関係 特許出願人
住 所 東京都千代田区丸の内二丁目2番3号名
称 (601)三菱電機株式会社代表者志岐守哉
4、代理人
住 所 東京都千代田区丸の内二丁目2番3号5
、 ?lO正の対象
明細書の発明の詳細な説明の欄
6 、 ?lO正の内容
明!IIV3第3頁2〜3行のrn=βλ72πは正の
整数である。である。」を、下記のよう?補正する。
「n=βλ/2π
である。
また、mは正の整数である。」
以 上FIGS. 1(a) and (b) are diagrams showing the structure of an embodiment of the semiconductor laser device of the present invention and diagrams showing its wavelength-gain characteristics. FIGS. FIG. 1 is a diagram showing the structure of a laser device and a diagram showing its wavelength-gain characteristics. In the figure, 1 is a p-electrode, 2 is a Ti electrode, 3 is an active layer, 4 and 5 are optical guide layers, 6 and 7 are cladding layers, 8.9
is a grating. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 (b) □ Wavelength Figure 2 (a) Written amendment to the procedure (spontaneous) 1. Indication of the case Patent application No. 1-166181 2. Invention Name Semiconductor radar device 3, relationship to the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Moriya Shiki, representative of Mitsubishi Electric Corporation 4, agent residence Address: 2-2-3-5 Marunouchi, Chiyoda-ku, Tokyo
, ? Column 6 of the detailed description of the invention in the 1O positive subject specification, ? 1O positive details! rn=βλ72π on page 3, lines 2 and 3 of IIV3 is a positive integer. It is. ”, as below? to correct. "n=βλ/2π. Also, m is a positive integer."
Claims (1)
、伝搬する光に対して少なくとも2種類の周期で屈折率
変化を与えるグレーティングを前記導波路内に備えたこ
とを特徴とする半導体レーザ装置。 (2)少なくとも2種類の周期で屈折率変化を与えるグ
レーティングは、活性層を挾んで周期の異なる2つのグ
レーティングを備えたことを特徴とする特許請求の範囲
第(1)項記載の半導体レーザ装置。[Scope of Claims] A semiconductor laser device having a waveguide including an active layer, characterized in that a grating that changes the refractive index of propagating light in at least two types of periods is provided in the waveguide. Semiconductor laser equipment. (2) The semiconductor laser device according to claim (1), wherein the grating that changes the refractive index with at least two types of periods includes two gratings with different periods sandwiching the active layer. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61166181A JPS6320892A (en) | 1986-07-14 | 1986-07-14 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61166181A JPS6320892A (en) | 1986-07-14 | 1986-07-14 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6320892A true JPS6320892A (en) | 1988-01-28 |
Family
ID=15826577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61166181A Pending JPS6320892A (en) | 1986-07-14 | 1986-07-14 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6320892A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6885804B2 (en) * | 2002-02-07 | 2005-04-26 | Electronics And Telecommunications Research Institute | Semiconductor optical devices with differential grating structure and method for manufacturing the same |
FR3043852A1 (en) * | 2015-11-13 | 2017-05-19 | Commissariat Energie Atomique | LASER DEVICE AND METHOD FOR MANUFACTURING SUCH A LASER DEVICE |
CN111313229A (en) * | 2020-03-03 | 2020-06-19 | 中国科学院半导体研究所 | Narrow linewidth distributed feedback semiconductor laser and preparation method thereof |
-
1986
- 1986-07-14 JP JP61166181A patent/JPS6320892A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6885804B2 (en) * | 2002-02-07 | 2005-04-26 | Electronics And Telecommunications Research Institute | Semiconductor optical devices with differential grating structure and method for manufacturing the same |
FR3043852A1 (en) * | 2015-11-13 | 2017-05-19 | Commissariat Energie Atomique | LASER DEVICE AND METHOD FOR MANUFACTURING SUCH A LASER DEVICE |
US9899800B2 (en) | 2015-11-13 | 2018-02-20 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Laser device and process for fabricating such a laser device |
CN111313229A (en) * | 2020-03-03 | 2020-06-19 | 中国科学院半导体研究所 | Narrow linewidth distributed feedback semiconductor laser and preparation method thereof |
CN111313229B (en) * | 2020-03-03 | 2021-09-28 | 中国科学院半导体研究所 | Narrow linewidth distributed feedback semiconductor laser and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4833687A (en) | Distributed feedback semiconductor laser | |
JPH06244503A (en) | Distributed feedback semiconductor laser structure | |
JPS6320892A (en) | Semiconductor laser device | |
JPS61255085A (en) | Semiconductor laser device | |
JPS58114476A (en) | Semiconductor laser | |
JPS62158377A (en) | Distributed feedback type semiconductor laser | |
JPS60187078A (en) | Semiconductor laser device | |
US4771433A (en) | Semiconductor laser device | |
JPH0453115B2 (en) | ||
JPS63111689A (en) | Distributed feedback type semiconductor laser | |
JPS6114787A (en) | Distributed feedback type semiconductor laser | |
JPS63213383A (en) | Semiconductor laser | |
JPS63137496A (en) | Semiconductor laser device | |
JPS6257275A (en) | Semiconductor laser array device | |
JP3151755B2 (en) | Distributed feedback semiconductor laser | |
JP3368607B2 (en) | Distributed feedback semiconductor laser | |
JPH04291780A (en) | Semiconductor light emitting apparatus | |
JPH0252481A (en) | Semiconductor laser device | |
JPS6177381A (en) | Integrated distributed feedback type semiconductor laser | |
JPS6320888A (en) | semiconductor light emitting device | |
JPH09129955A (en) | Optoelectronic device | |
JPS6292490A (en) | Distributed feedback type semiconductor laser | |
JP2687404B2 (en) | Distributed feedback semiconductor laser | |
JPH0582888A (en) | Distributed feedback semiconductor laser | |
JPS63263786A (en) | Semiconductor laser |