JPS63191058A - Insertion method into pipe - Google Patents
Insertion method into pipeInfo
- Publication number
- JPS63191058A JPS63191058A JP2169187A JP2169187A JPS63191058A JP S63191058 A JPS63191058 A JP S63191058A JP 2169187 A JP2169187 A JP 2169187A JP 2169187 A JP2169187 A JP 2169187A JP S63191058 A JPS63191058 A JP S63191058A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- cable
- gas
- float
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02872—Pressure
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、火力、原子カプラント及び熱交換器一般なら
びに水のパイプライン等に適用可能な伝熱管内挿入法に
係り、プローブを限外されることなく遠方にまで搬送可
能とする技術分野で利用される。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for inserting into heat transfer tubes applicable to thermal power plants, nuclear couplants, heat exchangers in general, water pipelines, etc., and is not limited to probes. It is used in the technical field to enable transport over long distances.
従来の技術 第7図に従って従来の技術について述べる。Conventional technology The conventional technique will be described according to FIG.
従来のIS+(供用中検査・・・・・In−8ervi
ceInspection)装置では、プローブ9を伝
熱管8内の遠方に搬送するのに、シール付プッシャー5
で系内に挿入されたプローブ9および搬送用ケーブル6
を、ポンプ3からの高圧水を利用してケーブル6に取り
付けたフロート7前後に加わる推力を発生し、これによ
って搬送する手法が採られていた。Conventional IS+ (in-service inspection...In-8ervi
In the ceInspection) device, a pusher 5 with a seal is used to transport the probe 9 to a distant place inside the heat exchanger tube 8.
Probe 9 and transport cable 6 inserted into the system at
A method has been adopted in which the high-pressure water from the pump 3 is used to generate thrust that is applied to the front and back of the float 7 attached to the cable 6, and this is used to transport the float.
この手法では、遠方にまでセンサーを送るには、ポンプ
3の圧力を高圧にする必要があったが、それでも搬送す
る距離には限度があった。また搬送のために高圧が要求
される場合には、耐圧の低い伝熱管8には適用できず、
新規な手法が必要とされた。In this method, it was necessary to increase the pressure of the pump 3 in order to send the sensor to a long distance, but there was still a limit to the distance that the sensor could be transported. In addition, when high pressure is required for conveyance, the heat exchanger tube 8 with low pressure resistance cannot be applied.
A new method was needed.
発明が解決しようとする問題点
従来の定常高圧源によって搬送する手法では、フロート
部に加わる力が時間的に変化しなyk、管内壁に障害物
がある場合や曲がり部でフロートが引っかかった場合に
は、直ちにそれ以上奥への搬送が不可能となる。気体用
の伝熱管については、更に条件が厳しく、重力作用のた
めフロートが伝熱管底部に接触して摩擦力が生じるので
、深部への搬送がより困難となる。Problems to be Solved by the Invention In the conventional transportation method using a steady high pressure source, the force applied to the float part does not change over time, or when there is an obstacle on the inner wall of the pipe or the float is caught at a bend. Immediately, it becomes impossible to transport the object any further. For heat transfer tubes for gas, the conditions are even more severe, and due to the action of gravity, the float contacts the bottom of the heat transfer tube, creating a frictional force, making it more difficult to transport the tube to a deep location.
問題点を解決するための手段
本発明は、上述の問題点を解決するために、次のような
手段を採っている。すなわち、フロートが取付けられた
ケーブルを圧入する細管の基端から送給する第1圧力流
体に間欠的流動変動を付加することを特徴とする管内挿
入法である。Means for Solving the Problems The present invention takes the following measures in order to solve the above-mentioned problems. That is, this is an intra-tube insertion method characterized by adding intermittent flow fluctuations to the first pressure fluid fed from the proximal end of the thin tube into which the cable to which the float is attached is press-fitted.
作用
搬送用ケーブルには一定の間隔毎にフロートが付けられ
ているが、これに流動変動を付加することにより、フロ
ートには変動する推力が作用するようになる。Floats are attached to the action conveyance cable at regular intervals, but by adding flow fluctuations to these floats, a fluctuating thrust force acts on the floats.
実施例
次に、本発明の実施例について第1図より第6図を参照
して詳述する。Embodiments Next, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 6.
第1図には本発明の第1実施例を示す。FIG. 1 shows a first embodiment of the present invention.
圧力水を注入するポンプ3出口に圧縮機10と接続され
たガス混入装置11が設けてあり、搬送用ケーブル6に
はこれ等によって作られた気液2相流が加えられる。図
中、符号2はタンク、4はバルト、8は伝熱管、9はプ
ローブである。A gas mixing device 11 connected to a compressor 10 is provided at the outlet of the pump 3 for injecting pressurized water, and a gas-liquid two-phase flow created by the gas mixing device 11 is added to the conveying cable 6. In the figure, numeral 2 is a tank, 4 is a bar, 8 is a heat exchanger tube, and 9 is a probe.
圧縮機10からの空気(ガス)はガス混入装置11を介
してポンプ3からの圧力水と共に伝熱管8へ送り込まれ
る。Air (gas) from the compressor 10 is sent to the heat exchanger tube 8 together with pressurized water from the pump 3 via the gas mixing device 11 .
第2図に第1実施例の効果を示す。図において、Aは液
相通過時で推力F中を、Bは気相接近時で推力F中を、
Cは液相到着時で推力F大を示し、推力Fはフロート部
を通過する流体の条件によって時間的に変動する。FIG. 2 shows the effects of the first embodiment. In the figure, A is during thrust F when passing through the liquid phase, B is during thrust F when approaching the gas phase,
C indicates a large thrust force F upon arrival of the liquid phase, and the thrust force F varies over time depending on the conditions of the fluid passing through the float section.
次に、本発明の第2実施例を第3図に示す。Next, a second embodiment of the present invention is shown in FIG.
本実施例の特徴は圧力水を注入するポンプ3と共に、脈
動流を付加するための脈動発生装置2Iを設けたことで
ある。The feature of this embodiment is that a pulsation generating device 2I for adding a pulsating flow is provided together with a pump 3 for injecting pressure water.
これらによって、伝熱管8部の搬送用ケーブル6には定
常流と脈動流の合わさった流れが加えられる。As a result, a combined flow of a steady flow and a pulsating flow is applied to the conveying cable 6 of the heat exchanger tube 8 section.
上記脈動発生装置21では、例えば管路の端部に設けた
ピストンを単振動させる等の方法によって脈動流を発生
する。図で符号2はタンク、4はバルブ、5はシール付
プッシャー装置、7はフロート、9はプローブである。The pulsation generating device 21 generates a pulsating flow by, for example, causing a piston provided at the end of a pipe to perform simple vibration. In the figure, numeral 2 is a tank, 4 is a valve, 5 is a pusher device with a seal, 7 is a float, and 9 is a probe.
本実施例による効果を第4図に示す。各フロートに加わ
る推力は、
F=A(ΔP+Δp)
ΔP:位置によらず一定、
Δp:位置により変化する
次に、本発明の第3実施例を第5図に示す。FIG. 4 shows the effects of this embodiment. The thrust force applied to each float is F=A(ΔP+Δp) ΔP: Constant regardless of position Δp: Changes depending on position Next, a third embodiment of the present invention is shown in FIG.
搬送装置に気体を注入する装置として、気体切換装置3
1と、密度の異なる2種、すなわち気体源A12と気体
源B13との気体供給装置を設ける。A gas switching device 3 serves as a device for injecting gas into the transport device.
1 and two types of gas supply devices having different densities, that is, a gas source A12 and a gas source B13 are provided.
