[go: up one dir, main page]

JPS6010621A - Depressurized epitaxial growing equipment - Google Patents

Depressurized epitaxial growing equipment

Info

Publication number
JPS6010621A
JPS6010621A JP11931083A JP11931083A JPS6010621A JP S6010621 A JPS6010621 A JP S6010621A JP 11931083 A JP11931083 A JP 11931083A JP 11931083 A JP11931083 A JP 11931083A JP S6010621 A JPS6010621 A JP S6010621A
Authority
JP
Japan
Prior art keywords
furnace
furnace wall
reactor
sic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11931083A
Other languages
Japanese (ja)
Inventor
Yoshiki Tanigawa
谷川 栄機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIJUTSU JOHO KENKYUSHO KK
Original Assignee
GIJUTSU JOHO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIJUTSU JOHO KENKYUSHO KK filed Critical GIJUTSU JOHO KENKYUSHO KK
Priority to JP11931083A priority Critical patent/JPS6010621A/en
Publication of JPS6010621A publication Critical patent/JPS6010621A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To make extremely high purity silicon single-crystal grow by forming at least the surface of a furnace wall of a reaction furnace with Si or SiC. CONSTITUTION:A reactive gas inlet 2 and a reactive gas outlet 3 are provided to a reaction furnace 1. Resistance heaters 4 are arranged around the reaction furnace 1 as furnace wall heaters. Wafers 6 are held on a holding means 5 in the furnace. Si or SiC is used as furnace wall material of the reaction furnace 1. With this constitution, the inside of the reaction furnace is depressurized to 5- 100Torr by evacuation through the outlet 3. Wafers 6 are heated to the temperature of approximately 1,100 deg.C. Reactive gas composed of SiHCl2 and PH3 is introduced with a carrier gas H2 into the furnace 1 through the inlet 2 and dispersed on the wafers 6 to make silicon single-crystal.

Description

【発明の詳細な説明】 この発明は、減圧反応炉の外周に加熱体が配設され、反
応炉内に配置されたウエノ・上にシリコン単結晶を成長
させる減圧エピタキシャル成長装置に関するものであシ
、特に、炉壁面をシリコン(以下、Siと記す)又は炭
化シリコン(以下、SiCと記す)とし、加熱体として
、炉壁の加熱を通じて炉体全体を昇温させる炉壁加熱体
を採用した減圧エピタキシャル成長装置に係わるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reduced-pressure epitaxial growth apparatus in which a heating element is disposed around the outer periphery of a reduced-pressure reactor, and a silicon single crystal is grown on a substrate placed inside the reactor. In particular, the furnace wall surface is made of silicon (hereinafter referred to as Si) or silicon carbide (hereinafter referred to as SiC) and the furnace wall heating element is used to raise the temperature of the entire furnace body by heating the furnace wall. It is related to equipment.

従来、半導体装造分野において、シリコン単結晶の製造
に際しては、減圧エピタキシャル成長装置が多用されて
お9、該装置においては、5〜100torrの減゛圧
下でシリコン単結晶の成長反応を行わせることにより、
オートドーピングを回避できるので、特に、薄いエピタ
キシャル層の成長には有利であることが知られている。
Conventionally, in the field of semiconductor devices, low-pressure epitaxial growth equipment has been widely used for the production of silicon single crystals9. ,
It is known to be particularly advantageous for the growth of thin epitaxial layers, since autodoping can be avoided.

そして、該減圧エビタギシャル成長装置にお 、いては
、減圧された反応炉中に、反応ガスを通じ、反応炉の外
周に加熱体を配設し、該加熱体によって反応炉内のウェ
ハを加熱して、該ウェハ上にシリコン単結晶を成長させ
るものであり、反応炉の炉壁材としては、低価格、良好
な加工性及び透明であることなどから石英(以下、5i
n2とMLす)が採用されている。
In the reduced pressure epitaxial growth apparatus, a reaction gas is passed through a reduced pressure reactor, and a heating element is disposed around the outer periphery of the reactor, and the wafer in the reactor is heated by the heating element. , a silicon single crystal is grown on the wafer, and quartz (hereinafter referred to as 5i
n2 and ML) have been adopted.

ところが、上記減圧エピタキシャル成長装置における加
熱体として、ニクロム線ヒーター等の抵抗加熱体から成
る炉壁加熱体を採用すると、炉艷自体も該加熱体によっ
て加熱されるので(このような装置を以下、ホットウォ
ールハシという)、炉壁材である5i02から02が滲
み出し、ウェハ上に不断≦」の核を形成して結晶構造が
乱れる欠点があった。その上、5i02の結晶おlf造
が孜密でないことから、炉壁を辿して外部からN2等が
炉内に透過移入して、前記結晶構造の乱れがよυ一層深
刻なものとなっていた。
However, if a furnace wall heating element made of a resistance heating element such as a nichrome wire heater is used as the heating element in the above-mentioned reduced-pressure epitaxial growth apparatus, the furnace wall itself is also heated by the heating element (hereinafter, such an apparatus will be referred to as a hot There was a drawback that 02 oozed out from the 5i02 which was the furnace wall material, forming a continuous nucleus on the wafer, and the crystal structure was disturbed. Furthermore, since the crystal structure of 5i02 is not dense, N2, etc. can permeate into the furnace from the outside by tracing the furnace wall, making the disturbance of the crystal structure even more serious. Ta.

又、不庖望の反応によって炉壁上に形成、されるフレー
クが、炉壁旧と該フレークの膨張係数の違いによって滑
りを生じて炉壁から落下し、−ウェハ上に付着混入して
し捷う欠点もあった。
In addition, flakes formed on the furnace wall due to an undesired reaction slip and fall from the furnace wall due to the difference in expansion coefficient between the old furnace wall and the flakes, and are deposited and mixed onto the wafer. It also had some flaws.

その上、反応温度が高く (約1100℃)、炉海材(
Sin2)の融点に近いので、炉壁が軟化変形し、装置
の寿命が短縮化する不利点もあった。
Moreover, the reaction temperature is high (approximately 1100℃), and the reactor sea material (
Since it is close to the melting point of Sin2), there was also the disadvantage that the furnace wall was softened and deformed, shortening the life of the equipment.

上述のホットウォール型の問題点を解決するものとして
、反応炉の外周から赤外線を照射して内部のウェハのみ
を選択的に加熱し、炉壁自体の温度を上昇させないよう
にしたコールドウォール型が採用されているが、該コー
ルドウォール型装置においては、赤外線照射装置が大型
であるので、大きなスペースを必要とし、しかも、コス
トが高いという欠点があり、その上、赤外線ランプの寿
命が短いので、保守作業が煩雑であるという難点もあっ
た。
As a solution to the above-mentioned problems of the hot wall type, a cold wall type is used, which selectively heats only the wafers inside by irradiating infrared rays from the outer periphery of the reactor, without increasing the temperature of the reactor wall itself. However, in the cold wall type device, the infrared irradiation device is large, so it requires a large space and has the drawbacks of high cost.Furthermore, the infrared lamp has a short lifespan. Another drawback was that maintenance work was complicated.

この発明の目的は、上記従来技術に基づくホットウォー
ル型の減圧エピタキシャル成長装置の構造に起因する結
晶品質の劣悪化等の問題点に鑑み、反応炉の炉壁の少な
くとも炉壁面をSi又はSiCにて形成する構成とする
ことによって、前記欠点を除去し、不利点を解消して、
極めて純度の高いシリコン単結晶を成長させることがで
きる優れた減圧エピタキシャル成長装置を提供せんとす
るものである。
In view of the problems such as deterioration of crystal quality caused by the structure of the hot wall type reduced pressure epitaxial growth apparatus based on the above-mentioned conventional technology, an object of the present invention is to coat at least the wall surface of the reactor wall with Si or SiC. By creating a structure in which the
The present invention aims to provide an excellent low-pressure epitaxial growth apparatus capable of growing silicon single crystals of extremely high purity.

上記目的に沿うこの発明の構成は、反応ガスが導入され
る反応炉の外周に加熱体を配設し、反応炉内のウェハ上
にシリコン単結晶を気相成長させる減圧エピタキシャル
成長装置において、前記加熱体を炉壁加熱体とし、反応
炉の炉壁をSi又[SiCによって形成することにより
、炉壁が加熱された際の、該炉壁からの02の岑み出し
を解消し、更には、炉壁に形成されるフレークの落下を
防止し、その上、炉壁の軟化変形をも解消し、もって、
純度の高い良品質のシリコン単結晶を成長させることが
できるようにしたことを要旨とするものであシ、更に、
上記発明に常連する第2の発明の構成は、前記炉壁をカ
ーボン層の両面にSi又はSiC層をコーディングした
積層材によって形成することにより、上記この発明の諸
効果を損うことなく、高純度で良品質のシリコン単結晶
の成長を可能とするにも係わらず、炉壁材としての高価
なSi又はSiCを節約し、その上、反応炉の機械的強
度を増すことができるようにしたことを要旨とするもの
である。
The structure of the present invention in accordance with the above object is that a heating body is disposed around the outer periphery of a reactor into which a reaction gas is introduced, and in a reduced pressure epitaxial growth apparatus for growing a silicon single crystal on a wafer in the reactor in a vapor phase, the heating By using the body as a furnace wall heating body and forming the furnace wall of the reaction furnace from Si or [SiC, it is possible to eliminate the protrusion of 02 from the furnace wall when the furnace wall is heated, and further, It prevents flakes formed on the furnace wall from falling, and also eliminates softening and deformation of the furnace wall.
The gist of the invention is to make it possible to grow high-quality silicon single crystals with high purity, and further,
The structure of the second invention, which is common to the above invention, is that the furnace wall is formed of a laminated material in which both sides of a carbon layer are coated with Si or SiC layers, thereby achieving high performance without impairing the various effects of the invention. Although it is possible to grow silicon single crystals of high purity and high quality, it is possible to save expensive Si or SiC as a furnace wall material and to increase the mechanical strength of the reactor. The gist of this is that

次に、この発明の実施例を図面に基づいて説明すれば以
下の通りである。
Next, embodiments of the present invention will be described below based on the drawings.

第1図及び第2図において、反応炉1には、反応ガス導
入口2と反応ガス排出口3が設けられているス反応炉1
の外周には、炉壁加熱体として、ニクロム線ヒーター等
の抵抗加熱体4が配設されておシ、反゛応炉1の内部に
は、支持具5が設けられ、その上に、ウェハ6が支持さ
れている。そして、かかる反応炉1の炉壁材として、S
l又はSiCが用いられているものである。
1 and 2, a reactor 1 is provided with a reactant gas inlet 2 and a reactant gas outlet 3.
A resistance heating element 4 such as a nichrome wire heater is disposed around the outer periphery of the reactor as a furnace wall heating element.A support 5 is provided inside the reactor 1, on which a wafer is placed. 6 is supported. As the furnace wall material of the reactor 1, S
1 or SiC is used.

上記構成において、反応炉1内は排出口3からの排気に
よ#)5〜100 torrに減圧され、ウェハ6は約
1100℃に加熱されて、S i’Hc 12、PHs
゛より成る反応ガスがキャリアガス(H2)とともに導
入口2よシ炉1内に導入されて、ウェハ6土に散乱し、
シリコン単結晶が成長するものである。
In the above configuration, the pressure inside the reactor 1 is reduced to 5 to 100 torr by exhaust air from the exhaust port 3, and the wafer 6 is heated to about 1100°C, and S i'Hc 12, PHs
A reaction gas consisting of ``is introduced into the furnace 1 through the inlet 2 together with the carrier gas (H2), and is scattered on the wafer 6 soil.
Silicon single crystal grows.

又、別の実施態様として、第3図に示されるように、加
熱域と冷却域を備えた反応炉に適用することもできる。
Moreover, as another embodiment, as shown in FIG. 3, the present invention can be applied to a reactor equipped with a heating zone and a cooling zone.

図において、反応炉1は、接続環7cにより連成された
加熱域7aと冷却域γbを伽えておシ、加熱域raにお
いては、その外周に、炉壁加熱体としての抵抗加熱体8
が配設され、冷却域1bにおいては、その外周に、炉壁
冷却体としてのペルチェ効果素子等の冷却体9が配設さ
れている。
In the figure, the reactor 1 has a heating zone 7a and a cooling zone γb connected by a connecting ring 7c.
A cooling body 9 such as a Peltier effect element as a furnace wall cooling body is disposed around the outer periphery of the cooling zone 1b.

そして、支持具5は反応炉T内を往復動可能に配置され
ている。
The support 5 is arranged so as to be able to reciprocate within the reactor T.

かかる加熱域1aにおける炉壁材としては、si又はS
iCが用いられ、冷却域1bにおける炉壁材としては、
従来と同様のS i02が用いられているものである。
The furnace wall material in the heating zone 1a is made of Si or S.
iC is used as the furnace wall material in the cooling zone 1b,
The same S i02 as the conventional one is used.

上記構成において、単結晶成長時には、支持具5は加熱
域la内にあシ、抵抗加熱体8によってウェハ6が加熱
され、反応ガスによってシリコン単結晶が成長する。反
応終了後に、反応ガスの供給を止めるとともに、ウェハ
6を冷却域γbに移動し、ここで冷却する。同時に、炉
γ内のキャリアガス(N2)をN2ガスに置換し、これ
によシ冷却後のウェハ6の取出しに際してのキャリアガ
スの発火の危険を防ぐことができる。
In the above configuration, during single crystal growth, the support 5 is placed in the heating area la, the wafer 6 is heated by the resistance heating element 8, and the silicon single crystal is grown by the reaction gas. After the reaction is completed, the supply of the reaction gas is stopped, and the wafer 6 is moved to the cooling area γb and cooled there. At the same time, the carrier gas (N2) in the furnace γ is replaced with N2 gas, thereby preventing the carrier gas from igniting when the wafer 6 is taken out after cooling.

このようにして、高価なsl又はSiCの反応炉全体へ
の使用を避けて、5io2を炉壁材として使用すること
が好ましくない加熱域に限ってこれらを用いているので
、装置全体が経済的なものとな□る。
In this way, the use of expensive SL or SiC in the entire reactor is avoided, and these are used only in the heating region where it is not desirable to use 5io2 as a reactor wall material, making the entire device economical. Become something.

尚、上記実施例においては、ウェハを支持具によって支
持するものについて説明したが、これに限られるもので
はなく、炉内に水平多段に支持された薄板状のサセプタ
ー上にウェハを保持するものであってもよく、更には、
該多段のサセプターをガス流方向に対して傾斜支持した
ものであってもよい。 1 更に、上記実施例においては、炉壁加熱体4.8として
、抵抗加熱体を採用しているが、これに限られるもので
は々く、炉壁の加熱を介して、炉体内のウェハを昇温さ
せる、あらゆる種類の加熱体は、この明細書゛にいう炉
壁加熱体に含まれるものである。
In the above embodiments, the wafer is supported by a support, but the present invention is not limited to this, and the wafer may be held on a thin plate-like susceptor supported horizontally in multiple stages in the furnace. There may be, and furthermore,
The multistage susceptor may be supported obliquely with respect to the gas flow direction. 1 Furthermore, in the above embodiment, a resistance heating element is used as the furnace wall heating element 4.8, but it is not limited to this, and the wafer inside the furnace is heated through heating of the furnace wall. All kinds of heating elements that raise the temperature are included in the furnace wall heating element referred to in this specification.

次に、上記発明に重連する第2の発明に係わる実施例の
反応炉の炉壁が第4図に抽出して示されている。Nil
ち、反応炉の炉壁材として、カーボン層10の両面にS
i又はSiC層11がコーティングされた積層体が用い
られスものである。
Next, a furnace wall of a reactor according to an embodiment of the second invention, which is related to the above invention, is extracted and shown in FIG. Nil
As a wall material of the reactor, S is applied on both sides of the carbon layer 10.
A laminate coated with i or SiC layer 11 can be used.

上Bピ炉壁材において、Si層を形成す不場合には、5
IC14を反応ガスとして用い、約1200℃にて気相
反応によってカーボン層ネタ面上にSi結晶の被膜を形
成するものであり、このとき、Si結晶は被着されるだ
けであって、カーボンとの開に化学的結合はない。
In the case where a Si layer is not formed in the upper B furnace wall material, 5
Using IC14 as a reaction gas, a Si crystal film is formed on the surface of the carbon layer by a gas phase reaction at approximately 1200°C. At this time, the Si crystal is only deposited and is not mixed with carbon. There is no chemical bond in the opening of

一方、5iCJ曽を形成する場合には、5iC14を反
応ガスとして約1400℃にて気相反応により、カーボ
ン層の表層にSi原素をシンタリングさせるものであっ
て、このときには、カーボンとSiとの化合物がカーボ
ン層の表層に形成されるも/Q> のである。
On the other hand, when forming 5iCJ, Si elements are sintered on the surface layer of the carbon layer by a gas phase reaction at about 1400°C using 5iC14 as a reaction gas. A compound of /Q> is formed on the surface layer of the carbon layer.

上記のように、この発明によれば、段応炉の外周に加熱
体を配設し、反応炉内のウェハ上にシリコン単結晶を成
長させる減圧エピタキシャル成長装置において、加熱体
を炉壁加熱体とし、反応炉の炉壁をSt又はSiCによ
って形尼したことによシ・、減圧高温反応に際して、炉
壁材にはもともと02が含有されていないので該炉壁か
ら02が簿み出ることがなく、又、炉壁材の結晶構造が
忽、密であるので炉壁を通してN2等のガスが透過せず
、面して、ウェハ上に不所望の核が形成されないから、
ウェハ上に生成される結晶at造に乱れが生ずることが
ないという優れた効果がある。
As described above, according to the present invention, in a low-pressure epitaxial growth apparatus for growing silicon single crystals on a wafer in the reaction furnace, the heating body is arranged around the outer periphery of the reaction furnace, and the heating body is used as the furnace wall heating body. By forming the reactor wall with St or SiC, 02 does not come out from the reactor wall during the low-pressure, high-temperature reaction because the reactor wall material does not originally contain 02. In addition, since the crystal structure of the furnace wall material is dense, gases such as N2 do not permeate through the furnace wall, and undesired nuclei are not formed on the wafer.
This has the excellent effect that no disturbance occurs in the crystal structure formed on the wafer.

又、炉壁上に形成されるフレークと炉壁材の膨張係数が
、Si相にあっては同一であシ、SiC月にあっても非
常に近いイーであるので、フレークが炉壁面から剥れて
ウェハ上に付着することが女<、品質の良いシリコン単
結晶が得られるという効果もある。
In addition, the expansion coefficients of the flakes formed on the furnace wall and the furnace wall material are the same in the Si phase, and are very close to each other even in the SiC phase, so the flakes do not peel off from the furnace wall. Another effect is that high-quality silicon single crystals can be obtained by adhering to the wafer.

(10) 1500℃、SiC材にあっては約4000℃と高いた
め、反応温度(約1100℃)では軟化変形することが
々く、装置の寿命が永くなるという効果もある。
(10) Since SiC material is as high as 1500°C and about 4000°C, it is often softened and deformed at the reaction temperature (about 1100°C), which also has the effect of extending the life of the device.

更には、この発明に常連する第2の発明によれば、前計
炉壁をカーボン層の両面にSi層又はSiC層をコーテ
ィングした積層体によって形成することによシ、この発
明の上記諸効果と同等の効果に加えて、価格の高価々S
i又はSiC材の使用量を節約することができ、その上
、カーボン層の介在によって炉壁の機械的強度が犬に々
るという効果がある。
Furthermore, according to a second aspect of the present invention, the above-mentioned effects of the present invention can be achieved by forming the front furnace wall with a laminate in which both sides of a carbon layer are coated with a Si layer or a SiC layer. In addition to the same effect as
The amount of i or SiC material used can be saved, and the presence of the carbon layer also has the effect of significantly increasing the mechanical strength of the furnace wall.

加うるに、この発明及びこれに常連する第2の発明の構
成において、その炉壁が反応Mにて導電性を帯びること
から、反応工程中、炉体内部に不要なプラズマが発生し
ないという付随的効果もある。
In addition, in the structure of this invention and the second invention that is common thereto, since the furnace wall becomes conductive in reaction M, unnecessary plasma is not generated inside the furnace body during the reaction process. It also has a positive effect.

かくして、この発明によって、従来技術の科々の問題点
を解消して、ホットウォール型の減圧エピタキシャル成
長装置を初めて実現化することができたものである。
Thus, the present invention has solved the problems of the prior art and made it possible to realize a hot wall type low pressure epitaxial growth apparatus for the first time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す側断面図、第2図は第
1図のA−A断面図、第3図は他の実施例を示す側断面
図であり、第4図は第2の発明の実施例の要部断面図で
ある。
FIG. 1 is a side sectional view showing an embodiment of the invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, FIG. 3 is a side sectional view showing another embodiment, and FIG. FIG. 2 is a cross-sectional view of a main part of a second embodiment of the invention;

Claims (2)

【特許請求の範囲】[Claims] (1)内部が減圧された反応炉と、該反応炉の外周に配
設された加熱体とから成り、反応炉内に配置されたウェ
ハ上にシリコン単結晶を成長させる減圧エピタキシャル
成長装置において、前記加熱体を炉壁加熱体4とし、反
応炉1の炉壁をSi又はSiCによって形成したことを
特徴とする減圧エピタキシャル成長装置。
(1) A low-pressure epitaxial growth apparatus for growing a silicon single crystal on a wafer placed in the reactor, which is composed of a reactor whose interior is depressurized and a heating element disposed around the outer periphery of the reactor. A reduced pressure epitaxial growth apparatus characterized in that the heating body is a furnace wall heating body 4, and the furnace wall of the reaction furnace 1 is formed of Si or SiC.
(2)内部が減圧された反応炉と、該反応炉の外周に配
設された加熱体とから成り、反応炉内に配置されたウェ
ハ上にシリコン単結晶を成長させる減圧エピタキシャル
成長装置において、前記加熱体を炉壁加熱体4とし、反
応炉1の炉壁をカーボン層10の両面にSt又はSiC
層11をコーティングしたvI層体によって形成したこ
とを特徴とする減圧エピタキシャル成長装置。
(2) A low-pressure epitaxial growth apparatus for growing silicon single crystals on a wafer placed in the reactor, which is comprised of a reactor whose interior is depressurized and a heating element disposed around the outer periphery of the reactor; The heating body is a furnace wall heating body 4, and the furnace wall of the reaction furnace 1 is coated with St or SiC on both sides of the carbon layer 10.
A low pressure epitaxial growth apparatus characterized in that it is formed by a vI layer body coated with layer 11.
JP11931083A 1983-06-29 1983-06-29 Depressurized epitaxial growing equipment Pending JPS6010621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11931083A JPS6010621A (en) 1983-06-29 1983-06-29 Depressurized epitaxial growing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11931083A JPS6010621A (en) 1983-06-29 1983-06-29 Depressurized epitaxial growing equipment

Publications (1)

Publication Number Publication Date
JPS6010621A true JPS6010621A (en) 1985-01-19

Family

ID=14758264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11931083A Pending JPS6010621A (en) 1983-06-29 1983-06-29 Depressurized epitaxial growing equipment

Country Status (1)

Country Link
JP (1) JPS6010621A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627121A (en) * 1985-07-04 1987-01-14 Jiro Yoshida Epitaxial growth apparatus
JPH04125922A (en) * 1990-09-17 1992-04-27 Fuji Electric Co Ltd Semiconductor closed tube diffusion method and closed tube diffusion device
US5680651A (en) * 1995-05-09 1997-10-21 Sharp Kabushiki Kaisha Duplex printing apparatus
US5824365A (en) * 1996-06-24 1998-10-20 Micron Technology, Inc. Method of inhibiting deposition of material on an internal wall of a chemical vapor deposition reactor
US5863602A (en) * 1996-06-03 1999-01-26 Nec Corporation Method for capturing gaseous impurities and semiconductor device manufacturing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627121A (en) * 1985-07-04 1987-01-14 Jiro Yoshida Epitaxial growth apparatus
JPH04125922A (en) * 1990-09-17 1992-04-27 Fuji Electric Co Ltd Semiconductor closed tube diffusion method and closed tube diffusion device
US5680651A (en) * 1995-05-09 1997-10-21 Sharp Kabushiki Kaisha Duplex printing apparatus
US5863602A (en) * 1996-06-03 1999-01-26 Nec Corporation Method for capturing gaseous impurities and semiconductor device manufacturing apparatus
US5824365A (en) * 1996-06-24 1998-10-20 Micron Technology, Inc. Method of inhibiting deposition of material on an internal wall of a chemical vapor deposition reactor
US6162499A (en) * 1996-06-24 2000-12-19 Micron Technology, Inc. Method of inhibiting deposition of material on an internal wall of a chemical vapor deposition reactor

Similar Documents

Publication Publication Date Title
US5879462A (en) Device for heat treatment of objects and a method for producing a susceptor
EP2549522A1 (en) Semiconductor thin-film manufacturing method, seminconductor thin-film manufacturing apparatus, susceptor, and susceptor holding tool
JPH01162326A (en) Method for manufacturing β-silicon carbide layer
JPH06302528A (en) Vapor deposition of silicon nitride thin film
JPH11508531A (en) Apparatus and method for growing an object epitaxially by CVD
EP0164928A2 (en) Vertical hot wall CVD reactor
JPS6054919B2 (en) low pressure reactor
JPS6010621A (en) Depressurized epitaxial growing equipment
JP3206375B2 (en) Method for manufacturing single crystal thin film
JP2550024B2 (en) Low pressure CVD equipment
JPS63316425A (en) Manufacturing apparatus for semiconductor device
JP2001250783A (en) Vapor growth device and method
JP4840841B2 (en) Method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate produced by this method
JP2000053493A (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JPS5932123A (en) Vapor growth method
JPS607378B2 (en) CVD equipment
JPH0416597A (en) Production of silicon carbide single crystal
JP2013016562A (en) Vapor-phase growth method
JP4744652B2 (en) Heat treatment equipment for object and manufacturing method of susceptor
JPS6384016A (en) Vapor phase growth equipment
JPS6126217A (en) Vapor growth apparatus
JPS61177713A (en) Apparatus for vapor phase epitaxial growth of silicon carbide compound semiconductor
JPS60109222A (en) Device for vapor growth of compound semiconductor of iii-v group
JPS6191920A (en) Epitaxial growth method
JPS63181414A (en) Apparatus for forming semiconductor film