[go: up one dir, main page]

JPS61289623A - Vapor-phase reaction device - Google Patents

Vapor-phase reaction device

Info

Publication number
JPS61289623A
JPS61289623A JP13221685A JP13221685A JPS61289623A JP S61289623 A JPS61289623 A JP S61289623A JP 13221685 A JP13221685 A JP 13221685A JP 13221685 A JP13221685 A JP 13221685A JP S61289623 A JPS61289623 A JP S61289623A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
reaction chamber
support plate
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13221685A
Other languages
Japanese (ja)
Other versions
JPH0544825B2 (en
Inventor
Naoki Suzuki
直樹 鈴木
Junichi Nozaki
野崎 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13221685A priority Critical patent/JPS61289623A/en
Publication of JPS61289623A publication Critical patent/JPS61289623A/en
Publication of JPH0544825B2 publication Critical patent/JPH0544825B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the work of performing an etching on the back surface of the semiconductor substrate and the work of cleaning the transparent quartz plate and to obtain a thin film with a good reproducibility by a method wherein the pressure in the upper reaction chamber is raised in a vacuum higher than that in the lower reaction chamber. CONSTITUTION:The vacuum degree in an upper reaction chamber 12 is raised in a vacuum higher than that in a lower reaction chamber 15, thereby the reaction gas, which absorbs heat on susceptors 10 and is decomposed, reaches onto a semiconductor substrate 9 and a polycrystalline Si film is deposited on the surface of the semiconductor substrate 9, but the reaction gas does not flow in the back surface of the semiconductor substrate 9 and a polycrystalline Si film is not deposited on the back surface. Moreover, as the reaction gas does not flow in the lower reaction chamber 15, a polycrystalline Si film is never deposited on a transparent quartz plate 18. By this way, ultraviolet rays become easy to transmit the transparent quartz plate 18 and the thin film with a good reproducibility can be obtained on the surface of the semiconductor substrate. In addition, the additional work of cleaning the transparent quartz plate 18 is eliminated and the workability is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体工業で利用されるSi  (シリコン
)ウェハの気相反応装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas phase reactor for Si (silicon) wafers used in the semiconductor industry.

従来の技術 近年、半導体工業において、サイクルタイム、工程の短
縮が要求されている。
BACKGROUND OF THE INVENTION In recent years, there has been a demand for shorter cycle times and processes in the semiconductor industry.

以下図面を参照しながら、従来の気相反応装置の一例に
ついて説明する。
An example of a conventional gas phase reactor will be described below with reference to the drawings.

第2図は、従来の気相成長装置を示すものである。石英
ペルジャー1とベース板2によって、完全に外気と遮断
することができるようになっておシ、ベース板2には反
応ガスを供給する反応ガス供給口3と、反応ガスを排出
するための反応ガス排出口4が取シ付けられている。ま
たベース板2には、半導体基板6を載せる基台6(以下
サセプターと呼ぶ)が設置されている。また石英ペルジ
ャー1の外側には、半導体基板5を加熱するための赤外
線ランプ7と、赤外線ランプ7の反射光線が効率よく半
導体基板6に照射するように反射鏡8が取シ付けられて
いる。
FIG. 2 shows a conventional vapor phase growth apparatus. The quartz Pelger 1 and the base plate 2 make it possible to completely isolate it from the outside air. A gas exhaust port 4 is attached. Further, a base 6 (hereinafter referred to as a susceptor) on which a semiconductor substrate 6 is placed is installed on the base plate 2. Further, an infrared lamp 7 for heating the semiconductor substrate 5 and a reflecting mirror 8 are attached to the outside of the quartz Pelger 1 so that the reflected light of the infrared lamp 7 can efficiently irradiate the semiconductor substrate 6.

以上のように構成された気相反応装置について、以下そ
の動作について説明する。
The operation of the gas phase reactor configured as described above will be explained below.

まず、サセプター〇上釦載置された半導体基板6は、赤
外線ランプ7の光照射によってe o o ℃〜700
’Cに加熱される。ガス供給口3から反応ガスとしての
モノシランとキャリヤーガスとしての水素の混合ガスを
供給し、ガス排出口4から排出する。ガス排出04は、
図示されていない真空ポンプに直結されていて、反応室
は、数Torrの減圧状態に保たれている。ガス供給口
3から供給された混合ガスは、600 ”C〜700 
’Qに加熱されたサセプター6上に達したとき、熱を吸
収し熱分解を起むし、半導体基板6上には熱分解の結果
として、多結晶シリコンが堆積する。(例えば、最新L
SIプロセス技術、第6章CAD技術)工業調査会 発明が解決しようとする問題点 しかしながら上記のような構成では、半導体基板6はサ
セプター6上に載置されているものの、半導体基板6と
サセプター60間1!JKも反応ガスが入り込み、半導
体基板6の裏面にも多結晶シリコンが堆積するという現
象が起こる。そのため、その後の工程である暗室工程で
の露光において、うまくマスク合わせがされなくて歩留
りを低下する可能性がでてくる。
First, the semiconductor substrate 6 placed on the upper button of the susceptor is exposed to light from an infrared lamp 7 to a temperature of e o o °C to 700 °C.
heated to 'C. A mixed gas of monosilane as a reaction gas and hydrogen as a carrier gas is supplied from the gas supply port 3 and discharged from the gas discharge port 4. Gas exhaust 04 is
It is directly connected to a vacuum pump (not shown), and the reaction chamber is maintained at a reduced pressure of several Torr. The mixed gas supplied from the gas supply port 3 has a temperature of 600"C to 700"C.
When it reaches the susceptor 6 heated to Q, it absorbs heat and undergoes thermal decomposition, and polycrystalline silicon is deposited on the semiconductor substrate 6 as a result of the thermal decomposition. (For example, the latest L
SI Process Technology, Chapter 6 CAD Technology) Problems to be Solved by the Industrial Research Council Invention However, in the above configuration, although the semiconductor substrate 6 is placed on the susceptor 6, the semiconductor substrate 6 and the susceptor 60 Interval 1! The reaction gas also enters the JK, and a phenomenon occurs in which polycrystalline silicon is deposited on the back surface of the semiconductor substrate 6 as well. Therefore, there is a possibility that the masks may not be properly aligned during exposure in the subsequent darkroom process, resulting in a decrease in yield.

さらに別の問題として、石英ペルジャー1も光の吸収率
は低いものの、加熱されるため石英ペルジャー内面にも
シリコンが堆積し、赤外線が透過しK<くなる。そのた
め、再現性のよい膜が得られず、また何サイクルか膜を
堆積するごとに、石英ペルジャーを洗浄しなければなら
ないという問題を有していた。
Another problem is that although the quartz Pelger 1 also has a low light absorption rate, since it is heated, silicon is deposited on the inner surface of the quartz Pelger, and infrared rays are transmitted, resulting in K<. Therefore, there was a problem in that a film with good reproducibility could not be obtained, and the quartz Pelger had to be cleaned every time a film was deposited for several cycles.

本発明は上記問題点に鑑み、透明石英プレート上に多結
晶が堆積せず、かつ、半導体基板の裏面にも多結晶が堆
積しないよ、5を再現性の良い薄膜を得る気相反応装置
を提供するものである。
In view of the above-mentioned problems, the present invention provides a gas phase reaction apparatus for producing a thin film with good reproducibility, without depositing polycrystals on a transparent quartz plate, and without depositing polycrystals on the back surface of a semiconductor substrate. This is what we provide.

問題点を解決するための手段 上記問題点を解決するために本発明の気相反応装置は、
半導体基板の直径より小さい抜き穴を有し、前記半導体
基板を支持する支持板と、前記支持板を境にし、前記半
導体基板側に設けられた反応ガス供給口および排出口を
具備した上部反応室と、前記支持板を境にし、前記上部
反応室と相対する側に設けられた非反応ガス供給口、排
出口および前記支持板に対向して設けられた光透過性プ
レートからなる下部室と、前記プレートを通して前記半
導体基板を輻射加熱するための赤外線ランプとを備えた
ものであり、さらKは上部反応室の圧力が下部反応室の
圧力よシ高真空としたものである。
Means for Solving the Problems In order to solve the above problems, the gas phase reactor of the present invention includes:
an upper reaction chamber having a hole smaller than the diameter of the semiconductor substrate and having a support plate for supporting the semiconductor substrate; and a reaction gas supply port and a discharge port provided on the semiconductor substrate side, bordering the support plate; and a lower chamber comprising a non-reactive gas supply port and a discharge port provided on the side opposite to the upper reaction chamber with the support plate as a boundary, and a light-transmissive plate provided opposite to the support plate; The apparatus is equipped with an infrared lamp for radiant heating the semiconductor substrate through the plate, and the pressure in the upper reaction chamber is higher than that in the lower reaction chamber.

作  用 本発明は上記した構成によって、下部室には、非反応性
ガスを流しているため、上部反応室の反応ガスが流れ込
んでも、希釈されてしまい、半導体基板裏面や透明石英
プレートに膜が堆積されるまでには散らない。さらには
、上部反応室の圧力が下部室の圧力より、高真空である
ため、下部室内の非反応性ガスか、支持板と半導体基板
の間隙を通して、上部反応室へ流れる。結果として、上
部反応室内の反応ガスは、下部室へ流れ込むことはなく
、半導体基板の裏面や透明石英プレートに多結晶シリコ
ンが堆積することがなくなることとなる。
Effect of the Invention With the above-described configuration, the present invention allows a non-reactive gas to flow into the lower chamber, so even if the reactive gas flows into the upper reaction chamber, it will be diluted and a film will not form on the back surface of the semiconductor substrate or the transparent quartz plate. It does not scatter until it is deposited. Furthermore, since the pressure in the upper reaction chamber is higher than the pressure in the lower chamber, the non-reactive gas in the lower chamber flows into the upper reaction chamber through the gap between the support plate and the semiconductor substrate. As a result, the reaction gas in the upper reaction chamber will not flow into the lower chamber, and polycrystalline silicon will not be deposited on the back surface of the semiconductor substrate or the transparent quartz plate.

実施例 以下本発明の実施例の気相反応装置について、図面を参
照しながら説明する。
EXAMPLES Hereinafter, gas phase reactors according to examples of the present invention will be described with reference to the drawings.

第1図において、半導体基板9は、810 をコーティ
ングし九カーボンからなるサセプター10上に載置され
る。サセプターは、半導体基板より少し小さな径の抜き
穴を有している。さらにサセプター10は、半導体基板
9より大きく、サセプター10よ〕小さい径を有するサ
セプター支持板11に載置される。サセプター支持板は
ステンレスからなる。サセプター支持板11を境として
反応室は2つに分かれており、上部反応室12には、反
応ガスの供給口13と反応ガスの排出口14を有する。
In FIG. 1, a semiconductor substrate 9 is mounted on a susceptor 10 coated with 810 and made of 9 carbon. The susceptor has a hole with a diameter slightly smaller than that of the semiconductor substrate. Further, the susceptor 10 is placed on a susceptor support plate 11 having a diameter larger than the semiconductor substrate 9 and smaller than the susceptor 10. The susceptor support plate is made of stainless steel. The reaction chamber is divided into two parts with the susceptor support plate 11 as a boundary, and the upper reaction chamber 12 has a reaction gas supply port 13 and a reaction gas discharge port 14 .

下部反応室16は、非反応ガスの供給口16と非反応ガ
スの排出口17とを有し、さらに透明石英プレート18
で密閉される構造となっている。シールドはQリングで
行なわれ、蓋19によって、完全に密閉シールドできる
よ゛うになっている。半導体基板9は、赤外線ランプと
反射鏡よりなる赤外線ランプヒーターユニット2oから
の光照射によって加熱される。反応容器21の外壁は、
ステンレスからなり、水冷$22を有する。
The lower reaction chamber 16 has a non-reactive gas supply port 16 and a non-reactive gas discharge port 17, and further includes a transparent quartz plate 18.
It has a sealed structure. Shielding is done with a Q-ring, and a lid 19 allows for complete hermetic shielding. The semiconductor substrate 9 is heated by light irradiation from an infrared lamp heater unit 2o consisting of an infrared lamp and a reflecting mirror. The outer wall of the reaction container 21 is
It is made of stainless steel and has a water cooling capacity of $22.

以上のように構成された気相反応装置について動作を説
明する。
The operation of the gas phase reactor configured as above will be explained.

半導体基板9は、赤外線ランプヒーターユニット19か
らの光照射によって、600’C〜700℃に加熱され
る。上部反応室12には、反応ガス供給口13からモノ
シランガスが供給され、反応ガス排出口14から排出さ
れ、下部室には、水素ガスが非反応ガス供給口16から
供給され、非反応ガス排出口17から排出される。各反
応室は、図示していない真空ポンプで真空に引かれ、上
部反応室12の真空度が、下部反応室16の真空度と同
じあるいはよシ高真空になるように設定されている。本
実施例では、上部反応室12の真空度を2トール、下部
室の真空度を2トールあるいIr1sトールに設定した
。このように、下部室に水素。
The semiconductor substrate 9 is heated to 600'C to 700C by light irradiation from the infrared lamp heater unit 19. Monosilane gas is supplied to the upper reaction chamber 12 from a reactive gas supply port 13 and is discharged from a reactive gas discharge port 14, and hydrogen gas is supplied to the lower chamber from a non-reactive gas supply port 16 and is discharged from a non-reactive gas discharge port. It is discharged from 17. Each reaction chamber is evacuated by a vacuum pump (not shown), and the degree of vacuum in the upper reaction chamber 12 is set to be the same as or higher than the degree of vacuum in the lower reaction chamber 16. In this example, the degree of vacuum in the upper reaction chamber 12 was set to 2 Torr, and the degree of vacuum in the lower chamber was set to 2 Torr or Ir1s Torr. In this way, hydrogen enters the lower chamber.

不活性ガス等の非反応性ガスを流すことにより、たとえ
上部反応室12から反応ガスが流れ込んでも希釈され、
膜が堆積するまでには紋らない。さらに、上部反応室1
2を高真空にすることにより、下部反応室14からの水
素ガスの流れ込みはあるが、上部反応室12からのモノ
シランガスの下部反応室への流れ込みは、はとんど無視
できる。
By flowing a non-reactive gas such as an inert gas, even if the reaction gas flows from the upper reaction chamber 12, it is diluted.
No markings occur until the film is deposited. Furthermore, upper reaction chamber 1
By making the chamber 2 a high vacuum, hydrogen gas flows from the lower reaction chamber 14, but the flow of monosilane gas from the upper reaction chamber 12 into the lower reaction chamber can be almost ignored.

以上のように本実施例によれば、上部反応室12の真空
度を下部反応室15の真空度よp高真空にすることKよ
り、サセプター10上で熱を吸収し分解した反応ガスは
、半導体基板9上に到達して多結晶シリコンを堆積する
が、半導体基板9の裏面には流れ込まず、裏面には多結
晶シリコンが堆積しない。さらに下部反応室115には
反応ガスが流れ込まないため、透明石英プレート18上
には膜が堆積することがない。その結果赤外線が透過し
にくくなることはなくなり、再現性の良い膜が得られる
。また透明石英プレート18の洗浄するという余分の作
業がなくなシ、作業性が良くなる。
As described above, according to this embodiment, by making the degree of vacuum in the upper reaction chamber 12 p higher than that in the lower reaction chamber 15, the reaction gas that absorbs heat and decomposes on the susceptor 10, Although it reaches the semiconductor substrate 9 and deposits polycrystalline silicon, it does not flow into the back surface of the semiconductor substrate 9, and no polycrystalline silicon is deposited on the back surface. Furthermore, since no reaction gas flows into the lower reaction chamber 115, no film is deposited on the transparent quartz plate 18. As a result, it is no longer difficult for infrared rays to pass through, and a film with good reproducibility can be obtained. Further, the extra work of cleaning the transparent quartz plate 18 is eliminated, improving work efficiency.

なお本実施例において、多結晶シリコン膜とし九が、酸
化シリコン、窒化シリコン、その他どのような膜でも気
相反応を利用するものであれば適用できることはいうま
でもない。
In this embodiment, it goes without saying that the polycrystalline silicon film may be applied to silicon oxide, silicon nitride, or any other film that utilizes a gas phase reaction.

また、サセプター10は、SiCt−s−ティングした
カーボンとしたが、サセプター10は、反応ガスと非反
応であシ、耐熱性の材料であれば良い。
Further, although the susceptor 10 is made of SiCt-s-tinted carbon, the susceptor 10 may be made of any heat-resistant material that does not react with the reaction gas.

また、サセプター支持板11および反応容器20の外壁
は、ステンレスとしたが、サセプター支持板11および
反応容器2oの外壁は、反応ガスと非反応であり、耐熱
性の材料であれば良い。
Furthermore, although the outer walls of the susceptor support plate 11 and the reaction vessel 20 are made of stainless steel, the outer walls of the susceptor support plate 11 and the reaction vessel 2o may be made of heat-resistant materials that do not react with the reaction gas.

また透明石英プレート18は、材質を透明石英としたが
、光透過性で耐熱材料であれば良い。
Further, although the transparent quartz plate 18 is made of transparent quartz, any material may be used as long as it is light-transmissive and heat-resistant.

発明の効果 以上のように、半導体基板の直径よシ小さい抜き穴を有
する前記半導体基板を支持する支持板と、前記支持板を
境にし、前記半導体基板側に設けられた反応ガス供給口
および排出口を具備した上部反応室と、前記支持板を境
にし、前記上部反応室と相対する側に設けられた非反応
ガス供給口、排出口および前記支持板に対向して設けら
れた光透過性プレートからなる下部室と、前記プレート
を通して前記半導体基板を輻射加熱するための赤外線ラ
ンプとを設けることにより、さらに上部反応室の圧力が
下部反応室の圧力より高真空にすることによシ、半導体
基板の裏面への膜の形成がなくなシ、さらに、プレート
への膜の堆積がなくなったため、半導体の裏面をエツチ
ングするという工程がなくなり、さらにプレートの洗浄
という作業もなくなシ、再現性の良い薄膜を形成するこ
とができる。
Effects of the Invention As described above, a support plate supporting the semiconductor substrate having a hole smaller in diameter than the semiconductor substrate, and a reaction gas supply port and exhaust port provided on the semiconductor substrate side bordering the support plate are provided. an upper reaction chamber provided with an outlet, a non-reactive gas supply port and an exhaust port provided on the side facing the upper reaction chamber with the support plate as a border, and a light transmitting port provided opposite the support plate. By providing a lower chamber consisting of a plate and an infrared lamp for radiant heating the semiconductor substrate through the plate, and by making the pressure in the upper reaction chamber higher than the pressure in the lower reaction chamber, it is possible to heat the semiconductor substrate. There is no need to form a film on the back side of the substrate, and since there is no longer a film deposited on the plate, there is no need to etch the back side of the semiconductor, and there is no need to clean the plate, which improves reproducibility. A good thin film can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における気相反応装置の断面
図、第2図は従来の気相反応装置の断面図である。 9・・・・・半導体基板、1o・・・・・・サセプター
、11・・・・・・サセプター支持板、12・・・−・
・上部反応室、13・・・・・・反応ガスの供給口、1
4・・・・・・反応ガスの排出口、16・・・・・・下
部室、16・・・・・・非反応ガス供給口、17・・・
・・・非反応ガス排出口、18・・・・・・透明石英プ
レート、19・・・・・・蓋、2o・・・・・赤外a)
ンプヒーターユニット、21・・・・・反応容器、22
・・・・・・水冷溝。
FIG. 1 is a sectional view of a gas phase reactor according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional gas phase reactor. 9...Semiconductor substrate, 1o...Susceptor, 11...Susceptor support plate, 12...-
・Upper reaction chamber, 13...Reaction gas supply port, 1
4... Reactive gas outlet, 16... Lower chamber, 16... Non-reactive gas supply port, 17...
...Non-reactive gas outlet, 18...Transparent quartz plate, 19...Lid, 2o...Infrared a)
pump heater unit, 21... reaction vessel, 22
...Water cooling groove.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の直径より小さい抜き穴を有し、前記
半導体基板を支持する支持板と、前記支持板を境にし、
前記半導体基板側に設けられた反応ガス供給口および排
出口を具備した上部反応室と、前記支持板を境にし、前
記上部反応室と相対する側に設けられた非反応ガス供給
口、排出口および前記支持板に対向して設けられた光透
過性プレートからなる下部室と、前記プレートを通して
前記半導体基板を輻射加熱するための赤外線ランプとか
らなる気相反応装置。
(1) a support plate having a hole smaller than the diameter of the semiconductor substrate and supporting the semiconductor substrate; and a support plate bordering the support plate;
an upper reaction chamber provided with a reactive gas supply port and a discharge port provided on the semiconductor substrate side; and a non-reactive gas supply port and discharge port provided on a side facing the upper reaction chamber with the support plate as a border. and a gas phase reaction device comprising a lower chamber comprising a light-transmissive plate provided opposite to the support plate, and an infrared lamp for radiant heating the semiconductor substrate through the plate.
(2)上部反応室の圧力が下部反応室の圧力より高真空
であることを特徴とする特許請求の範囲第1項記載の気
相反応装置。
(2) The gas phase reactor according to claim 1, wherein the pressure in the upper reaction chamber is higher than the pressure in the lower reaction chamber.
JP13221685A 1985-06-18 1985-06-18 Vapor-phase reaction device Granted JPS61289623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13221685A JPS61289623A (en) 1985-06-18 1985-06-18 Vapor-phase reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13221685A JPS61289623A (en) 1985-06-18 1985-06-18 Vapor-phase reaction device

Publications (2)

Publication Number Publication Date
JPS61289623A true JPS61289623A (en) 1986-12-19
JPH0544825B2 JPH0544825B2 (en) 1993-07-07

Family

ID=15076101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13221685A Granted JPS61289623A (en) 1985-06-18 1985-06-18 Vapor-phase reaction device

Country Status (1)

Country Link
JP (1) JPS61289623A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179525A (en) * 1987-01-21 1988-07-23 Tokyo Electron Ltd Ashing apparatus
US5711811A (en) * 1994-11-28 1998-01-27 Mikrokemia Oy Method and equipment for growing thin films
US5855680A (en) * 1994-11-28 1999-01-05 Neste Oy Apparatus for growing thin films
US5997651A (en) * 1995-10-18 1999-12-07 Tokyo Electron Limited Heat treatment apparatus
US6015590A (en) * 1994-11-28 2000-01-18 Neste Oy Method for growing thin films

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113420A (en) * 1983-11-22 1985-06-19 Mitsubishi Electric Corp Device for manufacturing semiconductor crystal
JPS60178621A (en) * 1984-02-24 1985-09-12 Toshiba Corp Thin-film forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113420A (en) * 1983-11-22 1985-06-19 Mitsubishi Electric Corp Device for manufacturing semiconductor crystal
JPS60178621A (en) * 1984-02-24 1985-09-12 Toshiba Corp Thin-film forming device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179525A (en) * 1987-01-21 1988-07-23 Tokyo Electron Ltd Ashing apparatus
US5711811A (en) * 1994-11-28 1998-01-27 Mikrokemia Oy Method and equipment for growing thin films
US5855680A (en) * 1994-11-28 1999-01-05 Neste Oy Apparatus for growing thin films
US6015590A (en) * 1994-11-28 2000-01-18 Neste Oy Method for growing thin films
US6572705B1 (en) 1994-11-28 2003-06-03 Asm America, Inc. Method and apparatus for growing thin films
US7404984B2 (en) 1994-11-28 2008-07-29 Asm America, Inc. Method for growing thin films
US7498059B2 (en) 1994-11-28 2009-03-03 Asm America, Inc. Method for growing thin films
US8507039B2 (en) 1994-11-28 2013-08-13 Asm America, Inc. Method for growing thin films
US5997651A (en) * 1995-10-18 1999-12-07 Tokyo Electron Limited Heat treatment apparatus

Also Published As

Publication number Publication date
JPH0544825B2 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
US6254686B1 (en) Vented lower liner for heating exhaust gas from a single substrate reactor
JPH05243166A (en) Semiconductor substrate vapor growth device
EP0728850B1 (en) Quasi hot wall reaction chamber
JPS61289623A (en) Vapor-phase reaction device
JPS5936927A (en) Semiconductor vapor phase growth equipment
JPS622525A (en) Vapor-phase reaction device
JPS60189927A (en) Vapor phase reactor
JP3046446B2 (en) Semiconductor manufacturing equipment
JPH0430514A (en) Thermal cvd apparatus
US4719122A (en) CVD method and apparatus for forming a film
JPS6050918A (en) Semiconductor processor
JPH0626182B2 (en) Infrared heating device
JPS62101021A (en) Semiconductor manufacturing equipment
JPS6298613A (en) Vapor growth method
JPS60189924A (en) Vapor phase reactor
JPS62208624A (en) Vapor growth equipment
JPS62154616A (en) Vapor growth apparatus
JPS622524A (en) Vapor-phase growth device
JP2001015439A (en) Device and method for treating semiconductor wafer
JPS62244123A (en) Vapor growth device
JPS6252921A (en) Light exitation film forming device
JPS6118125A (en) Thin film forming apparatus
JPH0638402B2 (en) Gas phase reaction vessel
JPS61121324A (en) Vapor growth equipment