気体切換装置31によって伝熱管8部の搬送用ケーブル
6には周期的に密度の異なる気体が通過することになる
。この密度差によってフロー督鯖に加わる浮力の差が大
きくなるように、2種の気体の密度差はなるべく大きな
ものを選ぶと共に、フロート7内にはヘリウムガスを封
入する事等によって搬送用ケーブル6全体を極力軽く製
作する。The gas switching device 31 allows gases of different densities to periodically pass through the conveyance cable 6 of the heat exchanger tube 8 section. In order to increase the difference in the buoyancy force applied to the flow control vessel due to this density difference, the difference in density between the two gases is selected to be as large as possible, and the transport cable 7 is sealed by filling helium gas in the float 7. Make the whole thing as light as possible.
本実施例の効果を第6図に示す。各フロートには大−中
一小一中一大と浮力が時間的に変化する影響を受けて作
用力(重力と浮力の合力)が変化する。FIG. 6 shows the effects of this embodiment. The force acting on each float (the resultant force of gravity and buoyancy) changes as the buoyancy changes over time, from large to medium to small to medium to large.
発明の効果 本発明による効果について、各実施例毎に述べる。Effect of the invention The effects of the present invention will be described for each example.
a)第1実施例(第1図、第2図)
気液2相流を搬送用ケーブル6に加えるとフロート7の
絞りによって気相、液相が交互に存在するスラグ流の流
動様式を呈するため、フロート7には気相通過時と液相
通過時とで作用する推力が変化するようになる。この長
手方向に変動する推力によって搬送用ケーブル6はぜん
動運動をするようになる。この効果によって曲がり管内
面の突起に限外されることなくプローブ9を遠方にまで
搬送することが可能となる。a) First embodiment (Figures 1 and 2) When a gas-liquid two-phase flow is applied to the conveying cable 6, due to the throttle of the float 7, a flow pattern of a slug flow in which gas and liquid phases exist alternately is exhibited. Therefore, the thrust acting on the float 7 changes when the gas phase passes through and when the liquid phase passes through. This thrust force varying in the longitudinal direction causes the conveying cable 6 to perform a peristaltic motion. This effect makes it possible to transport the probe 9 to a long distance without being restricted by the protrusions on the inner surface of the curved tube.
第2実施例(第3図、第4図)
搬送用ケーブル6のフロート7に脈動発生装置21によ
る脈動流が加わるとフロート7に加わる推力は長手方向
に一様でなくなり、位置により時間により変化するよう
になる。このため搬送用ケープル6はぜん動運動を行う
ようになって、管内面の突起、曲がり等があっても、そ
れらに妨害されることなく、プローブ9を遠方にまで搬
送するのる
が可能と小τこのため高圧は不要となり、kす圧の低い
伝熱管にも適用できる。Second embodiment (Figures 3 and 4) When the pulsating flow from the pulsation generator 21 is applied to the float 7 of the conveyance cable 6, the thrust force applied to the float 7 is not uniform in the longitudinal direction, and changes depending on the position and time. I come to do it. Therefore, the transport cable 6 performs a peristaltic motion, and even if there are protrusions or bends on the inner surface of the tube, it is possible to transport the probe 9 to a long distance without being hindered by them. τ Therefore, high pressure is not required, and it can also be applied to heat exchanger tubes with low k pressure.
第3実施例(第5図、第6図)
搬送用ケーブル6のフロート7に周期的に密度の異なる
気体が通過すると、フロート7に加わる浮力が周期的に
位置によって変化する。このため、搬送用ケーブル6に
は、浮力の大きい部分と小さい部分か生じ、ケーブル6
は全体としてぜん動運動を行うようになる。この効果で
管内面に突起、曲り等があっても、それらに妨害される
ことなく、プローブ9を遠方に搬送することが可能とな
る。Third Embodiment (FIGS. 5 and 6) When gases of different densities periodically pass through the float 7 of the conveyance cable 6, the buoyancy force applied to the float 7 changes periodically depending on the position. Therefore, the transport cable 6 has parts with high buoyancy and parts with low buoyancy, and the cable 6
becomes peristaltic as a whole. With this effect, even if there are protrusions, bends, etc. on the inner surface of the tube, it is possible to transport the probe 9 to a long distance without being hindered by them.
第1図は本発明の第1実施例を示す系統図、第2図はそ
の効果を示す図表、第3図は第2実施例を示す系統図、
第4図はその効果を示す図表、第5図は第3実施例を示
す系統図、第6図はその効果を示す図表、第7図は従来
技術による従来例の系統図である。
2・・タンク、3・・ポンプ、4・・バルブ、5・・シ
ール付きブツシャ−装置、6・・搬送用ケーブル、7・
・フロート1,8・・伝熱管、9・・プローブ、IO・
・圧縮機、11・・ガス混入装置、12・・気体源A、
13・・気体源B、21・・脈動発生装置、31・・気
体切換装置。
第2図
寸縫、力F ! 検力Fノ)\
オi力゛F叉第す図FIG. 1 is a system diagram showing the first embodiment of the present invention, FIG. 2 is a diagram showing its effects, and FIG. 3 is a system diagram showing the second embodiment.
FIG. 4 is a chart showing the effect thereof, FIG. 5 is a system diagram showing the third embodiment, FIG. 6 is a chart showing the effect, and FIG. 7 is a system diagram of a conventional example according to the prior art. 2. Tank, 3. Pump, 4. Valve, 5. Butcher device with seal, 6. Conveyance cable, 7.
・Float 1, 8... Heat exchanger tube, 9... Probe, IO
・Compressor, 11...Gas mixing device, 12...Gas source A,
13... Gas source B, 21... Pulsation generator, 31... Gas switching device. Diagram 2, size stitch, force F! Detection power Fノ)\
Diagram of power and force
Claims (1)
のフロートが取りつけられたケーブルを細管内に圧力挿
入する方法であって、該細管の基端から送給する第1圧
力流体に、間欠的流動変動を付加することを特徴とする
管内挿入法。A method of pressure-inserting a cable equipped with a probe at its tip and a plurality of floats attached at predetermined intervals into a capillary, the first pressure fluid being fed from the proximal end of the capillary having an intermittent flow. An intracanal insertion method characterized by adding variation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62021691A JPH0758284B2 (en) | 1987-02-03 | 1987-02-03 | Pipe insertion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62021691A JPH0758284B2 (en) | 1987-02-03 | 1987-02-03 | Pipe insertion method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63191058A true JPS63191058A (en) | 1988-08-08 |
JPH0758284B2 JPH0758284B2 (en) | 1995-06-21 |
Family
ID=12062093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62021691A Expired - Lifetime JPH0758284B2 (en) | 1987-02-03 | 1987-02-03 | Pipe insertion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0758284B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5174165A (en) * | 1990-08-13 | 1992-12-29 | Westinghouse Electric Corp. | Flexible delivery system for a rotatable probe |
US5279168A (en) * | 1991-12-30 | 1994-01-18 | Timm Stephen D | Probe apparatus |
US5992250A (en) * | 1996-03-29 | 1999-11-30 | Geosensor Corp. | Apparatus for the remote measurement of physical parameters |
US6532839B1 (en) | 1996-03-29 | 2003-03-18 | Sensor Dynamics Ltd. | Apparatus for the remote measurement of physical parameters |
KR100805702B1 (en) | 2007-11-19 | 2008-02-20 | 주식회사 대우에너텍 | Heating wire and pressure regulating ball insertion device of hot water pipe and its insertion method |
JP2011027506A (en) * | 2009-07-23 | 2011-02-10 | Shin Nippon Hihakai Kensa Kk | Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same |
CN103207236A (en) * | 2012-01-12 | 2013-07-17 | 清华大学 | Inspection equipment used for spiral tube heat exchanger or steam generator |
JP2014092517A (en) * | 2012-11-06 | 2014-05-19 | Mitsubishi Heavy Ind Ltd | In-pipe insertion immersion type ultrasonic flaw detection system |
CN108828062A (en) * | 2018-08-09 | 2018-11-16 | 爱德森(厦门)电子有限公司 | A kind of helically coiling long metal pipe eddy current detection method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6552844B2 (en) * | 2015-03-06 | 2019-07-31 | 三菱日立パワーシステムズ環境ソリューション株式会社 | Inspection system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5526452U (en) * | 1978-08-11 | 1980-02-20 |
-
1987
- 1987-02-03 JP JP62021691A patent/JPH0758284B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5526452U (en) * | 1978-08-11 | 1980-02-20 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5174165A (en) * | 1990-08-13 | 1992-12-29 | Westinghouse Electric Corp. | Flexible delivery system for a rotatable probe |
US5279168A (en) * | 1991-12-30 | 1994-01-18 | Timm Stephen D | Probe apparatus |
US5992250A (en) * | 1996-03-29 | 1999-11-30 | Geosensor Corp. | Apparatus for the remote measurement of physical parameters |
US6532839B1 (en) | 1996-03-29 | 2003-03-18 | Sensor Dynamics Ltd. | Apparatus for the remote measurement of physical parameters |
US6817257B2 (en) | 1996-03-29 | 2004-11-16 | Sensor Dynamics Limited | Apparatus for the remote measurement of physical parameters |
KR100805702B1 (en) | 2007-11-19 | 2008-02-20 | 주식회사 대우에너텍 | Heating wire and pressure regulating ball insertion device of hot water pipe and its insertion method |
JP2011027506A (en) * | 2009-07-23 | 2011-02-10 | Shin Nippon Hihakai Kensa Kk | Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same |
CN103207236A (en) * | 2012-01-12 | 2013-07-17 | 清华大学 | Inspection equipment used for spiral tube heat exchanger or steam generator |
CN103207236B (en) * | 2012-01-12 | 2015-03-04 | 清华大学 | Inspection equipment used for spiral tube heat exchanger or steam generator |
JP2014092517A (en) * | 2012-11-06 | 2014-05-19 | Mitsubishi Heavy Ind Ltd | In-pipe insertion immersion type ultrasonic flaw detection system |
CN108828062A (en) * | 2018-08-09 | 2018-11-16 | 爱德森(厦门)电子有限公司 | A kind of helically coiling long metal pipe eddy current detection method |
Also Published As
Publication number | Publication date |
---|---|
JPH0758284B2 (en) | 1995-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63191058A (en) | Insertion method into pipe | |
Caetano et al. | Upward vertical two-phase flow through an annulus—Part I: Single-phase friction factor, Taylor bubble rise velocity, and flow pattern prediction | |
RU2730432C2 (en) | Multiphase flow meter of stratified flow | |
Kong et al. | Experimental study of horizontal air-water plug-to-slug transition flow in different pipe sizes | |
JP2010533868A (en) | Two-phase flow meter | |
NL6514170A (en) | ||
US5941257A (en) | Method for two-phase flow hydrodynamic cleaning for piping systems | |
LaNauze | A circulating fluidised bed | |
KR910003348A (en) | Fin tube type heat exchanger | |
CN112985759A (en) | Fluid-solid coupling experiment platform based on influence of flow velocity on cantilever flow transmission pipe | |
CN215573258U (en) | Pulsation detection device of ultrasonic gas meter | |
JPH03149373A (en) | Wave pumps, pulsating flow generators, flow measuring devices, and heat exchange systems | |
US8869638B2 (en) | Inspection of pipe interior | |
RU2232344C2 (en) | Method and device for location of leakage of fluid or gas in section of pipe-line | |
CN101614571A (en) | A pulsating flow measurement method and its measurement system | |
CN1155071A (en) | Two phase flow meter | |
JPH10239125A (en) | Ultrasonic flow meter | |
CN206694840U (en) | A kind of line is around steam pipe arrangement | |
JPH05186045A (en) | Flowing of slurry and others mixed with pressure air | |
SU1681139A1 (en) | Method and system for piping liquid, gas, powder and their mixtures | |
Kroll et al. | Heat transfer in an LTV falling film evaporator: A theoretical and experimental analysis | |
RU1818504C (en) | Fluid and gas transfer system | |
GB1184030A (en) | Ocean Pipe Line System | |
GB1068068A (en) | Mass flow measuring systems | |
SU1334031A1 (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |