JPS63181414A - Apparatus for forming semiconductor film - Google Patents
Apparatus for forming semiconductor filmInfo
- Publication number
- JPS63181414A JPS63181414A JP1250287A JP1250287A JPS63181414A JP S63181414 A JPS63181414 A JP S63181414A JP 1250287 A JP1250287 A JP 1250287A JP 1250287 A JP1250287 A JP 1250287A JP S63181414 A JPS63181414 A JP S63181414A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- reaction vessel
- infrared
- sample stage
- reaction gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、減圧気相成長法により半導体膜の形成を行な
う装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for forming a semiconductor film by low pressure vapor phase growth.
気相成長(以下、CvD)法は、半導体展進工程におい
て一般的に用いられているが、特に減圧CVD法によシ
半導体膜の形成を行なう場合、例えば、DC−7000
E形シリコンエピタキシヤル単結晶成長装置(国際電気
KK製)、または、特開昭58−95748号公報によ
シ開示されている装置が用いられておシ、前者において
は、石英等を用いた半球形のベルジャ底部へ試料を載置
するサセプタを設け、更にサセプタの下方へ設けたコイ
ルに高周波電流を通じ、これによシサセプタ中へ生ずる
うず電流による発熱を用い、サセプタの上面へ載置され
た試料を加熱すると共に、ベルジャ中を減圧し、これの
中へ反応ガスを供給するものとなっている。Vapor phase deposition (hereinafter referred to as CvD) is generally used in semiconductor development processes, but in particular when forming a semiconductor film by low pressure CVD, for example, DC-7000
E-type silicon epitaxial single crystal growth apparatus (manufactured by Kokusai Denki KK) or the apparatus disclosed in Japanese Patent Application Laid-Open No. 58-95748 is used; in the former, quartz or the like is used. A susceptor was provided to place the sample on the bottom of the hemispherical bell jar, and a high-frequency current was passed through a coil installed below the susceptor. Using heat generated by the eddy current generated in the susceptor, the sample was placed on the top surface of the susceptor. The sample is heated, the pressure inside the bell jar is reduced, and a reaction gas is supplied into the bell jar.
また、後者においては、金属製の容器内へカーボン等の
赤外線吸収性および熱伝導性の良好な材料によシ形成し
たサセプタを設けると共に、容器の底部へ石英等の赤外
線透過性を有する材料を用いた窓を設け、この窓を介し
て赤外線灯によシサセプタを加熱し、これへ載置された
試料を熱すると同時に容器中を減圧のうえ、容器中へ反
応ガスの供給を行なうものとなっている。In the latter case, a susceptor made of a material with good infrared absorption and thermal conductivity, such as carbon, is provided inside the metal container, and a material with infrared transmission, such as quartz, is provided at the bottom of the container. The system uses an infrared lamp to heat the scissor receptor through the window, heats the sample placed on it, simultaneously reduces the pressure in the container, and supplies the reactant gas into the container. ing.
なお、これらの装置は、半導体膜のエピタキシヤル成長
に際し、いずれも比較的高速による温度の昇降を行なっ
て用いるものとなっておシ、基板半導体面を高温により
清浄化してから降温し、ついで半導体膜をエピタキシャ
ル成長させるものとなっている。Note that these devices are used to raise and lower the temperature at a relatively high speed when epitaxially growing a semiconductor film. The film is epitaxially grown.
しかし、前者においては、サセプタの温度上昇に比しベ
ルジャ中の温度は低温であシ、反応ガスがサセプタと接
触し、高温の試料およびサセプタ上において分解のうえ
膜状となって堆積するため、半導体膜のエピタキシャル
成長に際し、基板半導体面の清浄化および降温中に堆積
物が再蒸発し、基板表面を汚染してエピタキシャル成長
を阻害する問題を生じている。However, in the former case, the temperature in the bell jar is low compared to the temperature increase in the susceptor, and the reaction gas comes into contact with the susceptor and decomposes on the high-temperature sample and the susceptor, and then deposits in the form of a film. During epitaxial growth of a semiconductor film, deposits re-evaporate during cleaning and cooling of the semiconductor surface of a substrate, contaminating the surface of the substrate and inhibiting epitaxial growth.
