JPS61255085A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPS61255085A JPS61255085A JP60097048A JP9704885A JPS61255085A JP S61255085 A JPS61255085 A JP S61255085A JP 60097048 A JP60097048 A JP 60097048A JP 9704885 A JP9704885 A JP 9704885A JP S61255085 A JPS61255085 A JP S61255085A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- electrodes
- layer
- laser
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06258—Controlling the frequency of the radiation with DFB-structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1206—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
- H01S5/1212—Chirped grating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1206—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
- H01S5/1215—Multiplicity of periods
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は半導体レーザ装置に関し、特にレーザ発振波
長が注入電流により制御できる半導体レーザ装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device, and particularly to a semiconductor laser device whose laser oscillation wavelength can be controlled by injection current.
[従来の技術]
第3図はたとえば文献「昭和59年度電子通信学会総合
全国大会、講演番号1024 (4−78>、“位相制
御機構を有するDFB−DC−PBHLD” Jに示さ
れた従来の波長可変型半導体レーザ装置を示す断面図で
ある。初めにこの装置の構成について説明する。図にお
いて、基板1の上面にレーザ発振させるための活性層2
が形成されている。活性層2の上面に、この活性層で生
じた光を伝搬させるための導波路層3が形成されている
。導波路層3の上面の左部に、この導波路層に沿ってピ
ッチが等しい凹凸からなる回折格子31が作り付けられ
てJ3す、回折格子31は導波路層3を伝搬する光を反
射する。導波路層3の上面に、活性層2で生じた光を導
波路H3および活性層2に閉じ込めるためのクラッド層
5が形成されている。11.活性層2.導波路W3およ
びクラッド層5の右側端面はへき開面8となっており、
このへき開面は導波路[13,活性層2を伝搬する光を
反射する。回折格子31とへき開面8とはレーザ発振の
ためのいわゆる光共振器の役割をする。[Prior Art] Fig. 3 shows, for example, the conventional technology shown in the document ``DFB-DC-PBHLD with Phase Control Mechanism,'' ``DFB-DC-PBHLD with Phase Control Mechanism'' 1 is a cross-sectional view showing a wavelength tunable semiconductor laser device. First, the configuration of this device will be explained. In the figure, an active layer 2 for laser oscillation is formed on the upper surface of a substrate 1.
is formed. A waveguide layer 3 is formed on the upper surface of the active layer 2 for propagating light generated in the active layer. On the left side of the upper surface of the waveguide layer 3, a diffraction grating 31 consisting of unevenness with an equal pitch is built along the waveguide layer.The diffraction grating 31 reflects the light propagating through the waveguide layer 3. A cladding layer 5 is formed on the upper surface of the waveguide layer 3 to confine light generated in the active layer 2 to the waveguide H3 and the active layer 2. 11. Active layer 2. The right end faces of the waveguide W3 and the cladding layer 5 form a cleavage plane 8,
This cleavage plane reflects the light propagating through the waveguide [13 and active layer 2]. The diffraction grating 31 and the cleavage plane 8 serve as a so-called optical resonator for laser oscillation.
クラッド層5の上面に位相制御用電極6および光出力制
御用lNi17が形成されている。位相制御用電極6に
電流が注入され、これによって導波路層3を伝搬する光
の位相を制御する。光出力制御用電極7に電流が注入さ
れ、これに・よってレーザ発振の売出りを制御する。A phase control electrode 6 and a light output control lNi 17 are formed on the upper surface of the cladding layer 5. A current is injected into the phase control electrode 6, thereby controlling the phase of the light propagating through the waveguide layer 3. A current is injected into the light output control electrode 7, thereby controlling the laser oscillation.
次にこの装置の動作について説明する。活性層2で生じ
た光は導波路層3および活性層2を伝搬し、回折格子3
1とへぎ開面8で反射されてレーザ発振する。このとき
、位相制御用電極6に注入する電流を変えると導波路層
3を伝搬する光の位相が変わり、レーザ発振条件が変化
してレーザ発振波長が変化する。またこのとき、光出力
制御用電極7に注入する電流を変えるとレーザ発振の光
出力が変化する。Next, the operation of this device will be explained. The light generated in the active layer 2 propagates through the waveguide layer 3 and the active layer 2, and passes through the diffraction grating 3.
1 and is reflected by the open face 8 and oscillates as a laser. At this time, if the current injected into the phase control electrode 6 is changed, the phase of the light propagating through the waveguide layer 3 changes, the laser oscillation conditions change, and the laser oscillation wavelength changes. Further, at this time, if the current injected into the optical output control electrode 7 is changed, the optical output of the laser oscillation is changed.
[発明が解決しようとする問題点]
従来の波長可変型半導体レーザ装置においては、端面を
へき関することが必要で、製造プロセスが複雑になって
歩留りが低くなり、また、導波路層を伝搬する光の位相
を制御してレーザ発振波長を変化させるため、波長チュ
ーニングの範囲が狭いという問題点があった。さらに、
このようなへき開面を有する半導体レーザ装置は光電子
集積回路には不適であるという問題点もあった。[Problems to be solved by the invention] In the conventional wavelength tunable semiconductor laser device, it is necessary to separate the end facets, which complicates the manufacturing process and lowers the yield. Since the laser oscillation wavelength is changed by controlling the phase of the light, there is a problem in that the wavelength tuning range is narrow. moreover,
There is also the problem that semiconductor laser devices having such a cleavage plane are unsuitable for optoelectronic integrated circuits.
この発明は上記のような問題点を解消するためになされ
たもので、製造プロセスが簡単で歩留りが高く、かつ広
範囲にレーザ発振波長を連続的に−変えることができる
、かつへき開面を使うことが難しい光電子集積回路に適
した半導体レーザ装置を得ることを目的とする。This invention was made to solve the above-mentioned problems, and it has a simple manufacturing process, high yield, and can continuously change the laser oscillation wavelength over a wide range, and uses a cleavage plane. The purpose of this invention is to obtain a semiconductor laser device suitable for optoelectronic integrated circuits that are difficult to manufacture.
[問題点を解決するための手段]
この発明に係る半導体レーザ装置は、活性層または導波
路層に、ピッチが変化する凹凸からなる回折格子を作り
付け、クラッド層の上面に複数の電極を互いに間隔を隔
てて形成し、これら各電極に電流を注入することにより
、上記回折格子の実効的な反射率を制御して、レーザ発
振波長を変えるようにしたものである。[Means for Solving the Problems] In the semiconductor laser device according to the present invention, a diffraction grating consisting of unevenness with a varying pitch is built into the active layer or the waveguide layer, and a plurality of electrodes are arranged at intervals on the upper surface of the cladding layer. By injecting current into each of these electrodes, the effective reflectance of the diffraction grating is controlled and the laser oscillation wavelength is changed.
[作用]
この発明においては、上記各電極間の注入電流比を変え
ることにより、上記回折格子の咳各電極下部の領域の実
効的な反射率が変化し、これによってレーザ発振条件が
変化してレーザ発振波長が変わる。[Function] In this invention, by changing the injection current ratio between the respective electrodes, the effective reflectance of the region below each electrode of the diffraction grating changes, thereby changing the laser oscillation conditions. Laser oscillation wavelength changes.
〔実施例] 以下、この発明の実施例を図について説明する。〔Example] Embodiments of the present invention will be described below with reference to the drawings.
なお、この実施例の説明において、従来の技術の説明と
重複する部分については適宜その説明を省略する。In the description of this embodiment, the description of parts that overlap with the description of the conventional technology will be omitted as appropriate.
第1図はこの発明の実施例である、分布帰還型(DFB
)レーザ型の半導体レーザ装置を示す断面図である。初
めにこの装置の構成について説明する。図において、基
板1の上面に活性層2が形成されており、活性112の
上面に導波路層3が形成されている。導波路層3の上面
に、その全域にわたってチャーブ回折格子32、すなわ
ち導波路層3に沿って連続的にピッチが変化する凹凸か
らなる回折格子が作り付けられている。チャーブ回折格
子32は導波路層3を伝搬する光を反射し、レーザ発振
のための光共振器の役割をする。導波路層3の上面にク
ラッド層5が形成されており、クラッド層5の上面に電
極9.10.11.12゜13が互いに間隔を隔てて並
んで形成されている。FIG. 1 shows a distributed feedback type (DFB) which is an embodiment of this invention.
) is a cross-sectional view showing a laser type semiconductor laser device. First, the configuration of this device will be explained. In the figure, an active layer 2 is formed on the upper surface of a substrate 1, and a waveguide layer 3 is formed on the upper surface of an active layer 112. On the upper surface of the waveguide layer 3, a Chirb diffraction grating 32, that is, a diffraction grating consisting of concavities and convexities whose pitch changes continuously along the waveguide layer 3, is built over the entire area. The Chirb diffraction grating 32 reflects the light propagating through the waveguide layer 3 and serves as an optical resonator for laser oscillation. A cladding layer 5 is formed on the upper surface of the waveguide layer 3, and electrodes 9, 10, 11, 12.degree. 13 are formed on the upper surface of the cladding layer 5 and are spaced apart from each other.
各電極9.10.11.12.13に電流が注入され、
これによってチャーブ回折格子32の実効的な反射率を
変化させる。A current is injected into each electrode 9.10.11.12.13,
This changes the effective reflectance of the Chirb diffraction grating 32.
次にこの装置の動作について説明する。まず、この装置
の動作を説明する前に、説明の便宜上、2つの電極、す
なわち電極9および電極10のみがクラッド層5の上面
に形成されており、チ1ν−ブ回折格子32の代わりに
電極9の下部では凹凸のピッチが△、であり、電極10
の下部では凹凸のピッチが△2であるような回折格子が
導波路層3の上面に作り付けられ“Cいるようなモデル
化した半導体レーザ装置の動作について説明する。電極
9に電流11+電極10に電流It (11≠■2)
を注入したとすると、このモデル化した半導体レーザ装
置の回折格子の電極9の下部の領域および1「0の下部
の領域の実効的な反射率の波長依存性は第2図(a )
の実線で示すようになる。Next, the operation of this device will be explained. First, before explaining the operation of this device, for convenience of explanation, only two electrodes, namely electrode 9 and electrode 10, are formed on the upper surface of the cladding layer 5, and the electrode The pitch of the unevenness is △ at the bottom of the electrode 10.
The operation of a semiconductor laser device modeled as "C" will be explained, in which a diffraction grating with a concavo-convex pitch of Δ2 is built on the top surface of the waveguide layer 3. Current It (11≠■2)
Injected with
as shown by the solid line.
このとさ、ピッチΔ、の領域とピッチA2の領域間の領
域、すなわち電極9と電極10間の下部の領域の両端は
、第2図(a)で示す反射率特性を持つ2つの領域で挾
まれることになる。したがって、このli域の実効的な
反射率の波長依存性は、第2図(a)の破線で示すよう
なつなこれら2つの反射率特性の積になり、その最大値
付近の波長でレーザ発振することになる。また、電極9
と電極10への注入電1fCuを変えると、たとえば電
極9に電21 I z 、電極10に111を注入した
とすると、この回折格子の電極9の下部の領域および電
極10の下部の領域の実効的な反射率の波長依存性は第
2図(b)の実線で示すようになる。The region between the region of pitch Δ and the region of pitch A2, that is, both ends of the lower region between electrode 9 and electrode 10 are two regions having reflectance characteristics shown in FIG. 2(a). You will be caught. Therefore, the wavelength dependence of the effective reflectance in the li region is the product of these two reflectance characteristics, as shown by the broken line in Figure 2 (a), and the laser oscillates at a wavelength near its maximum value. I will do it. In addition, the electrode 9
For example, if we inject 21 I z into the electrode 9 and 111 into the electrode 10, then if we change the current 1fCu injected into the electrode 10, the effective area of the area below the electrode 9 and the area below the electrode 10 of this diffraction grating will be The wavelength dependence of the reflectance is shown by the solid line in FIG. 2(b).
したがって、この回折格子の電極9と電極101!lの
下部の領域の実効的な反射率の波長依存性は、第2図(
b)の破線で示すようなこれら2つの反射率特性の積に
なり、その最大値付近の波長でレーザ発振し、レーザ発
振波長は第2図(a )の場合と興なることになる。以
上のように、電極9および電極10に注入する電流量を
変えることによって、レーザ発振波長を連続的にチュー
ニングできる。Therefore, electrode 9 and electrode 101 of this diffraction grating! The wavelength dependence of the effective reflectance in the region below l is shown in Figure 2 (
It becomes the product of these two reflectance characteristics as shown by the broken line in b), and the laser oscillates at a wavelength near its maximum value, and the laser oscillation wavelength is the same as in the case of FIG. 2(a). As described above, by changing the amount of current injected into the electrodes 9 and 10, the laser oscillation wavelength can be continuously tuned.
次に、上記と同様な考え方によって、第1図に示す半導
体レーザ装置の動作について説明する。Next, the operation of the semiconductor laser device shown in FIG. 1 will be explained based on the same concept as above.
各電極9,10.11.12.13に電流を注入すると
、これに応じてチャープ回折格子32の各電極9.10
,11.12.13の下部の領域の実効的な反射率の波
長依存性が定まり、これら各反射率特性の積の最大値付
近の波長でレーザ発振する。したがって、各電極9.1
0.11.12゜13に注入する電流量を変えることに
よって、レーザ発振波長を連続的にチューニングできる
。また、この実施例においては、導波路層3の上面にチ
ャープ回折格子32が作り付けられ、クラッド層5の上
面に複数の電極9.10.11.12゜13が形成され
るので、従来の半導体レーザ装置に比べてレーザ発振波
長のチューニング範囲を広げることができる。When a current is injected into each electrode 9, 10.11.12.13, each electrode 9.10 of the chirped diffraction grating 32 responds accordingly.
, 11, 12, 13 is determined, and the laser oscillates at a wavelength near the maximum value of the product of these reflectance characteristics. Therefore, each electrode 9.1
By changing the amount of current injected at 0.11.12°13, the laser oscillation wavelength can be continuously tuned. Furthermore, in this embodiment, a chirped diffraction grating 32 is built on the top surface of the waveguide layer 3, and a plurality of electrodes 9, 10, 11, 12 degrees 13 are formed on the top surface of the cladding layer 5, so that the conventional semiconductor Compared to laser devices, the tuning range of laser oscillation wavelength can be expanded.
また、この半導体レーザ装置は端面をへき関する必要が
ないので、その製造プロセスが簡単になって歩留りが高
くなり、したがってこの半導体レーザ装置のコストを安
価にすることができる。Further, since this semiconductor laser device does not require separation of the end facets, the manufacturing process is simplified and the yield is increased, so that the cost of this semiconductor laser device can be reduced.
また、この半導体レーザ装置は光を反射するためにチャ
ープ回折格子を用いへき開面を用いていないので、この
半導体レーザ装置は同一基板上に多数集積することが可
能で光電子集積回路に適したものとなる。Furthermore, since this semiconductor laser device uses a chirped diffraction grating to reflect light and does not use a cleavage plane, it is possible to integrate a large number of this semiconductor laser device on the same substrate, making it suitable for optoelectronic integrated circuits. Become.
なお、上記実施例では、導波路層にチャープ回折格子を
作り付ける場合について示したが、活性層にチャープ回
折格子を作り付けてもよく、また活性層に近接して基板
にチャープ回折格子を作り付けてもよ(、これらの場合
についても上記実施例と同様の効果を奏する。In addition, although the above embodiment shows the case where a chirp diffraction grating is built into the waveguide layer, the chirp diffraction grating may be built into the active layer, or the chirp diffraction grating may be built into the substrate close to the active layer. In these cases as well, the same effects as in the above embodiment can be achieved.
また、上記実施例では、導波路1の上面に作り付ける回
折格子としてチャープ回折格子を示したが、凹凸のピッ
チが順次段階的に変わるような回折格子を作り付けても
よく、また凹凸のピッチが不規則に変わるような回折格
子を作り付けてもよく、これらの場合についても上記実
施例と同様の効果を奏する。Furthermore, in the above embodiment, a chirped diffraction grating is shown as the diffraction grating built on the top surface of the waveguide 1, but a diffraction grating in which the pitch of the concavities and convexities changes step by step may also be built; A diffraction grating that changes irregularly may be fabricated, and the same effects as in the above embodiment can be achieved in these cases as well.
また、上記実施例では、通常の縦方向1!流注入構造の
DFBレーザについて示したが、横方向電流注入構造、
たとエバ文献r J 、 Appl 、 Phys 。Further, in the above embodiment, the normal vertical direction 1! Although the DFB laser with a current injection structure has been shown, a lateral current injection structure,
and Eva Ref. R J, Appl, Phys.
45.2785 (1974)Jに示されたTJS型の
DFBレーザについてもこの発明は適用できる。The present invention is also applicable to the TJS type DFB laser shown in 45.2785 (1974) J.
[発明の効果]
以上のようにこの発明によれば、活性層または導波路層
に、ピッチが変化する凹凸からなる回折格子を作り付け
、クラッド層の上面に複数の電極を互いに間隔を隔てて
形成し、これら各電極に電流を注入することにより、上
記回折格子の実効的な反射率をtIIJwシて、レーザ
発振波長を変えるようにしたので、顎造プロセスが簡単
で歩留りが高く、かつ広範囲にレーザ発振波長を連続的
に変えることができる、かつへき開面な使うことが難し
い光電子集積回路に適した半導体レーザ装置を得ること
ができる。[Effects of the Invention] As described above, according to the present invention, a diffraction grating consisting of unevenness with a varying pitch is built into the active layer or the waveguide layer, and a plurality of electrodes are formed at intervals on the upper surface of the cladding layer. However, by injecting current into each of these electrodes, the effective reflectance of the diffraction grating is changed and the laser oscillation wavelength is changed, making the jaw construction process simple, high yield, and applicable over a wide range. It is possible to obtain a semiconductor laser device that can continuously change the laser oscillation wavelength and is suitable for optoelectronic integrated circuits in which it is difficult to use cleavage planes.
第1図はこの発明の実施例である半導体レーザ装置を示
す断面図である。
第2図(a)、(b)はモデル化した半導体レーザ装置
における回折格子の実効的な反射率の波長依存性を示す
図である。
第3図は従来の波長可変型半導体レーザ装置を示す断面
図である。
図において、1は基板、2は活性層、3は導波路層、5
はクラッド層、6は位相制御用電極、7は光出力制御用
電極、8はへき開面、9,10゜11.12.13は電
極、31は回折格子、32はチャーブ回折格子である。
なお、各図中同一符号は同一または相当部分を示す。FIG. 1 is a sectional view showing a semiconductor laser device according to an embodiment of the invention. FIGS. 2(a) and 2(b) are diagrams showing the wavelength dependence of the effective reflectance of a diffraction grating in a modeled semiconductor laser device. FIG. 3 is a sectional view showing a conventional wavelength tunable semiconductor laser device. In the figure, 1 is a substrate, 2 is an active layer, 3 is a waveguide layer, and 5
is a cladding layer, 6 is a phase control electrode, 7 is a light output control electrode, 8 is a cleavage plane, 9, 10° 11, 12, 13 are electrodes, 31 is a diffraction grating, and 32 is a Chilb diffraction grating. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (1)
性層と、 前記活性層の上面に形成され、前記活性層で生じた光を
伝搬させるための導波路層とを備え、前記活性層または
前記導波路層には、該活性層または該導波路層を伝搬す
る前記光を反射するように、該活性層または該導波路層
に沿つてピッチが変化する凹凸からなる回折格子が作り
付けられており、 前記導波路層の上面に形成され、前記活性層で生じた前
記光を前記導波路層および前記活性層に閉じ込めるため
のクラッド層と、 前記クラッド層の上面に互いに間隔を隔てて形成され、
前記活性層または前記導波路層を伝搬する前記光に対す
る前記回折格子の実効的な反射率を制御してレーザ発振
波長を変えるよう、電流が注入される複数の電極とを備
えた半導体レーザ装置。[Scope of Claim] A distributed feedback laser comprising: a substrate; an active layer formed on the upper surface of the substrate for laser oscillation; and an active layer formed on the upper surface of the active layer for laser oscillation; a waveguide layer for propagating light transmitted through the active layer or the waveguide layer; A diffraction grating made of unevenness whose pitch changes along the waveguide layer is formed on the upper surface of the waveguide layer to confine the light generated in the active layer in the waveguide layer and the active layer. a cladding layer formed on the upper surface of the cladding layer at intervals from each other,
A semiconductor laser device comprising: a plurality of electrodes into which current is injected so as to control an effective reflectance of the diffraction grating for the light propagating through the active layer or the waveguide layer and change the laser oscillation wavelength.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60097048A JPS61255085A (en) | 1985-05-08 | 1985-05-08 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60097048A JPS61255085A (en) | 1985-05-08 | 1985-05-08 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61255085A true JPS61255085A (en) | 1986-11-12 |
JPH0435914B2 JPH0435914B2 (en) | 1992-06-12 |
Family
ID=14181773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60097048A Granted JPS61255085A (en) | 1985-05-08 | 1985-05-08 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61255085A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01199487A (en) * | 1987-10-09 | 1989-08-10 | Hitachi Ltd | Semiconductor laser equipment and optical communication systems |
JPH04262586A (en) * | 1990-09-28 | 1992-09-17 | American Teleph & Telegr Co <Att> | Laser device |
FR2694816A1 (en) * | 1992-08-14 | 1994-02-18 | Ericsson Telefon Ab L M | Tunable optical filter. |
US5329542A (en) * | 1989-03-31 | 1994-07-12 | British Telecommunications Public Limited Company | Distributed feedback lasers |
US5701325A (en) * | 1992-06-04 | 1997-12-23 | Canon Kabushiki Kaisha | Compound semiconductor device and fabrication method of producing the compound semiconductor device |
EP1703603A1 (en) | 2005-03-17 | 2006-09-20 | Fujitsu Limited | Tunable laser |
JP2006295103A (en) * | 2005-03-17 | 2006-10-26 | Fujitsu Ltd | Tunable laser |
JP2008085214A (en) * | 2006-09-28 | 2008-04-10 | Fujitsu Ltd | Tunable laser |
-
1985
- 1985-05-08 JP JP60097048A patent/JPS61255085A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01199487A (en) * | 1987-10-09 | 1989-08-10 | Hitachi Ltd | Semiconductor laser equipment and optical communication systems |
US5329542A (en) * | 1989-03-31 | 1994-07-12 | British Telecommunications Public Limited Company | Distributed feedback lasers |
JPH04262586A (en) * | 1990-09-28 | 1992-09-17 | American Teleph & Telegr Co <Att> | Laser device |
US5701325A (en) * | 1992-06-04 | 1997-12-23 | Canon Kabushiki Kaisha | Compound semiconductor device and fabrication method of producing the compound semiconductor device |
FR2694816A1 (en) * | 1992-08-14 | 1994-02-18 | Ericsson Telefon Ab L M | Tunable optical filter. |
EP1703603A1 (en) | 2005-03-17 | 2006-09-20 | Fujitsu Limited | Tunable laser |
JP2006295103A (en) * | 2005-03-17 | 2006-10-26 | Fujitsu Ltd | Tunable laser |
US7366220B2 (en) | 2005-03-17 | 2008-04-29 | Fujitsu Limited | Tunable laser |
JP2008085214A (en) * | 2006-09-28 | 2008-04-10 | Fujitsu Ltd | Tunable laser |
Also Published As
Publication number | Publication date |
---|---|
JPH0435914B2 (en) | 1992-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8040933B2 (en) | Diffraction grating device, laser diode, and wavelength tunable filter | |
US4847857A (en) | Single wavelength semiconductor laser | |
US8179931B2 (en) | Wavelength tunable filter and wavelength tunable laser module | |
US4658402A (en) | Optical bistable semiconductor laser producing lasing light in direction normal to semiconductor layers | |
US5621828A (en) | Integrated tunable optical filter | |
JP2006189893A (en) | Electrically controllable filter device | |
US4796274A (en) | Semiconductor device with distributed bragg reflector | |
US6327413B1 (en) | Optoelectronic device and laser diode | |
EP0285393B1 (en) | Wavelength conversion element | |
US4589117A (en) | Butt-jointed built-in semiconductor laser | |
JPS61255085A (en) | Semiconductor laser device | |
US7151876B2 (en) | Optical resonator | |
JP2947142B2 (en) | Tunable semiconductor laser | |
JPS61191093A (en) | Semiconductor device | |
USRE36710E (en) | Integrated tunable optical filter | |
JPS58114476A (en) | Semiconductor laser | |
JP2009088015A (en) | Diffraction grating device, semiconductor laser and tunable filter | |
JPH0555689A (en) | Distributed reflection type semiconductor laser provided with wavelength control function | |
JP2804502B2 (en) | Semiconductor laser device and method of manufacturing the same | |
US5784398A (en) | Optoelectronic component having codirectional mode coupling | |
JPS6134988A (en) | Semiconductor laser | |
JP2002014247A (en) | Distributed reflection optical waveguide and optical device containing the same | |
JPS61255086A (en) | Semiconductor laser device | |
JPS63253335A (en) | Optical filter element | |
JPH02174181A (en) | Distributed reflection type semiconductor laser with wavelength control function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |