JPS6314062A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPS6314062A JPS6314062A JP15316686A JP15316686A JPS6314062A JP S6314062 A JPS6314062 A JP S6314062A JP 15316686 A JP15316686 A JP 15316686A JP 15316686 A JP15316686 A JP 15316686A JP S6314062 A JPS6314062 A JP S6314062A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- way valve
- low
- refrigerant
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は冷媒制御装置を備えた空気調和機に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air conditioner equipped with a refrigerant control device.
従来の技術
従来、インバータ圧縮機を備えたヒートポンプ式空気調
和機は、第3図に示すような冷凍サイクルを構成してい
る。すなわち、インバータによって運転周波数を変化さ
せ制御運転させる圧縮機ωと、四方弁51と、室外熱変
換器52と、パルス信号によって冷媒の絞シ量を変化さ
せる電動膨張弁63と、この電動膨張弁63への冷媒の
流れ方向を冷暖房時共に同一にする逆上弁によって構成
されるブリッジ回路62と、このブリッジ回路62と前
記電動膨張弁630入ロ側とを連結する配管63と、前
記電動膨張弁63の出口側と前記ブリッジ回路62とを
連結する配管64と、室内熱交換器54、アキュームレ
ータ66、高圧液冷媒を低圧にバイパスさせるバイパス
用キャピラリチューブ66と前記電動膨張弁53の入口
側と前記バイパス用キャピラリチューブ66とを連結す
る配管57と、前記四方弁61と前記アキュームレータ
66とを連結する配管6oと、前記バイパス用キャピラ
リチューブ56と前記配管60とを連結する配管68と
、前記配管6oの前記バイパス用キャピラリチューブ6
eの配管68との合流前に取り付けられた低圧ガス冷媒
の温度を感知する吸込温度サーミスタ61と前記配管6
8に取シ付けられた前記バイパス用キャピラリチューブ
66を通ってバイパスされた飽和蒸気冷媒の温度を感知
する飽和蒸気温度サーミスタ59と、前記四方弁51と
前記室内熱交換器64とを結ぶ配管と連結し暖房時は高
圧冷媒を、冷房時は低圧冷媒を感知する圧力センサXを
設けて構成されている。BACKGROUND ART Conventionally, a heat pump air conditioner equipped with an inverter compressor has a refrigeration cycle as shown in FIG. That is, a compressor ω whose operating frequency is changed and controlled by an inverter, a four-way valve 51, an outdoor heat converter 52, an electric expansion valve 63 whose refrigerant throttling amount is changed by a pulse signal, and this electric expansion valve. A bridge circuit 62 constituted by a reverse valve that makes the flow direction of refrigerant to 63 the same during both cooling and heating, a pipe 63 connecting this bridge circuit 62 and the inlet side of the electric expansion valve 630, and the electric expansion valve 630. A pipe 64 connecting the outlet side of the valve 63 and the bridge circuit 62, an indoor heat exchanger 54, an accumulator 66, a bypass capillary tube 66 that bypasses high-pressure liquid refrigerant to a low pressure, and an inlet side of the electric expansion valve 53. A piping 57 connecting the bypass capillary tube 66, a piping 6o connecting the four-way valve 61 and the accumulator 66, a piping 68 connecting the bypass capillary tube 56 and the piping 60, and the piping. 6o bypass capillary tube 6
A suction temperature thermistor 61 that senses the temperature of the low-pressure gas refrigerant installed before it joins the pipe 68 of e and the pipe 6
a saturated steam temperature thermistor 59 that senses the temperature of the saturated steam refrigerant bypassed through the bypass capillary tube 66 attached to the bypass capillary tube 66; and piping connecting the four-way valve 51 and the indoor heat exchanger 64; A pressure sensor X is connected to detect high-pressure refrigerant during heating and low-pressure refrigerant during cooling.
このような冷媒回路において、暖房時は圧力上ンサdに
よって高圧を感知し、あらかじめマイコンに入力された
高圧範囲内に高圧が入るようにインバータで周波数を制
御し、逆に冷房時は圧力にダ
センφによって低圧を感知し、決められた低圧範囲内に
入るように周波数を制御する。また、冷暖房時共にバイ
パスキャピラリチューブ5eをバイパスして流れてきた
飽和蒸気冷媒の温度を飽和蒸気温度サーミスタ59で感
知し、蒸発して四方弁61を通ってきた低圧ガスの温度
を吸込温度サーミスタ61で感知し、これらの2つの温
度差を適正な過熱度とするように、電動膨張弁63の開
閉を行うものであった。In such a refrigerant circuit, during heating, the high pressure is sensed by the pressure sensor d, and the frequency is controlled by the inverter so that the high pressure falls within the high pressure range input into the microcomputer in advance.On the other hand, during cooling, the high pressure is sensed by the pressure sensor d. The low pressure is sensed by φ and the frequency is controlled to stay within the determined low pressure range. In addition, during both cooling and heating, the temperature of the saturated vapor refrigerant that bypasses the bypass capillary tube 5e and flows is detected by the saturated vapor temperature thermistor 59, and the temperature of the low pressure gas that has evaporated and passed through the four-way valve 61 is detected by the suction temperature thermistor 61. The electric expansion valve 63 is opened and closed so that the temperature difference between these two temperatures becomes an appropriate degree of superheat.
発明が解決しようとする問題点
このような従来の構成では暖房運転時において6ぶ
低圧を圧力センサeで感知できないため、配管63より
液冷媒をキャピラリチューブ66でバイパスさせ、飽和
蒸気冷媒の温度をもとに飽和蒸気温度サーミスタ59と
吸込温度サーミスタ61とによって過熱度を決定してい
たが、こうした冷媒制御回路では前記飽和蒸気温度サー
ミスタ69と吸込温度サーミスタ61とはいずれも鋼管
を介して冷媒の温度を測定するため、どうしても冷媒の
温度変化に対して遅れが生じ、ばらつきも多くきめ細か
い過熱度の制御が不可能であった。Problems to be Solved by the Invention With such a conventional configuration, the pressure sensor e cannot detect low pressure during heating operation, so the liquid refrigerant is bypassed from the piping 63 with the capillary tube 66 to lower the temperature of the saturated vapor refrigerant. Originally, the degree of superheating was determined by the saturated steam temperature thermistor 59 and the suction temperature thermistor 61, but in this refrigerant control circuit, the saturated steam temperature thermistor 69 and the suction temperature thermistor 61 both control the refrigerant temperature through steel pipes. Since the temperature is measured, there is inevitably a delay in response to changes in the temperature of the refrigerant, and there are many variations, making it impossible to precisely control the degree of superheating.
また以上のような問題を解決するために、圧力上t
ンサ喀謙を高圧側と、低圧側とにおいて2個使い、高圧
低圧を常に監視する制御方法もあったが、圧力センサS
t+が非常に高価なためにコストダウンの防げになって
いた。In addition, in order to solve the above problems, there was a control method that used two pressure sensors, one on the high pressure side and one on the low pressure side, to constantly monitor the high and low pressures, but the pressure sensor S
Since t+ was extremely expensive, cost reductions were prevented.
本発明は、こうした問題点を解決するもので、簡易でか
つ、安価な冷媒回路と制御方法で、良好な運転制御を行
なうようにすることを目的とする。The present invention solves these problems, and aims to provide good operational control using a simple and inexpensive refrigerant circuit and control method.
問題点を解決するための手段 この問題点を解決するために本発明は、圧縮機。Means to solve problems In order to solve this problem, the present invention provides a compressor.
蒸発器、膨張機構、凝縮器などを順次連通してなる冷凍
サイクルを備え、前記圧縮機の吐出側の配管より導出し
接続された高圧用電磁二方弁と、低圧側の配管より導出
し接続された低圧用電磁二方弁と、前記高圧用電磁二方
弁および低圧用電磁二方弁とを接続した配管ニジ導出し
た圧力センサを設けるようにしたものであるg
作 用
こうした冷凍回路において、暖房時は各々の電磁二方弁
を交互に開閉するととKより、高圧と低圧を交互に圧力
センサで感知し、高圧で周波数制御を行ない、低圧で過
熱度制御を行うこととなる。Equipped with a refrigeration cycle in which an evaporator, an expansion mechanism, a condenser, etc. are connected in sequence, and a high-pressure electromagnetic two-way valve led out and connected to the discharge side piping of the compressor, and led out and connected to the low-pressure side piping. In such a refrigeration circuit, a pressure sensor is provided which is led out from the piping connecting the low-pressure solenoid two-way valve, the high-pressure solenoid two-way valve, and the low-pressure solenoid two-way valve. During heating, when each electromagnetic two-way valve is opened and closed alternately, high pressure and low pressure are sensed alternately by the pressure sensor, frequency control is performed at high pressure, and superheat degree control is performed at low pressure.
実施例
本発明による一実施例を第1図と第2図にもとづいて説
明する。図示のようにインバータによって運転周波数を
変化させて運転する圧縮機1と、四方弁2と、室外熱交
換器3と、パルス信号によって絞υ量を変化させる電動
膨張弁4と、室内熱交換器6とアキュームレータ6とが
それぞれ順設されている。前記圧縮機1の吸込側の配管
26より導出した低圧用電磁二方弁7と、圧縮機の吐出
側の配管26より導出した高圧用電磁二方弁8と、前記
低圧用電磁二方弁7と前記高圧用電磁二方弁8とを連結
する連結管9によって低圧用電磁二方弁7が開となった
ときに低圧を感知し、高圧用電磁二方弁8が開となった
ときに高圧を感知する圧力センサ10と、四方弁2とア
キュームレータ6との間に設けられた配管25の途中に
冷媒の吸込温度を感知する吸込温度サーミスタ11と、
室内機12と室外機13とを設けている。Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 and 2. As shown in the figure, there is a compressor 1 that is operated by changing the operating frequency using an inverter, a four-way valve 2, an outdoor heat exchanger 3, an electric expansion valve 4 that changes the throttling amount by a pulse signal, and an indoor heat exchanger. 6 and an accumulator 6 are installed in sequence. A low pressure solenoid two-way valve 7 led out from the suction side piping 26 of the compressor 1, a high pressure solenoid two way valve 8 led out from the discharge side piping 26 of the compressor, and the low pressure solenoid two way valve 7. When the low pressure solenoid two-way valve 7 is opened, low pressure is sensed by the connecting pipe 9 connecting the high pressure solenoid two-way valve 8 and the high pressure solenoid two-way valve 8 is opened. A pressure sensor 10 that senses high pressure; a suction temperature thermistor 11 that senses the refrigerant suction temperature in the middle of a pipe 25 provided between the four-way valve 2 and the accumulator 6;
An indoor unit 12 and an outdoor unit 13 are provided.
第2図はこの制御回路の制御ブロックを示し、圧力セン
サ1oに低電圧を供給する低電圧電源回路14と、圧力
センサ1oのアナログ信号をデジタル信号に変換するA
/D コンバータ16と、吸込温度サーミスタ11で
感知した温度を検出する温度検出回路16と、前記A/
D コンバータ16と温度検出回路16からの信号を
受けて演算するマイクロコンピュータ(以後マイコンと
称す)17を備え、このマイコン17はジャイアントト
ランジスタのスイッチングを行うスイッチング回路18
へ信号を送シ低圧用電磁二方弁7と高圧用電磁二方弁8
の各電磁二方弁リレーの0N−OFF 2行うリレー励
磁回路2oへ信号を送り、さらに電動膨張弁4のコイル
にパルス波を送るパルス波発振回路19へそれぞれ信号
を送るようにしている。FIG. 2 shows the control blocks of this control circuit, including a low voltage power supply circuit 14 that supplies a low voltage to the pressure sensor 1o, and A that converts the analog signal of the pressure sensor 1o into a digital signal.
/D converter 16, a temperature detection circuit 16 that detects the temperature sensed by the suction temperature thermistor 11, and the A/D converter 16;
A microcomputer (hereinafter referred to as a microcomputer) 17 that receives signals from the D converter 16 and the temperature detection circuit 16 and performs calculations is provided, and this microcomputer 17 has a switching circuit 18 that performs switching of the giant transistor.
Sends signals to low pressure solenoid two-way valve 7 and high pressure solenoid two-way valve 8
A signal is sent to a relay excitation circuit 2o that turns each electromagnetic two-way valve relay ON-OFF 2, and further signals are sent to a pulse wave oscillation circuit 19 that sends a pulse wave to the coil of the electric expansion valve 4.
上記構成において、暖房運転時ある一定間隔でマイコン
17より各電磁二方弁リレーのON@OFFを交互に行
うように信号を出し、高圧用電磁二方弁8が開いている
ときは、圧力センサ10は配管26の高圧を感知して、
アナログ信号をA/D コンバータ16へ送V)、A
/D コンバータ16はデジタル信号に変換してマイ
コン17へ送る。マイコン17には、あらかじめ決めら
れた暖房運転時の目標高圧圧力範囲が入力されており、
この高圧圧力範囲内に入るように、圧縮機1の運転周波
数を決め、ジャイアントトランジスタのスイッチング回
路18へ信号を送る。また高圧用電磁弁8が閉となって
次に低圧用電磁二方弁7が開いているときは、圧力セン
サ10は配管26の低圧を感知して、アナログ信号をA
/D コンバータ16へ送り、A/D コンバータ1
6はデジタル信号をマイコン17へ送る。そしてマイコ
ン17はあらかじめ決められた暖房時における各周波数
制御での過熱度になるように、吸込温度サーミスタ11
から温度検出回路16を通って送られてきた信号全監視
しながら、電動膨張弁4のパルス波発振回路19へ信号
を送り、電動膨張弁4を制御させ、適正な過熱度となる
ようにもって行くのである。In the above configuration, during heating operation, the microcomputer 17 outputs a signal to alternately turn ON and OFF the respective electromagnetic two-way valve relays at certain intervals, and when the high-pressure electromagnetic two-way valve 8 is open, the pressure sensor 10 senses the high pressure in the pipe 26,
Send the analog signal to the A/D converter 16 (V), A
/D converter 16 converts it into a digital signal and sends it to microcomputer 17. A predetermined target high pressure range for heating operation is input to the microcomputer 17.
The operating frequency of the compressor 1 is determined so as to fall within this high pressure range, and a signal is sent to the giant transistor switching circuit 18. Further, when the high pressure solenoid valve 8 is closed and the low pressure solenoid two-way valve 7 is opened, the pressure sensor 10 senses the low pressure in the pipe 26 and sends an analog signal to A.
Send to /D converter 16, A/D converter 1
6 sends a digital signal to the microcomputer 17. Then, the microcomputer 17 controls the suction temperature thermistor 11 so that the degree of superheating at each frequency control during heating is determined in advance.
While monitoring all the signals sent through the temperature detection circuit 16 from I am going.
このようにして暖房運転時、常に適正な周波数と過熱度
で運転できるのである。In this way, the heating operation can always be performed at the appropriate frequency and degree of superheat.
また冷房運転時は、常に低圧用電磁二方弁7を開けてお
くものであって、圧力センサ1oで配管26の低圧を感
知し、あらかじめ決められた低圧圧力範囲内に入るよう
にマイコン17で周波数を制御し、さらに前記圧力セン
サ10による低圧圧力と吸込温度サーミスタ11によっ
て、適性な過熱度となる。ように電動膨張弁4をマイコ
ン17で制御するのである。Also, during cooling operation, the low-pressure electromagnetic two-way valve 7 is always open, and the pressure sensor 1o detects the low pressure in the pipe 26, and the microcomputer 17 controls the pressure so that the low pressure falls within a predetermined low pressure range. The frequency is controlled, and the low pressure by the pressure sensor 10 and the suction temperature thermistor 11 provide an appropriate degree of superheat. The electric expansion valve 4 is controlled by the microcomputer 17 in this way.
発明の効果
前記実施例の説明より明らかなように本発明は、暖房運
転時は、低圧用電磁二方弁と高圧用電磁二方弁とを交互
に開閉させ、1個の圧力センサで高・低圧共に感知し、
高圧圧力で周波数制御を、低圧圧力と吸込温度サーミス
タで過熱度制御を行うようにしたものであるから、常に
適正な周波数ときめ細かい過熱度で運転が可能であシ、
EERの向上、暖房立ち上り時の能力アップ、負荷の大
きな変動による圧縮機の保護等の多くの効果を発揮する
ものである。また、従来上記の制御を行う場合、圧力セ
ンサが高圧用と低圧用に2個使用しなければならないも
のであったが、1個で制御可能となり大幅なコストダウ
ンとなるという効果も発揮する。Effects of the Invention As is clear from the description of the embodiments described above, the present invention alternately opens and closes a low-pressure electromagnetic two-way valve and a high-pressure electromagnetic two-way valve during heating operation, and uses one pressure sensor to detect high pressure and high pressure. Detects both low pressure and
Since the frequency is controlled by high pressure and the degree of superheat is controlled by low pressure and a suction temperature thermistor, it is possible to always operate at the appropriate frequency and fine degree of superheat.
It has many effects such as improving EER, increasing capacity when heating starts, and protecting the compressor from large fluctuations in load. In addition, conventionally, when performing the above control, two pressure sensors had to be used for high pressure and low pressure, but control can be performed with one pressure sensor, resulting in a significant cost reduction.
第1図は本発明の一実施例による空気調和機の冷凍サイ
クル図、第2図は同冷凍サイクルの制御ブロック図、第
3図は従来の空気調和機の冷凍サイクル図である。
1・・・・・・圧縮機、3・・・・・・室外熱交換器、
4・・・・・・電動膨張弁、6・・・・・・室外熱交換
器、7・・・・・・低圧用電磁二方弁、8・・・・・・
高圧用電磁二方弁、9・・・・・・連結管、10・・・
・・・圧力センサ。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名l・
−1圧縮大
fD−−・7石V也ンT
第3図FIG. 1 is a refrigeration cycle diagram of an air conditioner according to an embodiment of the present invention, FIG. 2 is a control block diagram of the refrigeration cycle, and FIG. 3 is a refrigeration cycle diagram of a conventional air conditioner. 1...Compressor, 3...Outdoor heat exchanger,
4... Electric expansion valve, 6... Outdoor heat exchanger, 7... Low pressure solenoid two-way valve, 8...
High pressure solenoid two-way valve, 9...Connecting pipe, 10...
...Pressure sensor. Name of agent: Patent attorney Toshio Nakao and one other person
-1 compression large fD--・7 stones V/T Fig. 3
Claims (1)
なる冷凍サイクルを備え、前記圧縮機の吐出側の配管よ
り導出し接続された高圧用電磁二方弁と、低圧側の配管
より導出し接続された低圧用電磁二方弁と、前記高圧用
電磁二方弁および低圧用電磁二方弁とを接続した配管よ
り導出した圧力センサーを設けてなる空気調和機。It is equipped with a refrigeration cycle in which a compressor, an evaporator, an expansion mechanism, a condenser, etc. are connected in sequence, and a high-pressure electromagnetic two-way valve led out and connected to the discharge side piping of the compressor, and a low-pressure side piping connected to the refrigeration cycle. An air conditioner comprising: a low-pressure electromagnetic two-way valve led out and connected; and a pressure sensor led out from a pipe connecting the high-pressure electromagnetic two-way valve and the low-pressure electromagnetic two-way valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15316686A JPS6314062A (en) | 1986-06-30 | 1986-06-30 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15316686A JPS6314062A (en) | 1986-06-30 | 1986-06-30 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6314062A true JPS6314062A (en) | 1988-01-21 |
Family
ID=15556492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15316686A Pending JPS6314062A (en) | 1986-06-30 | 1986-06-30 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6314062A (en) |
-
1986
- 1986-06-30 JP JP15316686A patent/JPS6314062A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6334459A (en) | Air conditioner | |
JP2000304373A (en) | Engine heat pump | |
JPS6314062A (en) | Air conditioner | |
JP2003106689A (en) | Air conditioner | |
JPS63290354A (en) | Heat pump type air conditioner | |
JPH0833245B2 (en) | Refrigeration system operation controller | |
JPH06317360A (en) | Multi-chamber type air conditioner | |
JP3097468B2 (en) | Control device for air conditioner | |
JPS63286664A (en) | Heat pump type air conditioner | |
JPH0245796B2 (en) | ||
JP2542649B2 (en) | Air conditioner | |
JP2541173B2 (en) | Air conditioner | |
JPS63290368A (en) | Heat pump type air conditioner | |
JPS63169461A (en) | Air conditioner | |
JPS6332272A (en) | Refrigeration equipment | |
JP3048658B2 (en) | Refrigeration equipment | |
JPH09145168A (en) | Refrigerating device | |
JPH0579894B2 (en) | ||
JPH0633910B2 (en) | Heat pump refrigeration system | |
JPH065572Y2 (en) | Refrigeration equipment | |
JPS5995349A (en) | Controller for electric type expansion valve | |
JP2692260B2 (en) | Air conditioner | |
JPS6345030B2 (en) | ||
JP3231393B2 (en) | Air conditioning | |
JPH01256769A (en) | Multi-room air conditioner |