また、高周波電磁界を用いているため、減圧雰囲気中で
は、反応ガスが高周波電磁界によりイオン化してプラズ
マ状態を生じ、反応ガスによる反応状況の制御性が急激
に劣化する問題も生ずる。Furthermore, since a high-frequency electromagnetic field is used, in a reduced-pressure atmosphere, the reaction gas is ionized by the high-frequency electromagnetic field and a plasma state is generated, resulting in a problem that the controllability of the reaction situation by the reaction gas deteriorates rapidly.
一方、後者においては、前述と同様に堆積物が容器内へ
付着し、エピタキシャル成長を阻害すると共に、容器内
を減圧するため窓の内外圧差に対する強度を十分とする
目的上、窓材の厚さを大とすれば、これの重量が増大し
容器への係上部品を強度の大なものとせねばならず、こ
れが大形となシ、これを回避するため、窓を小形とすれ
ば、赤外線の透過面積が減少し、加熱効率が低下する等
の問題を生じている。On the other hand, in the latter case, deposits adhere to the inside of the container as described above, inhibiting epitaxial growth, and in order to reduce the pressure inside the container, the thickness of the window material is set to have sufficient strength against the pressure difference between the inside and outside of the window. If the window is made larger, the weight will increase and the parts that attach to the container must be made stronger, which means that the window will be made smaller. This causes problems such as a decrease in the transmission area and a decrease in heating efficiency.
前述の問題を解決するため、本発明はつぎの手段によシ
構成するものとなっている。In order to solve the above-mentioned problem, the present invention is constructed by the following means.
すなわち、減圧気相成長法による半導体膜形成装置にお
いて、赤外線透過性を有しかつ反応ガスによる堆積物が
付着し難い性質を有する材料からなる筒状の反応容器と
、この反応容器中に設けられ赤外線吸収性および熱伝導
性の良好な材料からなる試料台と、反応容器の外側へ試
料台と対向して設けた赤外線放射源とを備えたものであ
る。That is, in a semiconductor film forming apparatus using a reduced pressure vapor phase growth method, a cylindrical reaction vessel made of a material that is transparent to infrared rays and has properties that prevent deposits from reacting gas from adhering to it; It is equipped with a sample stage made of a material with good infrared absorption and thermal conductivity, and an infrared radiation source provided outside the reaction vessel to face the sample stage.
したがって、反応容器を介する赤外線放射源からの赤外
線によフ試料台が熱せられ、これによって試料台上の試
料も加熱されると共に、反応容器中へ反応ガスによる堆
積物が付着しないものとなる。Therefore, the sample stage is heated by the infrared rays from the infrared radiation source through the reaction vessel, which also heats the sample on the sample stage, and prevents deposits caused by the reaction gas from adhering into the reaction vessel.
以下、実施例を示す図によって本発明の詳細な説明する
。Hereinafter, the present invention will be explained in detail with reference to figures showing examples.
第1図は構成を示す側面図であシ、石英(Sigh)ガ
ラス、サファイヤ等の反応ガスによつる堆積物が付着し
難い性質を有し、かつ、赤外線透過性を有する材料から
なる円筒状の反応容器1を設けると共に、同容器1中ヘ
グラフアイトカーボン等の赤外線吸収性および熱伝導性
の良好な材料からなる試料台2を設けておシ、これの下
側かつ反応容器1の外側へ赤外線放射源として管状の赤
外線灯3を試料台2と対向して設けている。Figure 1 is a side view showing the structure of the cylindrical material, which is made of materials such as quartz (Sigh) glass and sapphire, which have properties that prevent deposits from reacting gas from adhering to them, and which have infrared transmittance. A reaction vessel 1 is provided, and a sample stage 2 made of a material with good infrared absorption and thermal conductivity such as hegraphite carbon is provided in the vessel 1, and a sample stage 2 made of a material with good infrared absorption and thermal conductivity such as hegraphite carbon is provided below the sample stand 2 and outside of the reaction vessel 1. A tubular infrared lamp 3 is provided opposite the sample stage 2 as an infrared radiation source.
また、試料台2上には、シリコン(St)クエへ等の試
料4が載置されておシ、反応容器1の右側方には排気管
5が気密状に接続され、これを介する真空ポンプ6によ
シ反応容器1内の減圧がなされる一方、同容器1の左側
方へ気密状に接続された配管Tを介し、ガス源8が接続
されてお9、これよシ反応ガスが反応容器1中へ供給さ
れるものとなっている。In addition, a sample 4 such as silicon (St) is placed on the sample stage 2, and an exhaust pipe 5 is airtightly connected to the right side of the reaction vessel 1, and a vacuum pump is connected to the right side of the reaction vessel 1. While the pressure inside the reaction vessel 1 is reduced at 6, a gas source 8 is connected to the left side of the vessel 1 via a pipe T connected in an airtight manner, and the reaction gas is reacted with this gas source 8. It is to be supplied into the container 1.
このほか、試料台2の側方には横穴が穿設され、これの
中へ熱電対8が挿入されており、これによって試料台2
の温度を検出し、赤外線灯3への電力供給状況を制御し
ている。In addition, a horizontal hole is drilled on the side of the sample stage 2, and a thermocouple 8 is inserted into this.
The temperature of the infrared lamp 3 is detected and the power supply status to the infrared lamp 3 is controlled.
したがって、赤外線灯3から放射する赤外線は、反応容
器1の外壁を透過して試料台2によシ吸収され、これを
均等に加熱するものとなシ、これの温度に応じて熱電対
9の検出出力によシ赤外線灯3への供給電力が制御され
、試料台2の温度が一定に維持されるため、これに応じ
て試料4が一定温度として加熱される。Therefore, the infrared rays emitted from the infrared lamp 3 pass through the outer wall of the reaction vessel 1 and are absorbed by the sample stage 2, heating it evenly. Since the power supplied to the infrared lamp 3 is controlled by the detection output and the temperature of the sample stage 2 is maintained constant, the sample 4 is heated to a constant temperature accordingly.
ただし、減圧雰囲気中では、試料台2と試料4との温度
が異なるものとなるが、定常状態のとき温度差は一定で
う力、この差を求めておき、赤外線灯3の電力供給制御
上修正を行なえば十分となる。However, in a reduced pressure atmosphere, the temperature of the sample stage 2 and the sample 4 will be different, but in a steady state, the temperature difference is constant and the force is constant. It is sufficient to make the correction.
また、反応容器1として石英等によるものを用いている
ため、反応ガスによる堆積物が使用条件では付着せず、
これによるエピタキシャル成長の阻害を生じない。In addition, since the reaction vessel 1 is made of quartz or the like, deposits caused by the reaction gas do not adhere under the operating conditions.
This does not inhibit epitaxial growth.
すなわち、例えば、試料4の基板温度を400℃、反応
ガスGeHaの圧力を0.3 torr程度とし、Ge
のエピタキシャル成長を行なわせる場合、810゜上に
は全(Geが堆積しない。That is, for example, the substrate temperature of sample 4 is 400°C, the pressure of the reaction gas GeHa is about 0.3 torr, and Ge
When epitaxial growth is performed, no (Ge) is deposited above 810°.
なお、これは反応ガス5izHsを用いたS1膜形成、
反応ガスGa(CHs)sとAsHsとを用いたGaA
sの形成においても同様である。Note that this is an S1 film formation using a reaction gas of 5izHs,
GaA using reactive gases Ga(CHs)s and AsHs
The same applies to the formation of s.
したがって、試料台2の熱容量に応じ、赤外線灯3の容
量を大とすることによシ高速昇温かできると共に、反応
ガスの供給量に応じて試料台2の熱容量を小とすること
によシ、高速降温か自在となる。Therefore, high-speed heating can be achieved by increasing the capacity of the infrared lamp 3 according to the heat capacity of the sample stage 2, and by decreasing the heat capacity of the sample stage 2 according to the amount of reactant gas supplied. , high-speed cooling temperature can be controlled.
実験例によれば、寸法20α×20crIM×1.5c
rn1SiCコードを施したグラファイトカーボンによ
る試料台2を用い、反応ガスH2の供給量31/rm、
圧力5 torrとした条件において、試料台2の温度
を700℃から400 t:まで1〇−以内に降温でき
る。According to the experimental example, the dimensions are 20α×20crIM×1.5c
Using a sample stage 2 made of graphite carbon with rn1SiC code, the supply rate of reaction gas H2 was 31/rm,
Under conditions of a pressure of 5 torr, the temperature of the sample stage 2 can be lowered from 700° C. to 400 t within 10°.
また、前述の条件において試料台2の温度を700℃の
一定としたとき、試料4の温度は約600℃であシ、試
料台2の温度を一定とした後に試料4の温度を約±1℃
の一定値とするまでには、約2i以内の所要時間によシ
十分であった。Furthermore, under the above conditions, when the temperature of the sample stage 2 is kept constant at 700°C, the temperature of the sample 4 is about 600°C, and after the temperature of the sample stage 2 is kept constant, the temperature of the sample 4 is about ±1. ℃
The required time of about 2i or less was sufficient to reach a constant value.
一方、反応容器1として石英の円筒管を用いた場合、強
度上5鵡程度の肉厚によシ十分となシ、製作が容易であ
ると共に、排気管5および配管7との気密状接続が容易
となシ、接続部位の0リング等によるパツキン長を比較
的短くできるため気密性が向上し、かつ、接続部位を赤
外線灯3よシ離間することが自在であシ、加熱による気
密性の低下を阻止することができる。On the other hand, when a cylindrical quartz tube is used as the reaction vessel 1, a wall thickness of about 5 mm is sufficient for strength, it is easy to manufacture, and airtight connection with the exhaust pipe 5 and piping 7 is possible. It is easy to use, and the length of the seal can be made relatively short due to the O-ring at the connection part, which improves airtightness.The connection part can also be separated from the infrared lamp 3, and the airtightness can be improved by heating. The decline can be prevented.
また、反応ガスによる堆積物が付着せず、エピタキシャ
ル成長を阻害しないと共に、反応容器1の赤外線透過率
が低下しないため、赤外線灯3による加熱効率が常に良
好となる。In addition, since deposits caused by the reaction gas do not adhere, epitaxial growth is not inhibited, and the infrared transmittance of the reaction vessel 1 does not decrease, the heating efficiency by the infrared lamp 3 is always good.
なお、反応容器1を洗浄する必要が生じた際は、反応容
器1の形状が簡単であシ、排気管5および配管7から取
外し、試料台2と共に酸等によシ洗浄することが容易で
ある。In addition, when it becomes necessary to clean the reaction vessel 1, the shape of the reaction vessel 1 is simple, and it is easy to remove it from the exhaust pipe 5 and piping 7 and wash it together with the sample stage 2 with acid etc. be.
第2図は、赤外線放射源の配置例を示す第1図のX−Y
断面図であシ、この場合は、赤外線放射源として棒状の
ヒータ11を用い、これを反応容器1の下方外側へ、試
料台2の両側方および下方と対向して複数本を並列に配
置し、かつ、これらを反射板12によシ包囲し、試料台
2の垂直面温度分布を均一としている。Figure 2 shows an example of the arrangement of infrared radiation sources along the X-Y line in Figure 1.
This is a cross-sectional view. In this case, rod-shaped heaters 11 are used as infrared radiation sources, and a plurality of heaters are arranged in parallel to the outside of the lower part of the reaction vessel 1, facing both sides and the lower part of the sample stage 2. , and these are surrounded by a reflecting plate 12 to make the vertical surface temperature distribution of the sample stage 2 uniform.
また、この場合は、試料台2へ複数の横穴を穿設し、こ
れへ各個に熱電対9a〜9Cを挿入し、これらによシ各
ヒータ11を制御するものとしている。Further, in this case, a plurality of horizontal holes are made in the sample stage 2, and thermocouples 9a to 9C are inserted into each hole, and each heater 11 is controlled by these.
したがって、この場合には、ヒータ11の全容量を大と
することが自在でア夛、高速昇温か容易となる。Therefore, in this case, it is possible to freely increase the total capacity of the heater 11, which facilitates high-speed heating.
一方、試料4が赤外線の透過性を有する場合は、反応容
器1の上方外側にも試料台2と対向して赤外線灯3を配
し、上面側からも加熱することができる。On the other hand, when the sample 4 has infrared transmittance, an infrared lamp 3 is disposed on the upper outer side of the reaction vessel 1 so as to face the sample stage 2, and heating can also be performed from the upper surface side.
更に、試料台2の温度を、反応ガスの供給側において高
くシ、反応ガスによる冷却効果を除去する必要のある場
合は、赤外線放射源としてノ10ゲン灯を用い、ヒータ
線の分布密度を変化させて所望の赤外線放射量分布とす
ればよく、あるいは、ヒータ11等を反応容器1の断面
外周に沿って複数配置し、これらの供給電力を各個に制
御すればよい。Furthermore, if it is necessary to raise the temperature of the sample stage 2 on the reactant gas supply side to remove the cooling effect of the reactant gas, use a 10-gen lamp as an infrared radiation source and change the distribution density of the heater wire. Alternatively, a plurality of heaters 11 and the like may be arranged along the outer periphery of the cross section of the reaction vessel 1, and the power supplied thereto may be individually controlled.
したがって、簡単かつ安価な構成によシ、エピタキシャ
ル成長を阻害せず、高速昇降温の自在な減圧CVD法に
適する装置が実現し、加熱効率がよく一度に大量のウェ
ア等を処理することができると共に、保守が極めて容易
となる。Therefore, with a simple and inexpensive configuration, an apparatus suitable for low-pressure CVD method that does not inhibit epitaxial growth and can freely raise and lower the temperature at high speed has been realized. , maintenance becomes extremely easy.
ただし、反応容器1の断面形状は、楕円状または角状で
もよく、赤外線放射源としては各種のものを使用できる
と共に、試料台2のSICコードは洗浄を容品とするた
めであ夛、省略してもよく、熱電対9,9a〜9cの代
シに他の温度センサを用いても同様である等、種々の変
形が自在である。However, the cross-sectional shape of the reaction vessel 1 may be elliptical or angular, various types of infrared radiation sources can be used, and the SIC code of the sample stage 2 is omitted because it is a container for cleaning. Various modifications are possible, such as using other temperature sensors in place of the thermocouples 9, 9a to 9c.
以上の説明によシ明らかなとおり本発明によれば、簡単
かつ安価な構成によシ、反応ガスによる堆積物が反応容
器中へ付着せず、エピタキシャル成長を阻害しないと共
に、赤外線による加熱効率の低下がなく、高速昇降温が
自在であシ、かつ、大量のウェハ等を一度に処理できる
ため、減圧CVD法による半導体膜の形成において顕著
な効果が得られる。As is clear from the above description, the present invention has a simple and inexpensive configuration, and deposits caused by the reaction gas do not adhere to the inside of the reaction vessel, thereby preventing epitaxial growth from being inhibited, and at the same time reducing heating efficiency due to infrared rays. Since there is no heat loss, the temperature can be raised and lowered at high speed, and a large number of wafers etc. can be processed at once, remarkable effects can be obtained in the formation of semiconductor films by the low pressure CVD method.
図は本発明の実施例を示し、第1図は構成を示す側面図
、第2図は赤外線放射源の配置例を示す第1図のX−Y
lifr頁図である。
1・・・・反応容器、2・・拳・試料台、3・・・・赤
外線灯、4・・・・試料、11・・・・ヒータ。The figures show an embodiment of the present invention, FIG. 1 is a side view showing the configuration, and FIG. 2 is an X-Y line in FIG.
lifr page diagram. 1...Reaction container, 2...Fist/sample stand, 3...Infrared lamp, 4...Sample, 11...Heater.
Claims (1)
線透過性を有しかつ反応ガスによる堆積物が付着し難い
性質を有する材料からなる筒状の反応容器と、該反応容
器中に設けられ赤外線吸収性および熱伝導性の良好な材
料からなる試料台と、前記反応容器の外側へ前記試料台
と対向して設けた赤外線放射源とを備えたことを特徴と
する半導体膜形成装置。A semiconductor film forming apparatus using a reduced pressure vapor phase growth method includes a cylindrical reaction vessel made of a material that is transparent to infrared rays and has properties that prevent deposits from reacting gas from adhering to it; 1. A semiconductor film forming apparatus comprising: a sample stage made of a material with good properties and thermal conductivity; and an infrared radiation source provided outside the reaction vessel to face the sample stage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1250287A JPS63181414A (en) | 1987-01-23 | 1987-01-23 | Apparatus for forming semiconductor film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1250287A JPS63181414A (en) | 1987-01-23 | 1987-01-23 | Apparatus for forming semiconductor film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63181414A true JPS63181414A (en) | 1988-07-26 |
Family
ID=11807136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1250287A Pending JPS63181414A (en) | 1987-01-23 | 1987-01-23 | Apparatus for forming semiconductor film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63181414A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004038777A1 (en) * | 2002-10-24 | 2004-05-06 | Tokyo Electron Limited | Heat treatment apparatus |
CN103208440A (en) * | 2012-01-17 | 2013-07-17 | 中国科学院微电子研究所 | Chamber heating device |
-
1987
- 1987-01-23 JP JP1250287A patent/JPS63181414A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004038777A1 (en) * | 2002-10-24 | 2004-05-06 | Tokyo Electron Limited | Heat treatment apparatus |
CN103208440A (en) * | 2012-01-17 | 2013-07-17 | 中国科学院微电子研究所 | Chamber heating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4938815A (en) | Semiconductor substrate heater and reactor process and apparatus | |
JP3090339B2 (en) | Vapor growth apparatus and method | |
US5155062A (en) | Method for silicon carbide chemical vapor deposition using levitated wafer system | |
JP3984820B2 (en) | Vertical vacuum CVD equipment | |
EP1315854B1 (en) | Apparatus and method for cleaning a bell jar in a barrel epitaxial reactor | |
JP3206375B2 (en) | Method for manufacturing single crystal thin film | |
JPS59111997A (en) | Device for epitaxial growth | |
JPS63181414A (en) | Apparatus for forming semiconductor film | |
JP2550024B2 (en) | Low pressure CVD equipment | |
JP4451508B2 (en) | Vapor growth method | |
EP0162111A1 (en) | Method and apparatus for chemical vapor deposition | |
JPS6010621A (en) | Depressurized epitaxial growing equipment | |
JP2000053493A (en) | Single crystal manufacturing method and single crystal manufacturing apparatus | |
JP2881828B2 (en) | Vapor phase growth apparatus and vapor phase growth method | |
JPS61289623A (en) | Vapor-phase reaction device | |
JP3070567B2 (en) | Vertical reduced pressure vapor phase growth apparatus and vapor phase growth method using the same | |
JP2504489B2 (en) | Chemical vapor deposition | |
JPS63270471A (en) | Plasma cvd device | |
JPH0529128U (en) | Epitaxial growth equipment | |
EP0320971B1 (en) | Epitaxial growth apparatus | |
JPH02148717A (en) | Vapor phase epitaxial growth apparatus | |
JPS6286817A (en) | Organo metallic chemical vapor deposition | |
JPS61147521A (en) | Method of coating chemical deposition layer on semiconductor substrate and reactor using therefor | |
JPH0388325A (en) | Vapor phase growth equipment | |
JPH04179222A (en) | Vapor growth apparatus for compound semiconductor |