[go: up one dir, main page]

JPH0758284B2 - Pipe insertion method - Google Patents

Pipe insertion method

Info

Publication number
JPH0758284B2
JPH0758284B2 JP62021691A JP2169187A JPH0758284B2 JP H0758284 B2 JPH0758284 B2 JP H0758284B2 JP 62021691 A JP62021691 A JP 62021691A JP 2169187 A JP2169187 A JP 2169187A JP H0758284 B2 JPH0758284 B2 JP H0758284B2
Authority
JP
Japan
Prior art keywords
gas
probe
float
liquid
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62021691A
Other languages
Japanese (ja)
Other versions
JPS63191058A (en
Inventor
鋭 都築
裕 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62021691A priority Critical patent/JPH0758284B2/en
Publication of JPS63191058A publication Critical patent/JPS63191058A/en
Publication of JPH0758284B2 publication Critical patent/JPH0758284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、火力、原子力プラント及び熱交換器一般なら
びに水のパイプライン等に適用可能な管内挿入法に関す
る。更に詳細には、本発明は、先端にプローブを具備す
ると共に所定間隔をおいて複数のフロートが取り付けら
れたケーブルを細管内に圧力挿入する方法において、プ
ローブを阻外されることなく遠方にまで搬送可能とする
ようにした管内挿入法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe insertion method applicable to thermal power plants, nuclear power plants and heat exchangers in general, water pipelines and the like. More specifically, the present invention relates to a method of pressure-inserting a cable having a plurality of floats at predetermined intervals into a thin tube by providing a probe at the tip, and the probe can be extended to a far distance without being blocked. The present invention relates to a method for inserting into a tube that enables transportation.

従来の技術 第5図は従来の管内挿入法を示す。すなわち、従来のIS
I(供用中検査・・・・In-Service Inspection)装置で
は、プローブ9を伝熱管(細管)8内の遠方に搬送する
のに、ドラム4に巻かれていてシール付プッシャー装置
5で管内に挿入された搬送用ケーブル6及びこのケーブ
ルの先端に取り付けたプローブ9を、ポンプ3からの高
圧水を利用して、ケーブル6に所定間隔をおいて取り付
けた複数のフロート7の前後に加わる推力を発生させる
ことによって、搬送する手法が採られていた。なお、14
はバルブを示す。
2. Description of the Related Art FIG. 5 shows a conventional tube insertion method. That is, conventional IS
In the I (In-Service Inspection) device, the probe 9 is transported to a distance inside the heat transfer tube (narrow tube) 8 and is wound around the drum 4 and is inserted into the tube by the pusher device 5 with a seal. Using the inserted transport cable 6 and the probe 9 attached to the end of this cable, high-pressure water from the pump 3 is used to apply thrust to the front and rear of a plurality of floats 7 attached to the cable 6 at predetermined intervals. A method of transporting by generating is used. In addition, 14
Indicates a valve.

発明が解決しようとする課題 このような従来の定常高圧源によって搬送する手法にあ
っては、しかし、次のような問題があった。すなわち、
フロート部に加わる力が時間的に変化しないため、管内
壁に障害物がある場合や曲がり部でフロートが引っかか
った場合には、直ちにそれ以上奥への搬送が不可能とな
る。気体用の伝熱管については、更に条件が厳しく、重
力作用のためフロートが伝熱管底部に接触して摩擦力が
生じるので、深部への搬送がより困難となる。
Problems to be Solved by the Invention However, such a conventional method of carrying by a constant high-voltage source has the following problems. That is,
Since the force applied to the float portion does not change with time, if there is an obstacle on the inner wall of the pipe or if the float is caught at the bent portion, it cannot be conveyed further deeper immediately. The conditions for the heat transfer tube for gas are more severe, and the float contacts the bottom of the heat transfer tube due to the action of gravity to generate a frictional force, which makes it more difficult to convey the heat transfer tube to a deep part.

本発明は、このような従来技術の課題を解決するために
なされたもので、プローブを阻外されることなく遠方に
まで搬送可能とするようにした管内挿入法を提供するこ
とを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and an object thereof is to provide an in-tube insertion method capable of transporting a probe to a distant place without being blocked. .

課題を解決するための手段 上記の課題を解決するために、本発明は、先端にプロー
ブを具備すると共に所定間隔をおいて複数のフロートが
取り付けられたケーブルを細管内に圧力挿入する方法に
おいて、該細管の基端から送給する搬送流体として液体
を用いてこの液体にガスを混入するか、又は前記搬送流
体として密度の異なる2種類の気体を用いてこれら気体
を交互に流すようにしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention is a method of pressure inserting a cable having a plurality of floats at a predetermined interval with a probe at its tip, into a thin tube, A liquid is used as a carrier fluid to be fed from the proximal end of the thin tube, and a gas is mixed into this liquid, or two kinds of gases having different densities are used as the carrier fluid, and these gases are caused to flow alternately. Is.

作用 上記の手段によれば、搬送用ケーブルには一定の間隔毎
にフロートが取り付けられ、各フロートに流動変動が付
加されることにより、フロートには変動する推力が作用
するので、プローブを遠方にまで搬送可能となる。
Action According to the above-mentioned means, floats are attached to the transport cable at regular intervals, and by adding flow fluctuations to each float, a varying thrust force acts on the floats, so that the probe is moved to a distance. Can be transported up to.

この場合、各フロートに発生する推力はフロート前後の
圧力に比例し、また密度差に比例するので、搬送流体と
して液体を用いてこの液体にガスを混入することによ
り、液体と液体に比べて密度が大幅に小さいガスとが交
互に送られるので、長尺の細管であってもプローブを長
距離搬送することが可能となる。
In this case, the thrust generated in each float is proportional to the pressure before and after the float, and also to the density difference.Therefore, by using a liquid as a carrier fluid and mixing gas into this liquid, the density Since a gas having a significantly smaller value is alternately sent, the probe can be transported over a long distance even with a long thin tube.

また、搬送流体として気体しか使用できない場合には、
密度の異なる2種類の気体を用いてこれら気体を交互に
流すことにより、フロートに発生する推力を変化させて
プローブを遠方にまで搬送することが可能となる。
Also, if only gas can be used as the carrier fluid,
By alternately flowing two kinds of gas having different densities, it is possible to change the thrust generated in the float and convey the probe to a distant place.

実施例 以下、第1図〜第4図を参照して本発明の実施例につい
て詳細に説明する。なお、これらの図において第5図に
示したものと同一の部分には同一の符号を付して重複す
る説明は省略する。
Example Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 1 to 4. In these figures, the same parts as those shown in FIG. 5 are designated by the same reference numerals, and the duplicated description will be omitted.

まず第1図は本発明の第1実施例を示し、タンク2から
伝熱管(細管)8内に圧力水(液体)を注入するポンプ
3出口に圧縮機10と接続されたガス混入装置11を設けて
ある。そして、圧縮機10からの空気(ガス)はこのガス
混入装置11を介してポンプ3からの圧力水に混入され、
気液2相流が伝熱管8内へ送り込まれる。
First, FIG. 1 shows a first embodiment of the present invention, in which a gas mixing device 11 connected to a compressor 10 is provided at an outlet of a pump 3 for injecting pressurized water (liquid) from a tank 2 into a heat transfer tube (narrow tube) 8. It is provided. Then, the air (gas) from the compressor 10 is mixed into the pressure water from the pump 3 via this gas mixing device 11,
The gas-liquid two-phase flow is sent into the heat transfer tube 8.

第2図はこの第1実施例の作用を示し、Aは液相通過時
で推力F(中)を、Bは気相接近時で推力F(小)を、
Cは液相到着時で推力F(大)をそれぞれ示し、推力F
はフロート部を通過する流体の条件によって時間的に変
動する。
FIG. 2 shows the operation of the first embodiment, where A is thrust F (medium) when passing through the liquid phase, B is thrust F (small) when approaching the gas phase,
C indicates the thrust F (large) when the liquid phase arrives, and the thrust F
Varies with time depending on the condition of the fluid passing through the float.

このように、気液2相流を搬送用ケーブル6に加えると
フロート7の絞りによって気相、液相が交互に存在する
スラグ流の流動様式を呈するため、フロート7には気相
通過時と液相通過時とで作用する推力が変化するように
なる。この長手方向に変動する推力によって搬送用ケー
ブル6はぜん動運動をするようになる。この作用によっ
て、曲がり管内面の突起に阻外されることなくプローブ
9を遠方にまで搬送することが可能となる。
As described above, when the gas-liquid two-phase flow is applied to the transport cable 6, the flow pattern of the slag flow in which the gas phase and the liquid phase alternately exist due to the restriction of the float 7, and therefore the float 7 has the same shape as when the gas phase passes. The thrust acting on the passage of the liquid phase changes. Due to the thrust that fluctuates in the longitudinal direction, the transport cable 6 makes a peristaltic motion. By this action, the probe 9 can be transported to a distant place without being blocked by the projection on the inner surface of the bent pipe.

また、搬送流体として非圧縮性の水などを用いる場合に
おいて、該水に時間的に変化する圧力を加えて脈動流を
作ることにより上記第1実施例と同様にプローブを遠方
にまで搬送可能となるが、この脈動流による方法は管抵
抗やフロート部で水の圧力の減衰があるため長尺の細管
においてはプローブを長距離搬送することが困難なもの
である。
Further, when incompressible water or the like is used as the carrier fluid, it is possible to convey the probe to a distant place by applying a time-varying pressure to the water to create a pulsating flow, as in the first embodiment. However, in the method using the pulsating flow, it is difficult to convey the probe for a long distance in a long thin tube because of the tube resistance and the attenuation of the water pressure at the float.

これに対し、上記第1実施例は水の圧力差(脈動差)を
用いるのではなく、水(液体)とガスとを交互に流すも
のであるので、長尺細管でのプローブの長距離搬送が可
能なものである。すなわち、各フロートに発生する推力
はフロート前後の圧力に比例し、また密度差に比例する
ので(第2図参照)、搬送流体として水(液体)を用い
てこの水に空気(ガス)を混入することにより、水と水
に比べて密度が大幅に小さい空気とが交互に送られるの
で、長尺の細管であってもプローブを長距離搬送するこ
とが可能となる。
On the other hand, in the above-described first embodiment, the pressure difference (pulsation difference) of water is not used, but water (liquid) and gas are caused to flow alternately. Therefore, long-distance conveyance of the probe in the long thin tube is performed. Is possible. That is, since the thrust generated in each float is proportional to the pressure before and after the float and also to the density difference (see Fig. 2), water (liquid) is used as the carrier fluid and air (gas) is mixed with this water. By doing so, since water and air whose density is significantly smaller than that of water are alternately sent, it becomes possible to carry the probe over a long distance even with a long thin tube.

次に第3図は本発明の第2実施例を示し、伝熱管8内に
気体を搬送流体として注入する装置として、気体切換装
置31と、密度の異なる2種類、すなわち気体源A12と気
体源B13との気体供給装置を設けてある。そして、気体
切換装置31によって伝熱管8内部の搬送用ケーブル6に
は周期的に密度の異なる気体が通過するようにしてい
る。
Next, FIG. 3 shows a second embodiment of the present invention. As a device for injecting gas as a carrier fluid into the heat transfer tube 8, a gas switching device 31 and two types having different densities, that is, a gas source A12 and a gas source. A gas supply device with B13 is provided. The gas switching device 31 allows gases having different densities to periodically pass through the transfer cable 6 inside the heat transfer tube 8.

なお、この密度差によってフロート7部に加わる浮力の
差が大きくなるように、2種類の気体の密度差はなるべ
く大きなものを選ぶと共に、フロート7内にはヘリウム
ガスを封入することなどによって搬送用ケーブル6全体
を極力軽く製作するとよい。
In order to increase the difference in buoyancy applied to the float 7 due to this difference in density, the difference in density between the two types of gas should be selected as large as possible, and the float 7 should be filled with helium gas for transportation. It is advisable to make the entire cable 6 as light as possible.

第4図はこの第2実施例の作用を示し、各フロートには
大→中→小→中→大と浮力が時間的に変化する影響を受
けて作用力(重力と浮力の合力)が変化する。
FIG. 4 shows the operation of the second embodiment, in which the acting force (the resultant force of gravity and buoyancy) changes in each float due to the effect that the buoyancy changes with time from large to medium to small to medium to large. To do.

このように、搬送用ケーブル6のフロート7に周期的に
密度の異なる気体が通過すると、フロート7に加わる浮
力が周期的に位置によって変化する。このため、搬送用
ケーブル6には、浮力の大きい部分と小さい部分が生
じ、ケーブル6は全体としてぜん動運動を行うようにな
る。この作用によって管内面に突起、曲り等があって
も、それらに妨害されることなく、プローブ9を遠方に
搬送することが可能となる。
As described above, when gases having different densities periodically pass through the float 7 of the transport cable 6, the buoyancy applied to the float 7 periodically changes depending on the position. For this reason, a portion having a large buoyancy and a portion having a small buoyancy are generated in the transport cable 6, and the cable 6 as a whole performs peristaltic motion. By this action, even if there are projections, bends, etc. on the inner surface of the tube, the probe 9 can be transported to a distant place without being obstructed by them.

また、プラントによっては搬送流体として気体しか用い
ることができない場合があり、この場合気体は圧縮性が
あるため上述した脈動流を作ることは困難であるが、上
記第2実施例では圧縮性のある気体であっても密度の異
なる2種類の気体を交互に流すことでフロートに発生す
る推力を変化させているので、プローブを遠方にまで搬
送可能なものである。
Further, depending on the plant, only gas may be used as the carrier fluid, and in this case, it is difficult to create the above-mentioned pulsating flow because the gas has compressibility, but in the second embodiment, it has compressibility. Even if the gas is a gas, the thrust generated in the float is changed by alternately flowing two kinds of gases having different densities, so that the probe can be transported to a distant place.

発明の効果 以上述べたように、本発明によれば、先端にプローブを
具備すると共に所定間隔をおいて複数のフロートが取り
付けられたケーブルを細管内に圧力挿入する方法におい
て、該細管の基端から送給する搬送流体として液体を用
いてこの液体にガスを混入するか、又は前記搬送流体と
して密度の異なる2種類の気体を用いてこれら気体を交
互に流すようにしたので、長尺の細管であってもプロー
ブを長距離搬送することができ、また搬送流体として気
体しか使用できない場合であってもプローブを長距離搬
送することができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, in a method of inserting a cable having a probe at its tip and having a plurality of floats attached at predetermined intervals into a capillary by pressure, a proximal end of the capillary is provided. Since a liquid is used as a carrier fluid to be fed from the gas and a gas is mixed into the liquid, or two kinds of gases having different densities are used as the carrier fluid, these gases are caused to flow alternately. Even if it is, the probe can be transported for a long distance, and even if only gas can be used as the transport fluid, the probe can be transported for a long distance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例を示す系統図、第2図はそ
の作用を示す図、第3図は本発明の第2実施例を示す系
統図、第4図はその作用を示す図、第5図は従来例を示
す系統図である。 2……タンク、3……ポンプ、4……ドラム、5……シ
ール付プッシャー装置、6……搬送用ケーブル、7……
フロート、8……伝熱管、9……プローブ、10……圧縮
機、11……ガス混入装置、12……気体源A、13……気体
源B、14……バルブ、31……気体切換装置。
FIG. 1 is a system diagram showing a first embodiment of the present invention, FIG. 2 is a diagram showing its operation, FIG. 3 is a system diagram showing a second embodiment of the present invention, and FIG. 4 is its action. FIG. 5 is a system diagram showing a conventional example. 2 ... Tank, 3 ... Pump, 4 ... Drum, 5 ... Sealing pusher device, 6 ... Transport cable, 7 ...
Float, 8 ... Heat transfer tube, 9 ... Probe, 10 ... Compressor, 11 ... Gas mixing device, 12 ... Gas source A, 13 ... Gas source B, 14 ... Valve, 31 ... Gas switching apparatus.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】先端にプローブを具備すると共に所定間隔
をおいて複数のフロートが取り付けられたケーブルを細
管内に圧力挿入する方法において、該細管の基端から送
給する搬送流体として液体を用いてこの液体にガスを混
入するか、又は前記搬送流体として密度の異なる2種類
の気体を用いてこれら気体を交互に流すようにしたこと
を特徴とする管内挿入法。
1. A method of pressure-inserting a cable having a plurality of floats at a predetermined interval and having a probe at a tip thereof, wherein a liquid is used as a carrier fluid to be fed from the base end of the tube. A pipe insertion method, characterized in that a gas is mixed in the lever liquid, or two kinds of gases having different densities are used as the carrier fluid, and the gases are alternately flowed.
JP62021691A 1987-02-03 1987-02-03 Pipe insertion method Expired - Lifetime JPH0758284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62021691A JPH0758284B2 (en) 1987-02-03 1987-02-03 Pipe insertion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021691A JPH0758284B2 (en) 1987-02-03 1987-02-03 Pipe insertion method

Publications (2)

Publication Number Publication Date
JPS63191058A JPS63191058A (en) 1988-08-08
JPH0758284B2 true JPH0758284B2 (en) 1995-06-21

Family

ID=12062093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021691A Expired - Lifetime JPH0758284B2 (en) 1987-02-03 1987-02-03 Pipe insertion method

Country Status (1)

Country Link
JP (1) JPH0758284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164528A (en) * 2015-03-06 2016-09-08 三菱重工環境・化学エンジニアリング株式会社 Inspection system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174165A (en) * 1990-08-13 1992-12-29 Westinghouse Electric Corp. Flexible delivery system for a rotatable probe
US5279168A (en) * 1991-12-30 1994-01-18 Timm Stephen D Probe apparatus
US6532839B1 (en) 1996-03-29 2003-03-18 Sensor Dynamics Ltd. Apparatus for the remote measurement of physical parameters
GB9606673D0 (en) * 1996-03-29 1996-06-05 Sensor Dynamics Ltd Apparatus for the remote measurement of physical parameters
KR100805702B1 (en) 2007-11-19 2008-02-20 주식회사 대우에너텍 Heating wire and pressure regulating ball insertion device of hot water pipe and its insertion method
JP5171753B2 (en) * 2009-07-23 2013-03-27 新日本非破壊検査株式会社 Pipe thinning measuring device and pipe thinning measuring method using the same
CN103207236B (en) * 2012-01-12 2015-03-04 清华大学 Inspection equipment used for spiral tube heat exchanger or steam generator
JP5913052B2 (en) * 2012-11-06 2016-04-27 三菱重工業株式会社 In-pipe water immersion type ultrasonic flaw detection system
CN108828062B (en) * 2018-08-09 2020-05-15 爱德森(厦门)电子有限公司 Eddy current detection method for spirally wound long metal tube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042369Y2 (en) * 1978-08-11 1985-12-26 三菱重工業株式会社 Coil inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164528A (en) * 2015-03-06 2016-09-08 三菱重工環境・化学エンジニアリング株式会社 Inspection system

Also Published As

Publication number Publication date
JPS63191058A (en) 1988-08-08

Similar Documents

Publication Publication Date Title
JPH0758284B2 (en) Pipe insertion method
AU729193B2 (en) Pig delivery and transport system for subsea wells
ES356979A2 (en) A METHOD OF STORING A FLUID IN AN UNDERGROUND STORAGE TANK.
NO20041930L (en) Method and system for transporting multiphase fluid
DE3865904D1 (en) FLOW TUBE FOR FLAMMABLE LIQUIDS AND PIPE, COMPOSED FROM SUCH TUBES.
Henriot et al. Simulation of process to control severe slugging: Application to the dunbar pipeline
DE68919199D1 (en) FLEXIBLE TUBE FOR TRANSPORTING A FLUID.
GB8321482D0 (en) Flowmeter
GB1184030A (en) Ocean Pipe Line System
Fincke et al. Performance characteristics of an extended throat flow nozzle for the measurement of high void fraction multi-phase flows
Belt et al. Growth of solitary slugs in long pipes
Azzopardi et al. Entrained fraction in inclined annular gas/liquid flow
JPS56145029A (en) Change-over device of capsule tube conveyor system
BE1003143A6 (en) APPARATUS FOR MEASURING MILK IN A DISCONTINUOUS MANNER.
Nordsveen et al. Simulations of severe slugging during depressurization of an oil/gas pipeline
SU988389A1 (en) Apparatus for cleaning pipelines
JPS53113314A (en) Piping device for fluid transportation by multi phase fluid
In-Cheol et al. Application of the through-transmitted ultrasonic signal for the identification of two-phase flow patterns in a simulated high temperature vertical channel
SE8902300L (en) PRESSURE SEATING DEVICE IN CONTAINER / TRANSPORT CONTROL CONTAINING A PRESSURE MEDIUM MIXED WITH SOLID MATERIAL
Kamel et al. The formation of a clog in a pipeline
Darwich Trends in multiphase flow metering
SU1178475A1 (en) Apparatus for mixing a gas with a liquid
FR2320995A1 (en) Chemical treatment of very long tubes - where fluids are fed through tubes and then flow along the outside of each tube
Davis Method and a horizontal pipeline pig launching mechanism for sequentially launching pipeline pigs
Pirie Transport of coarse particles in water and shear-thinning suspensions in horizontal pipes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term