[go: up one dir, main page]

JPS63111689A - Distributed feedback type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser

Info

Publication number
JPS63111689A
JPS63111689A JP61259030A JP25903086A JPS63111689A JP S63111689 A JPS63111689 A JP S63111689A JP 61259030 A JP61259030 A JP 61259030A JP 25903086 A JP25903086 A JP 25903086A JP S63111689 A JPS63111689 A JP S63111689A
Authority
JP
Japan
Prior art keywords
diffraction grating
layer
semiconductor laser
ingaasp
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61259030A
Other languages
Japanese (ja)
Inventor
Teruhito Matsui
松井 輝仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61259030A priority Critical patent/JPS63111689A/en
Publication of JPS63111689A publication Critical patent/JPS63111689A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a distributed feedback type semiconductor laser of surface luminescence which has a small light-emitting spot and an excellent light emission efficiency, by making it possible to take out a laser beam from an optical waveguide layer in the direction not parallel to this layer by a high-order diffraction grating. CONSTITUTION:A primary diffraction grating 12a and a secondary diffraction grating 12b are formed on an n-InP substrate 11, and thereafter an n-InGaAsP guide layer 13, an InGaAsP active layer 14, a P-InP clad layer 15 and a P-InGaAsP cap layer 16 are made to grow in crystal. Then, an electrode 17 is formed on the P-InGaAsP cap layer 16 except for a part corresponding to a part wherein the secondary diffraction grating 12b is formed, and an electrode is formed on the n-InP substrate 11. When a current is injected into a semiconductor laser having such a construction, a light generated in the InGaAsP active layer 14 is turned into a laser beam uniform in phase by the diffraction grating 12a and 12b. On the occasion, a component vertical to the guide layer 13 is generated in the secondary diffraction grating 12b, while only a component parallel to the guide layer 13 is present in the primary diffraction grating 12a, and thus a part of the laser beam is taken out from the secondary diffraction grating 12b as a laser beam 19 vertical to the surface of the P-InGaAsP layer 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば、光フアイバ通信や光計測の光源と
して利用する分布帰還型半導体レーザに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed feedback semiconductor laser used as a light source for, for example, optical fiber communication or optical measurement.

〔従来の技術〕[Conventional technology]

第4図は雑誌(D、R,5cifres et al、
、八pp1.Phys。
Figure 4 is a magazine (D, R, 5cifres et al.
, 8pp1. Phys.

Lett、、vol、26. p48〜50(1975
) )に示された従来の分布帰還(DFB)型半導体レ
ーザを示す斜視図であり、図において、(1)はP−G
aAs基板、(2)はP−Gao。
Lett,, vol, 26. p48-50 (1975
)) is a perspective view showing the conventional distributed feedback (DFB) type semiconductor laser shown in FIG.
aAs substrate, (2) P-Gao.

Ale、 、As クラッド層、(3)は2次ブラッグ
反射条件に相当する回折格子、(4)はP−GaAs層
、(5)は1−GaAs層、(6)はへき関した両端面
の設けられたAu反射膜、(7)はレーザ光である。こ
こで、P−GaAs層(4)とn−GaAs層(5)は
活性層及び光導波路層として作用する。
Ale, , As cladding layer, (3) is a diffraction grating corresponding to the second-order Bragg reflection condition, (4) is a P-GaAs layer, (5) is a 1-GaAs layer, (6) is a The provided Au reflective film (7) is a laser beam. Here, the P-GaAs layer (4) and the n-GaAs layer (5) act as an active layer and an optical waveguide layer.

次に動作について説明する。Next, the operation will be explained.

まず、回折格子の動作について、雑誌(D、R。First, regarding the operation of a diffraction grating, a magazine (D, R.

5cifres et al、、Appl、Phys、
 Lett−+vol−26+ p48〜50(197
5) )の記載を参考にして、第5図を用いて説明する
5cifres et al., Appl., Phys.
Lett-+vol-26+ p48-50 (197
5) This will be explained using FIG. 5 with reference to the description in ).

回折格子に対して右向きに平行に進行する光(21)は
ブラッグ(Bragg)反射条件を満たす角度θで反射
する。反射した光の波面(22)の位相は揃っていなけ
ればならないので、各反射光の光路長差は媒質内波長λ
。/n、の整数倍となる。従ってβ ′ λ 。
The light (21) traveling rightward and parallel to the diffraction grating is reflected at an angle θ that satisfies the Bragg reflection condition. Since the phases of the wavefronts (22) of the reflected lights must be aligned, the optical path length difference of each reflected light is equal to the wavelength in the medium λ
. /n, is an integer multiple. Therefore β ′ λ.

b十人−−(A ’ = 0.1,2.・・・)  −
・−・−−−−−(1)を満たす。八は回折格子の周期
、λ。は真空中での光波長、n9は媒質の屈折率、bは
第5図に示す長さである。ところで b−ΔSinθ             −・−・−
−−−−−(2)である。ただし、θは波面(22)と
回折格子(3)の面のなす各である。式(1)と式(2
)よりn9八 となり、ここで、回折格子(3)として2次のものを考
えると、Δはλ。/n* となる。その結果式(3)番
ま次のように書き換えることができる。
b ten people -- (A' = 0.1, 2...) −
・−・−−−−−(1) is satisfied. 8 is the period of the diffraction grating, λ. is the wavelength of light in vacuum, n9 is the refractive index of the medium, and b is the length shown in FIG. By the way, b−ΔSinθ −・−・−
-----(2). However, θ is the difference between the wavefront (22) and the plane of the diffraction grating (3). Equation (1) and equation (2
), n98 is obtained. Here, if we consider a second-order diffraction grating (3), Δ is λ. /n*. As a result, equation (3) can be rewritten as follows.

Sinθ= x ’ −1(7!’ =0.1.2) 
    −−−−−−−(41A’=O(θ=−一)は
進行方向にそのまま伝搬し、β′=2 (θ=−)は入
射光と反対に戻る反射光を示す。A’−1はθ=0とな
り、光導波路、即ち回折格子(3)の面に対して垂直に
反射される。
Sinθ=x'-1(7!'=0.1.2)
----------(41A'=O (θ=-1) propagates as it is in the traveling direction, β'=2 (θ=-) indicates the reflected light that returns in the opposite direction to the incident light.A'- 1 becomes θ=0 and is reflected perpendicularly to the surface of the optical waveguide, that is, the diffraction grating (3).

次に、第4図の構成及び動作について説明する。Next, the configuration and operation of FIG. 4 will be explained.

まず、P−GaAs基板(11上にP−Gaa、 4八
β。、6へSクラッド層(2)を成長し、二次のブラッ
グ反射条件に相当する回折格子(3)を形成する。次に
P−GaAs層(4)、n−GaAs層(5)を成長さ
せ、単一へテロ接合を有する分岐帰還(DFB)型半導
体レーザを構成する。
First, an S cladding layer (2) is grown on a P-GaAs substrate (11), and a diffraction grating (3) corresponding to the second-order Bragg reflection condition is formed.Next A P-GaAs layer (4) and an n-GaAs layer (5) are grown to form a branch feedback (DFB) type semiconductor laser having a single heterojunction.

P、n電極(図示せず)から電流を注入すると、P−G
aAs層(4)、n−GaAs層(5)のP−n接合部
で発光し、弐(3)より、回折格子(3)の面と平行な
成分のみならず、上部n−GaAs層(5)から垂直な
レーザ光を取り出すことができ、面発光型の半導体レー
ザとして機能させることができる。このため、n−Ga
As層(5)に設けられる電極の一部は除去されてレー
ザ光を取り出し部としている。この他、弐(3)より、
層(5)へ結合されるが、全反射により外部へは取り出
されない。また、へき関した端面からのレーザ光が取り
出されるのを除ぐため、両端面にはAuの反射膜(6)
が設けられている。この面発光型の半導体レーザでは端
面発光型のレーザに比べて、理論的に0.21°拡がり
角が小さい。
When current is injected from P and n electrodes (not shown), P-G
Light is emitted at the P-n junction of the aAs layer (4) and the n-GaAs layer (5), and from the second (3), not only the component parallel to the plane of the diffraction grating (3) but also the upper n-GaAs layer ( 5), a vertical laser beam can be extracted from the laser beam, and it can function as a surface-emitting type semiconductor laser. For this reason, n-Ga
A portion of the electrode provided on the As layer (5) is removed to serve as a laser beam extraction section. In addition, from 2 (3),
It is coupled into layer (5) but is not extracted to the outside due to total internal reflection. In addition, in order to prevent laser light from being extracted from separated end faces, an Au reflective film (6) is placed on both end faces.
is provided. This surface-emitting type semiconductor laser has a theoretically smaller divergence angle of 0.21° than an edge-emitting type laser.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の面発光の分布帰還型半導体レーザは以上のように
構成されているので、回折格子のある全面にわたって垂
直に発光するため、発光スポットが大きくなり、外部光
デバイスとの結合が難しくなるといった問題や、電極の
設けられている部分にもレーザ光は反射するが、このレ
ーザ光は外部に取り出されず損失となり、発光効率が悪
くなるといった問題があった。
Conventional surface-emitting distributed feedback semiconductor lasers are configured as described above, and because they emit light vertically over the entire surface of the diffraction grating, the emission spot becomes large, making coupling with external optical devices difficult. In addition, the laser light is also reflected at the part where the electrode is provided, but this laser light is not extracted to the outside and becomes a loss, resulting in a problem that the luminous efficiency deteriorates.

この発明は上記のような問題点を解消するためになされ
たもので、発光スポットが小さく、発光効率のよい面発
光の分布帰還型半導体レーザを得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a surface-emitting distributed feedback semiconductor laser with a small light emission spot and high light emission efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る分布帰還型半導体レーザは、回折格子を
光導波路層の一部に設けられたブラッグ反射条件を満た
す1次の回折格子と、光導波路層の他部に設けられた2
次以上の高次の回折格子により構成し、高次の回折格子
によって、光導波路層から、この光導波路層と平行でな
い方向にレーザ光を取り出し可能としたものである。
The distributed feedback semiconductor laser according to the present invention includes a first-order diffraction grating that satisfies the Bragg reflection condition provided in a part of the optical waveguide layer, and a second-order diffraction grating provided in the other part of the optical waveguide layer.
It is composed of a diffraction grating of a higher order than the next order, and the high-order diffraction grating makes it possible to extract laser light from an optical waveguide layer in a direction that is not parallel to the optical waveguide layer.

〔作用〕[Effect]

この発明における回折格子は、1次の回折格子と高次の
回折格子により構成され、レーザ光は高次の回折格子の
部分のみで光導波路層と平行でない方向に取り出される
The diffraction grating in this invention is composed of a first-order diffraction grating and a higher-order diffraction grating, and the laser beam is extracted in a direction that is not parallel to the optical waveguide layer only at the higher-order diffraction grating.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(Illはn4nP基板、(12a)はn
−1nP基板低上の一部に形成された1次回折格子、(
12b)  は同様にn−1nP基板αυ上の他部に形
成された高次、例えば2次の回折格子、α争は回折格子
(12a) 、 (12b)を形成したn−1nP基板
αυ上に結晶成長した光導波路層で、例えばn−1nG
aAsPガイド層、04+はこのガイド層01上に成長
された活性層で、InGaAsP活性層、α9はP−1
nPクラッド層、Q61はP−1nGaAsPキャップ
層、αDはP電極、a印はn電極、0句はレーザ光であ
る。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (Ill is an n4nP substrate, (12a) is an n4nP substrate,
A first-order diffraction grating formed on a part of the -1nP substrate, (
12b) is a higher-order, e.g., second-order, diffraction grating formed elsewhere on the n-1nP substrate αυ; A crystal grown optical waveguide layer, for example n-1nG
aAsP guide layer, 04+ is the active layer grown on this guide layer 01, InGaAsP active layer, α9 is P-1
An nP cladding layer, Q61 is a P-1nGaAsP cap layer, αD is a P electrode, a mark is an n electrode, and 0 is a laser beam.

次のこの発明の動作について説明する。Next, the operation of this invention will be explained.

まず、n−TnP基板0υ上に、1次回折格子(12a
)と2次回折格子(12b)を形成し、その後、n−1
nGa−AsPガイド層01 % InGaAsP活性
層α0、P−InPnワク5フ0り、P−1nGaAs
Pキャンプ層Q61を結晶成長させ、2次の回折格子(
12b)が形成されている部分に対応する部分を除いて
P−1nGaAsPキャップ層00に電極αηを形成し
、n−InP基板基板α型極を形成する。
First, a first-order diffraction grating (12a
) to form a second-order diffraction grating (12b), and then n-1
nGa-AsP guide layer 01% InGaAsP active layer α0, P-InPn layer 50, P-1nGaAs
The P camp layer Q61 is crystal grown to form a second-order diffraction grating (
An electrode αη is formed on the P-1nGaAsP cap layer 00 except for a portion corresponding to the portion where 12b) is formed, thereby forming an α-type electrode on the n-InP substrate.

このようにして作られた半導体レーザに電流を注入する
と、InGaAsP活性層0旬で発光した光は回折格子
(12a) 、 (12b)によって位相の揃ったレー
ザ光となるが、式(3)より1次回折格子(12a)で
はか存在しないが、2次回折格子(12b)では垂直な
成分がある。このため、レーザ光の一部は2次回折格子
(12b)からP−1nGaAsP N(16)面に垂
直なレーザ光α俤として取り出される。
When a current is injected into the semiconductor laser made in this way, the light emitted from the InGaAsP active layer becomes laser light with the same phase due to the diffraction gratings (12a) and (12b), but from equation (3), Although it does not exist in the first-order diffraction grating (12a), there is a vertical component in the second-order diffraction grating (12b). Therefore, a part of the laser beam is extracted from the second-order diffraction grating (12b) as a laser beam α wave perpendicular to the P-1nGaAsP N(16) plane.

垂直に取り出される光とガイド層0蜀中を伝搬する光の
割合は、回折格子(12a) 、 (12b)の形成さ
れる領域の長さ、形状によって変えることができる。
The ratio of light extracted perpendicularly to light propagating through the guide layer 0 can be changed depending on the length and shape of the regions in which the diffraction gratings (12a) and (12b) are formed.

このように、この実施例では、垂直方向から取り出され
るレーザ光は、2次回折格子(12b)によって取り出
され、垂直方向に取り出さない部分には1次回折格子(
12a)を形成しているので、発光効率の低下を防ぐこ
とができる。
As described above, in this embodiment, the laser beam extracted in the vertical direction is extracted by the second-order diffraction grating (12b), and the part that is not extracted in the vertical direction is extracted by the first-order diffraction grating (12b).
12a), it is possible to prevent a decrease in luminous efficiency.

垂直な面から取り出されるレーザ光は例えばモニタ光と
して利用することができる。
Laser light extracted from the vertical plane can be used, for example, as monitor light.

第2図に示す他の実施例では半導体レーザの両端面に干
渉膜を利用した反射膜(2mをつけ、レーザ出力をすべ
てP−1nGaAsPキャンプ層αeから取り出すこと
ができる。この反射膜C!0としては、例えばSiO□
とTi1tをそれぞれ174波長分の厚さで交互に複数
層積層したものや、同じ< A I!、zos とSi
ngによるものなどで実現できる。
In another embodiment shown in FIG. 2, a reflective film (2 m) using an interference film is attached to both end faces of the semiconductor laser, and all the laser output can be taken out from the P-1nGaAsP camp layer αe.This reflective film C!0 For example, SiO□
and Ti1t, each with a thickness of 174 wavelengths, are laminated alternately, and the same < A I! , zos and Si
This can be realized by using ng.

一般に分布帰還型半導体レーザでは近接した2波長で発
振しやすく不安定であるが、これを安定した単一の波長
で発振させるためには、第3図に示すように2次回折格
子(12b)を1次回折格子(12a)に対して位相を
4分の1波長だけずらせばよい。
In general, distributed feedback semiconductor lasers tend to oscillate at two wavelengths that are close to each other and are unstable, but in order to oscillate at a single stable wavelength, it is necessary to use a second-order diffraction grating (12b) as shown in Figure 3. It is sufficient to shift the phase by a quarter wavelength with respect to the first-order diffraction grating (12a).

なお、上記実施例では、2次の回折格子を用いた例を示
したが、2次以上の高次の回折格子であってもよい。
In the above embodiment, an example using a second-order diffraction grating is shown, but a second-order or higher-order diffraction grating may be used.

また、上記実施例ではInP系の半導体レーザの場合に
ついて述べたが、GaAs系や他の材料系でもよい。
Further, in the above embodiment, an InP-based semiconductor laser was used, but a GaAs-based or other material-based semiconductor laser may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、回折格子を光導波路
層の一部に設けられたブラッグ反射条件を満たす1次の
回折格子と、上記光導波路層の他部に設けられた2次以
上の高次の回折格子により構成し、高次の回折格子によ
って光導波路層から、この光導波路層と平行でない方向
にレーザ光を取り出し可能とすることにより、発光スポ
ットが小さく、発光効率のよい面発光の分布帰還型半導
体レーザを得ることができる効果がる。
As described above, according to the present invention, the diffraction grating is a first-order diffraction grating that satisfies the Bragg reflection condition provided in a part of the optical waveguide layer, and a second-order or higher-order diffraction grating provided in another part of the optical waveguide layer. The high-order diffraction grating makes it possible to extract laser light from the optical waveguide layer in a direction that is not parallel to the optical waveguide layer, thereby creating a surface with a small light-emitting spot and high light-emitting efficiency. This has the effect of making it possible to obtain a distributed feedback type semiconductor laser for emitting light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による分布帰還型半導体レ
ーザを示す断面側面図、第2図はこの発明の他の実施例
を示す断面側面図、第3図はこの発明のさらに他の実施
例による回折格子を示す説明図、第4図は従来の半導体
レーザを示す斜視図、第5図は回折格子の動作を説明す
るための説明図である。 (12a)・・・1次回折格子、(12b)・・・高次
回折格子、03)・・・光導波路層、04)・・・活性
層、00・・・レーザ光。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a cross-sectional side view showing a distributed feedback semiconductor laser according to one embodiment of the invention, FIG. 2 is a cross-sectional side view showing another embodiment of the invention, and FIG. 3 is a cross-sectional side view showing another embodiment of the invention. FIG. 4 is a perspective view showing a conventional semiconductor laser, and FIG. 5 is an explanatory view showing the operation of the diffraction grating. (12a)...1st-order diffraction grating, (12b)...higher-order diffraction grating, 03)...optical waveguide layer, 04)...active layer, 00...laser light. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)活性層、光導波路層、及び回折格子を有する分布
帰還型半導体レーザにおいて、上記回折格子は光導波路
層の一部に設けられたブラッグ反射条件を満たす1次の
回折格子と、上記光導波路層の他部の設けられた2次以
上の高次の回折格子により構成され、上記高次の回折格
子によって上記光導波路層から、この光導波路層と平行
でない方向にレーザ光を取り出し可能とすることを特徴
とする分布帰還型半導体レーザ。
(1) In a distributed feedback semiconductor laser having an active layer, an optical waveguide layer, and a diffraction grating, the diffraction grating includes a first-order diffraction grating that satisfies the Bragg reflection condition provided in a part of the optical waveguide layer, and It is composed of a second-order or higher order diffraction grating provided with the other part of the waveguide layer, and the high-order diffraction grating makes it possible to extract laser light from the optical waveguide layer in a direction that is not parallel to the optical waveguide layer. A distributed feedback semiconductor laser characterized by:
(2)光導波路層のいずれか一方あるいは両方の端面に
高反射膜を備えることを特徴とする特許請求の範囲第1
項記載の分布帰還型半導体レーザ。
(2) Claim 1, characterized in that a high reflection film is provided on one or both end faces of the optical waveguide layer.
Distributed feedback semiconductor laser as described in .
(3)1次の回折格子と高次の回折格子の位相を4分の
1波長ずらせたことを特徴とする特許請求の範囲第1項
又は第2項記載の分布帰還型半導体レーザ。
(3) The distributed feedback semiconductor laser according to claim 1 or 2, wherein the phases of the first-order diffraction grating and the higher-order diffraction grating are shifted by a quarter wavelength.
JP61259030A 1986-10-29 1986-10-29 Distributed feedback type semiconductor laser Pending JPS63111689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61259030A JPS63111689A (en) 1986-10-29 1986-10-29 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61259030A JPS63111689A (en) 1986-10-29 1986-10-29 Distributed feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63111689A true JPS63111689A (en) 1988-05-16

Family

ID=17328361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61259030A Pending JPS63111689A (en) 1986-10-29 1986-10-29 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63111689A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189529A (en) * 1989-01-19 1990-07-25 Fujitsu Ltd Optically bistable semiconductor laser device
EP0623980A3 (en) * 1993-05-06 1995-02-15 Cselt Centro Studi Lab Telecom Semiconductor laser with transverse emission, and coupling thereof to an optical waveguide.
EP0952472A3 (en) * 1998-04-21 2003-07-23 Kabushiki Kaisha Toshiba Optical functional element and transmission device
WO2003067724A1 (en) * 2002-02-08 2003-08-14 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and its manufacturing method
US8477819B2 (en) 2009-12-03 2013-07-02 Renesas Electronics Corporation Semiconductor laser diode device and method of fabrication thereof
WO2018009538A1 (en) * 2016-07-05 2018-01-11 Forelux Inc. Grating based optical transmitter
US10386581B2 (en) 2013-10-25 2019-08-20 Forelux Inc. Grating based optical transmitter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189529A (en) * 1989-01-19 1990-07-25 Fujitsu Ltd Optically bistable semiconductor laser device
EP0623980A3 (en) * 1993-05-06 1995-02-15 Cselt Centro Studi Lab Telecom Semiconductor laser with transverse emission, and coupling thereof to an optical waveguide.
EP0952472A3 (en) * 1998-04-21 2003-07-23 Kabushiki Kaisha Toshiba Optical functional element and transmission device
WO2003067724A1 (en) * 2002-02-08 2003-08-14 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and its manufacturing method
US7009216B2 (en) 2002-02-08 2006-03-07 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device and method of fabricating the same
US8477819B2 (en) 2009-12-03 2013-07-02 Renesas Electronics Corporation Semiconductor laser diode device and method of fabrication thereof
US10386581B2 (en) 2013-10-25 2019-08-20 Forelux Inc. Grating based optical transmitter
WO2018009538A1 (en) * 2016-07-05 2018-01-11 Forelux Inc. Grating based optical transmitter

Similar Documents

Publication Publication Date Title
US4796273A (en) Distributed feedback semiconductor laser
US7474817B2 (en) Optical semiconductor device and optical semiconductor integrated circuit
JP2624279B2 (en) Slab waveguide light emitting semiconductor laser
JPH04240605A (en) Optical branch waveguide
JPH08234033A (en) Integrated optical control element and its production as well as optical integrated circuit element and optical integrated circuit device having the same
EP0125608A2 (en) Single longitudinal mode semiconductor laser
EP0533475B1 (en) Optical semiconductor device, method of producing the optical semiconductor device, and laser device using optical semiconductor devices
KR100582114B1 (en) Semiconductor device manufacturing method and semiconductor optical device
JPS63111689A (en) Distributed feedback type semiconductor laser
KR100456670B1 (en) Distributed Bragg reflector laser diode having distributed feedback laser diode and optical spot size converter on the same substrate
JPH0453115B2 (en)
JP3595677B2 (en) Optical isolator, distributed feedback laser and optical integrated device
JPH03268379A (en) Semiconductor laser-chip and manufacture thereof
KR100576299B1 (en) Semiconductor laser and element for optical communication
JPS63213383A (en) Semiconductor laser
JP3368607B2 (en) Distributed feedback semiconductor laser
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPS6159554B2 (en)
JPS59152685A (en) Semiconductor laser element
JP2641296B2 (en) Semiconductor laser with optical isolator
JPH07118568B2 (en) Distributed feedback semiconductor laser
JPH0230195B2 (en)
JPS62136890A (en) Semiconductor laser device
JPS60170992A (en) Optical integrated circuit
JPH02181988A (en) Surface emission type semiconductor laser