JPH0833245B2 - Refrigeration system operation controller - Google Patents
Refrigeration system operation controllerInfo
- Publication number
- JPH0833245B2 JPH0833245B2 JP2214204A JP21420490A JPH0833245B2 JP H0833245 B2 JPH0833245 B2 JP H0833245B2 JP 2214204 A JP2214204 A JP 2214204A JP 21420490 A JP21420490 A JP 21420490A JP H0833245 B2 JPH0833245 B2 JP H0833245B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- refrigerant
- optimum
- discharge
- detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Air Conditioning Control Device (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍装置の運転制御装置に係り、特に冷凍
効率の向上対策に関する。Description: TECHNICAL FIELD The present invention relates to an operation control device for a refrigeration system, and more particularly to measures for improving refrigeration efficiency.
(従来の技術) 従来より、例えば特公昭59−12942号公報に開示され
る如く、圧縮機、凝縮器、電動膨張弁及び蒸発器を順次
接続してなる冷媒回路を備えた冷凍装置において、冷媒
の蒸発温度と凝縮温度とに基づき最適な冷凍効果を与え
る吐出管温度の最適温度を算出し、吐出管温度がその最
適温度に収束するよう電動膨張弁の開度を制御すること
により、圧縮機の運転容量を変えることなく効率の高い
運転を確保しようとするものは公知の技術である。(Prior Art) Conventionally, as disclosed in, for example, Japanese Patent Publication No. Sho 59-12942, a refrigerant in a refrigeration system including a refrigerant circuit in which a compressor, a condenser, an electric expansion valve, and an evaporator are sequentially connected, The optimum temperature of the discharge pipe temperature that gives the optimum refrigeration effect is calculated based on the evaporation temperature and the condensation temperature of the compressor, and the opening of the electric expansion valve is controlled so that the discharge pipe temperature converges to the optimum temperature. It is a well-known technique to ensure highly efficient operation without changing the operating capacity of the.
(発明が解決しようとする課題) 従来のもののように、吐出冷媒の状態を適正状態に維
持することにより、圧縮機の容量制御を行うことなく冷
媒回路の円滑な作動を行うことができ、定容量形圧縮機
を使用して簡素な制御で済ませることができる利点があ
る。しかるに、反面、吐出冷媒の状態量のみを制御指標
として電動膨張弁の開度を制御すると、運転条件によっ
てはその間蒸発器の能力が要求能力とは離れた値に放置
される場合があり、要求能力が十分満足されない虞れが
生じる。(Problems to be solved by the invention) As in the conventional one, by maintaining the state of the discharged refrigerant in an appropriate state, it is possible to perform a smooth operation of the refrigerant circuit without controlling the capacity of the compressor. There is an advantage that a simple control can be performed by using a displacement type compressor. However, on the other hand, if the opening degree of the electric expansion valve is controlled using only the state quantity of the discharged refrigerant as a control index, the capacity of the evaporator may be left at a value apart from the required capacity during that time, depending on the operating conditions. There is a risk that the ability will not be fully satisfied.
本発明は斯かる点に鑑みてなされたものであり、その
目的は、吐出冷媒の状態を適正状態に維持しながら、蒸
発能力を要求能力に対応しうるよう制御することによ
り、空調の快適性の向上を図ることにある。The present invention has been made in view of the above circumstances, and an object thereof is to control the evaporating capacity so as to correspond to the required capacity while maintaining the state of the discharged refrigerant in an appropriate state, thereby improving the comfort of air conditioning. Is to improve.
(課題を解決するための手段) 上記目的を達成するため第1の解決手段は、第1A図に
示すように、圧縮機(1)、凝縮器(3又は6)、電動
膨張弁(5)及び蒸発器(6又は3)を順次接続してな
る冷媒回路(9)を備えた冷凍装置を前提とする。(Means for Solving the Problem) A first means for achieving the above object is, as shown in FIG. 1A, a compressor (1), a condenser (3 or 6), and an electric expansion valve (5). And a refrigeration system provided with a refrigerant circuit (9) in which evaporators (6 or 3) are sequentially connected.
そして、冷凍装置の運転制御装置として、上記蒸発器
(6又は3)における冷媒の蒸発温度を検出する蒸発温
度検出手段(The)と、上記凝縮器(3又は6)におけ
る冷媒の凝縮温度を検出する凝縮温度検出手段(Thc)
と、上記蒸発温度検出手段(The)及び凝縮温度検出手
段(Thc)の出力を受け、冷媒の蒸発温度と凝縮温度と
に応じて、最適な冷凍効果を与える吐出冷媒温度の最適
温度を演算する最適温度演算手段(51)と、吐出冷媒温
度を検出する吐出温度検出手段(Th2)と、該吐出温度
検出手段(Th2)の出力を受け、吐出冷媒温度が上記最
適温度演算手段(51)で演算される最適温度に収束する
よう上記電動膨張弁(5)の開度を制御する通常域開度
制御手段(52)とを設けるものとする。Then, as an operation control device of the refrigeration system, an evaporation temperature detecting means (The) for detecting the evaporation temperature of the refrigerant in the evaporator (6 or 3) and a condensation temperature of the refrigerant in the condenser (3 or 6) are detected. Condensing temperature detection means (Thc)
And the outputs of the evaporation temperature detecting means (The) and the condensation temperature detecting means (Thc), and calculates the optimum temperature of the discharged refrigerant temperature that gives the optimum refrigerating effect according to the evaporation temperature and the condensation temperature of the refrigerant. The optimum temperature calculating means (51), the discharge temperature detecting means (Th2) for detecting the discharge refrigerant temperature, and the output of the discharge temperature detecting means (Th2), the discharge refrigerant temperature is received by the optimum temperature calculating means (51). A normal range opening control means (52) for controlling the opening of the electric expansion valve (5) is provided so as to converge to the calculated optimum temperature.
さらに、上記蒸発器(6又は3)の吸込空気温度を検
出する吸込温度検出手段(Thr)と、該吸込温度検出手
段(Thr)及び上記吐出温度検出手段(Th2)の出力を受
け、吐出冷媒温度が上記最適温度演算手段(51)で演算
される最適温度の上下一定範囲内に収束すると、上記通
常域開度制御手段(52)の制御を強制的に停止させて、
吸込空気温度とその設定値との吸込差温に応じて上記電
動膨張弁(5)の開度を制御する吐出温収束域開度制御
手段(53)とを設ける構成としたものである。Further, the suction temperature detection means (Thr) for detecting the suction air temperature of the evaporator (6 or 3), the outputs of the suction temperature detection means (Thr) and the discharge temperature detection means (Th2), and the discharge refrigerant When the temperature converges within a certain range above and below the optimum temperature calculated by the optimum temperature calculation means (51), the control of the normal range opening control means (52) is forcibly stopped,
A discharge temperature convergence region opening degree control means (53) for controlling the opening degree of the electric expansion valve (5) according to the suction temperature difference between the suction air temperature and its set value is provided.
第2の解決手段は、第1B図に示すように、上記第1の
解決手段と同様の冷凍装置を前提とし、冷凍装置の運転
制御装置として、上記第1の解決手段と同様の蒸発温度
検出手段(The)、凝縮温度検出手段(Thc)、最適温度
演算手段(51)、吐出温度検出手段(Th2)及び通常域
開度制御手段(52)とを設ける。As shown in FIG. 1B, the second solving means is premised on the same refrigerating apparatus as the first solving means, and as an operation control device of the refrigerating apparatus, the same evaporation temperature detection as that of the first solving means is performed. Means (The), condensation temperature detection means (Thc), optimum temperature calculation means (51), discharge temperature detection means (Th2), and normal range opening control means (52) are provided.
さらに、上記蒸発器(6又は3)の吸込空気温度を検
出する吸込温度検出手段(Thr)と、該吸込温度検出手
段(Thr)の出力を受け、吸込空気温度がその設定温度
の上下所定範囲内に収束すると、上記通常域開度制御手
段(52)の制御を強制的に停止させて、上記吐出冷媒温
度−最適温度の温度差及び吸込空気温度−設定温度の差
温に所定の重み付けをした値に基づいて上記電動膨張弁
(5)の開度を変化させるよう制御する能力収束域開度
制御手段(54)とを設ける構成としたものである。Further, the suction temperature detecting means (Thr) for detecting the suction air temperature of the evaporator (6 or 3) and the output of the suction temperature detecting means (Thr) are received, and the suction air temperature is within a predetermined range above and below the set temperature. When it converges within the range, the control of the normal range opening control means (52) is forcibly stopped, and a predetermined weight is given to the temperature difference between the discharge refrigerant temperature-the optimum temperature and the suction air temperature-the set temperature. A capacity convergence region opening control means (54) for controlling the opening degree of the electric expansion valve (5) based on the calculated value is provided.
(作用) 以上の構成により、請求項(1)の発明では、冷凍装
置の運転中、最適温度演算手段(51)により、蒸発温度
検出手段(The)で検出される冷媒の蒸発温度と凝縮温
度検出手段(The)で検出される冷媒の凝縮温度とに応
じて最適な冷凍効果を与える吐出管温度の最適温度が算
出される。(Operation) With the above configuration, in the invention of claim (1), the evaporation temperature and the condensation temperature of the refrigerant detected by the evaporation temperature detection means (The) by the optimum temperature calculation means (51) during the operation of the refrigeration system. The optimum temperature of the discharge pipe that gives the optimum refrigerating effect is calculated in accordance with the condensation temperature of the refrigerant detected by the detection means (The).
そして、通常域開度制御手段(52)により、吐出冷媒
温度がその最適温度に収束するよう電動膨張弁(5)の
開度が制御されるので、圧縮機(1)の運転容量が固定
されていても、冷媒回路(9)における冷媒状態が適正
状態に維持されることになる。Then, since the opening degree of the electric expansion valve (5) is controlled by the normal range opening degree control means (52) so that the discharge refrigerant temperature converges to the optimum temperature, the operating capacity of the compressor (1) is fixed. However, the refrigerant state in the refrigerant circuit (9) is maintained in an appropriate state.
その場合、このような冷凍状態だけに基づいて運転を
行うと、空調要求が無視される場合があり、空調の快適
性が損なわれる虞れが生じるが、本発明では、吐出温収
束域開度制御手段(53)により、吐出冷媒温度がその最
適温度の上下一定範囲内に収束すると、吸込空気温度検
出手段(Thr)で検出される吸込空気温度とその設定温
度との差温に応じて電動膨張弁(5)の開度が制御され
るので、蒸発器(6又は3)の能力が要求能力に応じた
能力に制御され、空調の快適性が向上することになる。In that case, if the operation is performed only based on such a frozen state, the air conditioning request may be ignored, and the comfort of the air conditioning may be impaired. When the control means (53) converges the discharge refrigerant temperature within a certain range above and below the optimum temperature, it is electrically driven according to the temperature difference between the intake air temperature detected by the intake air temperature detection means (Thr) and its set temperature. Since the opening degree of the expansion valve (5) is controlled, the capacity of the evaporator (6 or 3) is controlled to the capacity according to the required capacity, and the comfort of air conditioning is improved.
請求項(2)の発明では、上記請求項(1)の発明と
同様に、通常域開度制御手段(52)により、電動膨張弁
(5)の開度が制御され、冷媒状態が適正状態に維持さ
れる。In the invention of claim (2), the opening of the electric expansion valve (5) is controlled by the normal range opening control means (52), and the refrigerant state is in the proper state, as in the invention of claim (1). Maintained at.
そのとき、吸込温度検出手段(Thr)で検出される吸
込空気温度がその設定値に収束すると、能力収束域開度
制御手段(54)により、蒸発器(6又は3)の吸込空気
温度の変化と吐出冷媒温度の変化との間の相関関係に基
づき、吐出冷媒温度とその最適温度との温度差と、吸込
空気温度とその設定値との差温とに対し、両者に所定の
重み付けした値に応じて電動膨張弁(5)の開度が制御
されるので、冷媒状態が適正状態に維持されるととも
に、蒸発器(6又は3)の能力が要求能力に対応した値
に維持され、サーモオフ・オンの切換え回数の低減によ
り、信頼性が向上することになる。At that time, when the suction air temperature detected by the suction temperature detection means (Thr) converges to the set value, the capacity convergence range opening control means (54) changes the suction air temperature of the evaporator (6 or 3). Based on the correlation between the discharge refrigerant temperature and the change of the discharge refrigerant temperature, the temperature difference between the discharge refrigerant temperature and its optimum temperature, and the difference temperature between the intake air temperature and its set value, a predetermined weighted value for both Since the opening degree of the electric expansion valve (5) is controlled in accordance with the above, the refrigerant state is maintained in an appropriate state, the capacity of the evaporator (6 or 3) is maintained at a value corresponding to the required capacity, and the thermostat is turned off.・ Reliability will be improved by reducing the number of times the switch is turned on.
(実施例) 以下、本発明の実施例について、第2図以下の図面に
基づき説明する。(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.
第2図は本発明を適用した空気調和装置の冷媒配管系
統を示し、(1)は容量固定形のスクロールタイプ圧縮
機、(2)は冷房運転時には図中実線のごとく、暖房運
転時には図中破線のごとく切換わる四路切換弁、(3)
は冷房運転時には凝縮器として、暖房運転時には蒸発器
として機能する熱源側熱交換器である室外熱交換器、
(4)は液冷媒を貯留するためのレシーバ、(5)は冷
媒の減圧機能と冷媒流量の調節機能とを有する電動膨張
弁、(6)は室内に設置され、冷房運転時には蒸発器と
して、暖房運転時には凝縮器として機能する利用側熱交
換器である室内熱交換器、(7)は圧縮機(1)の吸入
管に介設され、吸入冷媒中の液冷媒を除去するためのア
キュムレータである。上記各機器(1)〜(7)は冷媒
配管(8)により順次接続され、冷媒の循環により熱移
動を生ぜしめるようにした冷媒回路(9)が構成されて
いる。FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied. (1) is a fixed-capacity scroll type compressor, (2) is shown by a solid line in the figure during cooling operation, and in the figure during heating operation. Four-way switching valve that switches as shown by the broken line, (3)
Is an outdoor heat exchanger that is a heat source side heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation,
(4) is a receiver for storing the liquid refrigerant, (5) is an electric expansion valve having a refrigerant pressure reducing function and a refrigerant flow rate adjusting function, (6) is installed indoors, and serves as an evaporator during cooling operation, An indoor heat exchanger, which is a utilization side heat exchanger that functions as a condenser during heating operation, (7) is an accumulator that is installed in the suction pipe of the compressor (1) and removes the liquid refrigerant in the suction refrigerant. is there. The above-mentioned devices (1) to (7) are sequentially connected by a refrigerant pipe (8), and a refrigerant circuit (9) configured to cause heat transfer by circulation of the refrigerant is configured.
ここで、上記冷媒回路(9)の圧縮機(1)吐出側に
は、吐出冷媒中の油を回収するための油回収器(10)が
介設されていて、該油回収器(10)から圧縮機(1)−
アキュムレータ(7)間の吸入管まで、油回収器(10)
の油を圧縮機(1)の吸入側に戻すための油戻し通路
(11)が設けられている。そして、この油戻し通路(1
1)には、通路を開閉する開閉弁(12)が介設されてい
て、該開閉弁(12)は常時は閉じられている一方、圧縮
機(1)の起動時等には所定の制御により開けられて、
圧縮機(1)の吸入側に油回収器(10)の油及び吐出冷
媒の一部を戻すようになされている。Here, an oil recovery device (10) for recovering oil in the discharged refrigerant is provided on the discharge side of the compressor (1) of the refrigerant circuit (9), and the oil recovery device (10) is provided. From compressor (1)-
Oil collector (10) up to the suction pipe between the accumulator (7)
An oil return passage (11) is provided for returning the oil of (1) to the suction side of the compressor (1). And this oil return passage (1
In 1), an opening / closing valve (12) for opening and closing a passage is provided, and the opening / closing valve (12) is normally closed, while a predetermined control is performed when the compressor (1) is started. Opened by
Part of the oil and the discharged refrigerant of the oil recovery device (10) is returned to the suction side of the compressor (1).
また、冷媒回路(9)の液管において、上記レシーバ
(4)と電動膨張弁(5)とは、電動膨張弁(5)がレ
シーバ(4)の下部つまり液部に連通するよう共通路
(8a)に直列に配置されており、共通路(8a)のレシー
バ(4)上部側の端部である点(P)と室外熱交換器
(3)との間は、レシーバ(4)側への冷媒の流通のみ
を許容する第1逆止弁(21)を介して第1流入路(8b)
により、上記共通路(8a)の点(P)と室内熱交換器
(6)との間はレシーバ(4)側への冷媒の流通のみを
許容する第2逆止弁(22)を介して第2流入路(8c)に
よりそれぞれ接続されている一方、共通路(8a)の上記
電動膨張弁(5)側の端部である点(Q)と上記第1逆
止弁(21)−室外熱交換器(3)間の点(S)とは第1
キャピラリチューブ(C1)を介して第1流出路(8d)に
より、共通路(8a)の上記点(Q)と上記第2逆止弁
(22)−室内熱交換器(6)間の点(R)とは第2キャ
ピラリチューブ(C2)を介して第2流出路(8e)により
それぞれ接続されている。In the liquid pipe of the refrigerant circuit (9), the receiver (4) and the electric expansion valve (5) have a common path (so that the electric expansion valve (5) communicates with the lower part of the receiver (4), that is, the liquid part. 8a) is arranged in series, and the point (P), which is the end of the common path (8a) on the upper side of the receiver (4), and the outdoor heat exchanger (3) are connected to the receiver (4) side. First inflow passage (8b) through the first check valve (21) that allows only the circulation of the refrigerant of
Therefore, between the point (P) of the common path (8a) and the indoor heat exchanger (6), a second check valve (22) that allows only the refrigerant to flow to the receiver (4) side is provided. Point (Q), which is the end of the common path (8a) on the side of the electric expansion valve (5) and is connected to the second inflow path (8c), respectively, and the first check valve (21) -outdoor The point (S) between the heat exchangers (3) is the first
A point between the point (Q) on the common channel (8a) and the second check valve (22) -indoor heat exchanger (6) by the first outflow channel (8d) via the capillary tube (C 1 ). (R) is connected by the second outflow passage (8e) via the second capillary tube (C 2 ).
すなわち、冷房運転時には、室外熱交換器(3)で凝
縮液化された液冷媒が第1逆止弁(21)を経てレシーバ
(4)に貯溜され、電動膨張弁(5)及び第2キャピラ
リチューブ(C2)で減圧された後、室内熱交換器(6)
で蒸発して圧縮機(1)に戻る循環となる一方、暖房運
転時には、室内熱交換器(6)で凝縮液化された液冷媒
が第2逆止弁(22)を経てレシーバ(4)に貯溜され、
電動膨張弁(5)及び第1キャピラリチューブ(C1)で
減圧された後、室外熱交換器(3)で蒸発して圧縮機
(1)に戻る循環となるように構成されている。That is, during the cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) is stored in the receiver (4) through the first check valve (21), and the electric expansion valve (5) and the second capillary tube are stored. After decompressing with (C 2 ), indoor heat exchanger (6)
In the heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) passes through the second check valve (22) to the receiver (4). Is stored,
After the pressure is reduced by the electric expansion valve (5) and the first capillary tube (C 1 ), it is evaporated in the outdoor heat exchanger (3) and returned to the compressor (1).
なお、(8f)は、点(P)−点(S)間の第1流入路
(8b)において第1逆止弁(21)をバイパスして設けら
れた液封防止バイパス路であって、該液封防止バイパス
路(8f)には冷媒減圧用の第3キャピラリチューブ
(C3)が介設されている。In addition, (8f) is a liquid seal prevention bypass passage provided by bypassing the first check valve (21) in the first inflow passage (8b) between the point (P) and the point (S), A third capillary tube (C 3 ) for depressurizing the refrigerant is provided in the liquid seal prevention bypass passage (8f).
また、空気調和装置には、センサ類が配置されてい
て、(Th2)は圧縮機(1)の吐出管に配置され、吐出
管温度T2を検出する吐出温度検出手段としての吐出管セ
ンサ、(Thc)は室外熱交換器(3)の液管に配置さ
れ、冷房運転時に冷媒の蒸発温度を検出する凝縮温度検
出手段としての外熱交センサ、(Tha)は室外熱交換器
(3)の空気吸込口に配置され、外気温度を検出する外
気温センサ、(The)は室内熱交換器(6)の液管に配
置され、冷房運転時に蒸発温度Teを検出する蒸発温度検
出手段としての内熱交センサ、(Thr)は室内熱交換器
(6)の空気吸込口に配置され、吸込空気温度Trを検出
する吸込温度検出手段としての室内吸込センサである。
上記各センサは、空気調和装置の運転を制御するための
コントローラ(図示せず)に信号の入力可能に接続され
ており、該コントローラにより、センサの信号に応じて
各機器の運転を制御するようになされている。Further, sensors are arranged in the air conditioner, (Th2) is arranged in the discharge pipe of the compressor (1), and a discharge pipe sensor as a discharge temperature detecting unit for detecting the discharge pipe temperature T 2 , (Thc) is arranged in the liquid pipe of the outdoor heat exchanger (3) and is an external heat exchange sensor as a condensation temperature detecting means for detecting the evaporation temperature of the refrigerant during the cooling operation, and (Tha) is the outdoor heat exchanger (3). The outside air temperature sensor, which is arranged at the air inlet of the unit, detects the outside air temperature, (The) is arranged in the liquid pipe of the indoor heat exchanger (6), and serves as an evaporation temperature detecting means for detecting the evaporation temperature Te during the cooling operation. The internal heat exchange sensor (Thr) is an indoor suction sensor which is arranged at the air suction port of the indoor heat exchanger (6) and serves as a suction temperature detecting means for detecting the suction air temperature Tr.
Each of the above sensors is connected to a controller (not shown) for controlling the operation of the air conditioner so that signals can be input, and the controller controls the operation of each device according to the signal of the sensor. Has been done.
次に、上記コントローラの制御内容について、第3図
及び第4図に基づき説明する。Next, the control contents of the controller will be described with reference to FIGS. 3 and 4.
第3図は冷房運転時における冷凍効果EERを最大に維
持するためのEER制御の内容を示し、ステップS1で、上
記内熱交センサ(The)で検出される蒸発温度Te、外熱
交センサ(Thc)で検出される凝縮温度Tc及び吐出管セ
ンサ(Th2)で検出される吐出管温度T2をそれぞれ入力
し、ステップS2で、下記(1)式 Tk=4−1.13Te+1.72Tc (1) に基づき、最適な冷凍効果EERを与える吐出管温度であ
る最適温度Tkを算出する。FIG. 3 shows the contents of the EER control for maintaining the refrigeration effect EER at the maximum during the cooling operation. In step S 1 , the evaporation temperature Te and the external heat exchange sensor detected by the inner heat exchange sensor (The) are shown. the discharge pipe temperature T 2 detected respectively input at the condensation temperature Tc and the discharge pipe sensor is detected by (Thc) (Th2), in step S 2, the following equation (1) Tk = 4-1.13Te + 1.72Tc ( Based on 1), calculate the optimum temperature Tk, which is the discharge pipe temperature that gives the optimum refrigeration effect EER.
次に、ステップS3で、式ΔT2=T2−Tkに基づき吐出管
温度T2と最適温度Tkとの温度差ΔT2を算出した後、ステ
ップS4で、|ΔT2|≦5か否か、つまり吐出管温度T2が
最適温度Tkの上下一定範囲内に収束したか否かを判別
し、収束するまでは、ステップS5に進んで、ΔT2が正か
否か、つまり吐出管温度T2が最適温度Tkよりも高いか否
かを判別し、吐出管温度T2の方が高ければステップS
6で、電動膨張弁(5)を中程度に開くよう制御する一
方、吐出管温度T2の方が低ければ、ステップS7で、電動
膨張弁(5)の開度を中程度に閉じるように制御する。Next, in step S 3 , the temperature difference ΔT 2 between the discharge pipe temperature T 2 and the optimum temperature Tk is calculated based on the formula ΔT 2 = T 2 −Tk, and then in step S 4 , | ΔT 2 | ≦ 5? Whether or not, that is, whether or not the discharge pipe temperature T 2 has converged within a certain range above and below the optimum temperature Tk, until it converges, the process proceeds to step S 5, and whether ΔT 2 is positive, that is, the discharge It is determined whether the pipe temperature T 2 is higher than the optimum temperature Tk, and if the discharge pipe temperature T 2 is higher, step S
6, while controlling to open the motor-operated expansion valve (5) to moderate, the lower the better of the discharge pipe temperature T 2, at step S 7, to close moderately opening degree of the electronic expansion valve (5) To control.
一方、上記ステップS4の判別で、|ΔT2|≦5とな
り、吐出管温度T2が最適温度Tkの上下一定範囲内に収束
すると、ステップS8に移行して、下記のファジー制御を
実行する。On the other hand, when it is determined in step S 4 that | ΔT 2 | ≦ 5 and the discharge pipe temperature T 2 converges within a certain range above and below the optimum temperature Tk, the process proceeds to step S 8 and the following fuzzy control is executed. To do.
すなわち、第4図に示すように、ステップR1で、P−
1=Pとして、電動膨張弁(5)の開度駆動パルスPの
更新を行った後(P−1は前回の駆動パルス)、ステッ
プR2で、異常時に「1」となる吐出管センサ異常フラグ
Ft2が「1」か否かを判別し、異常でなければ、ステッ
プR3に進んで、上記室内吸込センサ(Thr)で検出され
る吸込空気温度Trと設定温度Trsとの差温ΔTr(但し、
冷房運転時にはΔTr=Tr−Trsである)が2.5deg以上か
否かを判別して、ΔTr≧2.5であれば、ステップR4に進
んで、下記(2)式 P=3.2ΔT2 (2) に基づき、電動膨張弁(5)開度の駆動パルスPを演算
する一方、ΔTr≧2.5でなければ、つまり吸込空気温度T
rが設定温度Trsの上下所定範囲内に収束すると、ステッ
プR5に移行して、下記(3)式 P=3.2ΔT2+6.4ΔTr (3) に基づき電動膨張弁(5)開度の駆動パルスPを算出す
る。すなわち、上記(3)式では、吐出管温度T2−最適
温度Tkの温度差ΔT2と、吸込空気温度Tr−設定温度Trs
の差温ΔTrとに1対2の重み付けをした値に基づいて電
動膨張弁(5)の開度を制御するようになされている。That is, as shown in FIG. 4, in step R 1 , P-
After updating the opening drive pulse P of the electric expansion valve (5) with 1 = P (P-1 is the previous drive pulse), the discharge pipe sensor abnormality becomes “1” at the time of abnormality in step R 2. flag
Ft2 is determined whether or not "1", if not abnormal, the process proceeds to step R 3, temperature difference ΔTr of the suction air temperature Tr and the set temperature Trs detected by the indoor inlet sensor (Thr) (where ,
During cooling operation, ΔTr = Tr-Trs) is determined to be 2.5 deg or more, and if ΔTr ≧ 2.5, the process proceeds to step R 4 and the following equation (2) P = 3.2 ΔT 2 (2) The drive pulse P for the opening degree of the electric expansion valve (5) is calculated on the basis of the above, while if ΔTr ≧ 2.5, that is, the intake air temperature T
When r is converged within the upper and lower predetermined range of the set temperature Trs, the procedure proceeds to step R 5, the following equation (3) P = 3.2ΔT 2 + 6.4ΔTr (3 ) the basis electric expansion valve (5) opening drive of The pulse P is calculated. That is, in the above formula (3), the temperature difference ΔT 2 between the discharge pipe temperature T 2 and the optimum temperature Tk, and the intake air temperature Tr−the set temperature Trs.
The opening degree of the electric expansion valve (5) is controlled based on the value obtained by weighting the differential temperature ΔTr of 1 to 2 with.
次に、上記ステップR4又はR5の制御を終了すると、ス
テップR6に進んで、|P|≦5か否かを判別し、指令され
る駆動パルスPが小さいときには、制御状態を変更する
必要性に乏しいと判断して、上記メインフローに戻る一
方、|P|≦5でなければ、ステップR7に進んで、P>0
か否かを判別する。そして、P>0で電動膨張弁(5)
の開度を増大させる指令であれば、ステップR10で、P
−1≦Pか否かつまり今回の駆動パルスPが前回の駆動
パルスP−1よりも大きいか否かを判別し、今回の方が
大きければ、ステップR11で、駆動指令値Pの通りに電
動膨張弁(5)の開度を開き、今回の駆動指令値Pが前
回の駆動指令値P−1以下であれば、そのままメインフ
ローに戻る。Next, when the control of the above step R 4 or R 5 is completed, it proceeds to step R 6 and determines whether or not | P | ≦ 5, and when the commanded drive pulse P is small, the control state is changed. it is determined that the poor need, the program returns to the main flow, | P | ≦ 5 Otherwise, the process proceeds to step R 7, P> 0
It is determined whether or not. Then, when P> 0, the electric expansion valve (5)
If command to increase the opening degree, at step R 10, P
−1 ≦ P, that is, whether the current drive pulse P is larger than the previous drive pulse P−1, and if this time is larger, in step R 11 , the drive command value P is obtained. When the opening degree of the electric expansion valve (5) is opened and the current drive command value P is less than or equal to the previous drive command value P-1, the process directly returns to the main flow.
また上記ステップR6の判別で、P>0でないときに
は、ステップR8に移行して、前回の駆動指令P−1より
今回の駆動指令Pが小さければつまり電動膨張弁(5)
の開度変更量が今回の方が大きいときには、ステップR9
で、その駆動指令Pに応じて電動膨張弁(5)の開度を
閉じるよう制御する一方、今回の駆動指令Pによる変更
量のほうが小さいときには、電動膨張弁(5)の開度変
更を行うことなく、メインフローに戻る。In the judgment at the step R 6, when not P> 0, the process proceeds to step R 8, last from the drive command P-1 of this drive command P is small that is, if the electric expansion valve (5)
If the opening change amount of is larger this time, step R 9
Then, the opening degree of the electric expansion valve (5) is controlled to be closed according to the drive command P, while the opening degree of the electric expansion valve (5) is changed when the change amount by the present drive command P is smaller. Without returning to the main flow.
上記フローにおいて、ステップS2の制御により、冷媒
の蒸発温度Teと凝縮温度Tcとに応じて、最適な冷凍効果
を与える吐出管温度の最適温度Tkを演算する最適温度演
算手段(51)が構成され、ステップS5〜S7の制御によ
り、吐出冷媒温度T2が上記最適温度演算手段(51)で演
算される最適温度Tkに収束するよう上記電動膨張弁
(5)の開度を制御する通常域開度制御手段(52)が構
成されている。In the above flow, the control of step S 2 constitutes the optimum temperature calculation means (51) for calculating the optimum temperature Tk of the discharge pipe temperature that gives the optimum refrigerating effect in accordance with the evaporation temperature Te and the condensation temperature Tc of the refrigerant. is under the control of the step S 5 to S 7, the discharge refrigerant temperature T 2 controls the degree of opening of the electric expansion valve (5) to converge to the optimum temperature Tk is calculated at the optimum temperature calculating means (51) A normal range opening control means (52) is configured.
また、ステップR3からR4に進んだ後ステップR6〜R11
を実行する制御により、吐出冷媒温度T2が上記最適温度
演算手段で演算される最適温度Tkの上下一定範囲内に収
束すると、上記通常域開度制御手段(52)の制御を強制
的に停止させて、吸込空気温度Trとその設定値Trsとの
吸込差温ΔTrに応じて上記電動膨張弁(5)の開度を制
御する吐出温収束域開度制御手段(53)が構成されてい
る。Also, after proceeding from step R 3 to R 4 , steps R 6 to R 11
When the discharged refrigerant temperature T 2 converges within a certain range above and below the optimum temperature Tk calculated by the optimum temperature calculation means, the control of the normal range opening control means (52) is forcibly stopped. The discharge temperature convergence region opening degree control means (53) is configured to control the opening degree of the electric expansion valve (5) according to the suction temperature difference ΔTr between the suction air temperature Tr and its set value Trs. .
一方、請求項(2)の発明では、ステップR3からR5に
移行した後ステップR6〜R11を実行する制御により、吸
込空気温度Trがその設定温度の上下所定範囲内に収束す
ると、上記通常域開度制御手段(52)の制御を強制的に
停止させて、上記吐出冷媒温度−最適温度の温度差及び
吸込空気温度−設定温度の差温に所定の重み付けをした
値に基づいて上記電動膨張弁の開度を変化させるよう制
御する能力収束域開度制御手段(54)が構成されてい
る。Meanwhile, in the present invention (2), from Step R 3 by control performing step R 6 to R 11 after shifting to R 5, when the inlet air temperature Tr converges within upper and lower predetermined range of the set temperature, The control of the normal range opening control means (52) is forcibly stopped, and based on the value obtained by weighting the temperature difference between the discharge refrigerant temperature-the optimum temperature and the suction air temperature-the set temperature with a predetermined weight. A capacity convergence region opening degree control means (54) for controlling the opening degree of the electric expansion valve is configured.
したがって、上記実施例では、空気調和装置の運転
中、最適温度演算手段(51)により、内熱交センサ(蒸
発温度検出手段)(The)で検出される冷媒の蒸発温度T
eと外熱交センサ(凝縮温度検出手段)(Thc)で検出さ
れる冷媒の凝縮温度Tcとに応じて、上記(1)式に基づ
き最適な冷凍効果EERを与える吐出冷媒温度T2が算出さ
れる。Therefore, in the above-described embodiment, during the operation of the air conditioner, the evaporation temperature T of the refrigerant detected by the internal heat exchange sensor (evaporation temperature detection means) (The) by the optimum temperature calculation means (51).
The discharge refrigerant temperature T 2 that gives the optimum refrigerating effect EER is calculated based on the above equation (1) according to e and the refrigerant condensing temperature Tc detected by the external heat exchange sensor (condensing temperature detecting means) (Thc). To be done.
すなわち、第5図のモリエル線図に示すように、高圧
側圧力をHp、低圧側圧力をLpとし、圧縮機(1)におけ
るガス冷媒の入口温度をT1、出口温度をT2(つまり、吐
出管温度T2)とすると、ポリトロープ圧縮において、下
記(4)式 T2=T1(Hp/Lp)n-1/n (4) (但し、nはポリトロープ指数であって、圧縮機(1)
の形式、容積等で定まる)が成立するが、高圧側圧力値
Hpは凝縮温度Tc、低圧側圧力値Lpは蒸発温度Teでそれぞ
れ置き換えることができ、また、過熱度Shは例えば2℃
程度が最適と決定する(第5図参照)ことにより、T2と
T1との関係からT1は決定され、結局、下記(5)式 T2=αTe+βTc+γ (5) の形で表されることになる。そして、本実施例では、実
験により、最適な冷凍効果EERを与える吐出管温度T2の
最適温度Tkは上記(1)式で表されるものとなる。That is, as shown in the Mollier diagram of FIG. 5, the high-pressure side pressure is Hp, the low-pressure side pressure is Lp, the inlet temperature of the gas refrigerant in the compressor (1) is T 1 , and the outlet temperature is T 2 (that is, Assuming that the discharge pipe temperature is T 2 ), in polytropic compression, the following equation (4) T 2 = T 1 (Hp / Lp) n-1 / n (4) (where n is a polytropic index and the compressor ( 1)
Is determined by the type, volume, etc.), but the pressure value on the high-pressure side
Hp can be replaced by the condensation temperature Tc, and the low-pressure side pressure value Lp can be replaced by the evaporation temperature Te, and the superheat degree Sh can be, for example, 2 ° C.
The degree is determined as optimum by (5 see figure) that, as T 2
T 1 from the relationship between T 1 is determined, after all, would be expressed in the form of the following equation (5) T 2 = αTe + βTc + γ (5). Then, in the present embodiment, the optimum temperature Tk of the discharge pipe temperature T 2 that gives the optimum refrigeration effect EER is expressed by the above formula (1) by experiments.
したがって、通常域開度制御手段(52)により、吐出
管温度T2がその最適温度Tkに収束するよう電動膨張弁
(5)の開度が制御されるので、圧縮機(1)の運転容
量が固定されていても、冷媒回路(9)における冷媒状
態が適度な範囲に制御され、円滑な運転が維持されるこ
とになる。Therefore, since the opening degree of the electric expansion valve (5) is controlled by the normal range opening degree control means (52) so that the discharge pipe temperature T 2 converges to the optimum temperature Tk, the operating capacity of the compressor (1) is increased. Even if is fixed, the refrigerant state in the refrigerant circuit (9) is controlled within an appropriate range, and smooth operation is maintained.
その場合、このような冷凍状態だけに基づいて運転を
行うと、空調要求が無視される場合があり、空調の快適
性が損なわれる虞れが生じるが、請求項(1)の発明で
は、吐出温収束域開度制御手段(53)により、吐出管温
度T2がその最適温度Tkの上下一定範囲(上記実施例で
は、±5deg(第5図参照))内に収束すると、室内吸込
センサ(吸込温度検出手段)(Thr)で検出される吸込
空気温度Trとその設定温度Trsとの差温ΔTrに応じて電
動膨張弁(5)の開度が制御されるので、室内熱交換器
(6)における熱交換量が要求能力に応じた能力に制御
され、空調の快適性が向上することになる。In that case, if the operation is performed only based on such a frozen state, the air conditioning request may be ignored, which may impair the comfort of the air conditioning. However, in the invention of claim (1), When the discharge pipe temperature T 2 converges within a certain range above and below the optimum temperature Tk (± 5 deg (see FIG. 5) in the above embodiment) by the temperature convergence region opening control means (53), the indoor suction sensor ( Since the opening degree of the electric expansion valve (5) is controlled according to the temperature difference ΔTr between the suction air temperature Tr detected by the suction temperature detection means (Thr) and its set temperature Trs, the indoor heat exchanger (6) The amount of heat exchange in (1) is controlled to a capacity according to the required capacity, and the comfort of air conditioning is improved.
請求項(2)の発明では、上記請求項(1)の発明と
同様に、通常域開度制御手段(52)により、上記(1)
式に基づき、電動膨張弁(5)の開度が制御され、冷媒
状態が適切な状態に維持される。In the invention of claim (2), as in the invention of claim (1), the normal range opening control means (52) is used to perform the above (1).
Based on the equation, the opening degree of the electric expansion valve (5) is controlled, and the refrigerant state is maintained in an appropriate state.
そのとき、吸込センサ(Thr)で検出される吸込空気
温度Trがその設定値Trsに収束した状態では、一般的に
微細な電動膨張弁(5)開度の調節が必要となるが、基
本的には、要求能力と冷媒状態の適性さとの両者を満足
する必要がある。At that time, when the suction air temperature Tr detected by the suction sensor (Thr) converges to the set value Trs, it is generally necessary to finely adjust the opening degree of the electric expansion valve (5). Therefore, it is necessary to satisfy both the required capacity and the suitability of the refrigerant state.
ところで、一般に、室内熱交換器(6)の吸込空気温
度Trの変化と吐出管温度T2の変化との間には相関があ
る。例えば、本実施例の場合、実験データから、吸込空
気温度Trが1deg上昇すると、吐出管温度T2が2deg上昇す
る。By the way, generally, there is a correlation between the change in the intake air temperature Tr of the indoor heat exchanger (6) and the change in the discharge pipe temperature T 2 . For example, in the case of the present embodiment, from the experimental data, when the intake air temperature Tr rises by 1 deg, the discharge pipe temperature T 2 rises by 2 deg.
ここで、請求項(2)の発明では、能力収束域開度制
御手段(54)により、吐出管温度T2とその最適温度Tkと
の温度差ΔT2と、吸込空気温度Trとその設定値Trsとの
差温ΔTrとに対し、両者に所定の重み付けした値に基づ
いて電動膨張弁(5)の開度が制御される。すなわち、
上記実施例の(3)式のように、ΔTrとΔT2との重み付
けを2対1として、ファジー制御のプロダクションルー
ルに基づいた制御を行うことにより、冷媒状態の適正さ
が維持されるとともに、室内熱交換器(6)の能力が要
求能力に対応した値に確保される。そして、そのことに
より、空調の快適性を維持しながら、サーモオフ・オン
の切換え回数の低減による信頼性の向上を図ることがで
きるのである。Here, in the invention of claim (2), the capacity convergence range opening control means (54) controls the temperature difference ΔT 2 between the discharge pipe temperature T 2 and its optimum temperature Tk, the suction air temperature Tr and its set value. The opening degree of the electric expansion valve (5) is controlled based on a value obtained by weighting both of them with respect to the temperature difference ΔTr with Trs. That is,
By performing the control based on the production rule of the fuzzy control with the weighting of ΔTr and ΔT 2 set to 2: 1 as in the formula (3) of the above-described embodiment, the properness of the refrigerant state is maintained, and The capacity of the indoor heat exchanger (6) is secured to a value corresponding to the required capacity. As a result, it is possible to improve reliability by reducing the number of times the thermostat is turned off and on while maintaining the comfort of air conditioning.
なお、上記実施例では、空気調和装置の冷房運転時に
ついて説明したが、本発明は暖房運転時についても適用
しうることはいうまでもなく、また、空気調和装置だけ
でなく、コンテナ冷凍装置等の冷凍機についても適用し
うるものである。It should be noted that, in the above-mentioned embodiment, the air conditioner is explained in the cooling operation, but it goes without saying that the present invention can be applied in the heating operation, and not only the air conditioner but also the container refrigerating apparatus and the like. It is also applicable to the refrigerator.
(発明の効果) 以上説明したように、請求項(1)の発明によれば、
圧縮機、蒸発器、電動膨張弁及び蒸発器を順次接続して
なる冷媒回路に備えた冷凍装置において、吐出冷媒温度
がそのときの冷媒の蒸発温度と凝縮温度に基づいて算出
される最適温度に収束するよう電動膨張弁の開度を制御
する一方、吐出冷媒温度が最適温度の上下一定範囲内に
収束すると、吸込空気温度とその設定値との差温に応じ
て電動膨張弁の開度を制御するようにしたので、冷媒状
態を適正に保持して良好な冷凍効果を確保しながら、空
調の快適性の向上を図ることができる。(Effect of the invention) As described above, according to the invention of claim (1),
In a refrigeration system equipped with a refrigerant circuit in which a compressor, an evaporator, an electric expansion valve, and an evaporator are sequentially connected, the discharge refrigerant temperature becomes an optimum temperature calculated based on the evaporation temperature and condensation temperature of the refrigerant at that time. While controlling the opening of the electric expansion valve to converge, when the discharge refrigerant temperature converges within a certain range above and below the optimum temperature, the opening of the electric expansion valve is adjusted according to the difference between the intake air temperature and its set value. Since the control is performed, the comfort of the air conditioning can be improved while properly maintaining the refrigerant state and ensuring a good refrigeration effect.
請求項(2)の発明によれば、圧縮機、蒸発器、電動
膨張弁及び蒸発器を順次接続してなる冷媒回路を備えた
冷凍装置において、吐出管温度がそのときの冷媒の蒸発
温度と凝縮温度に基づいて算出される最適温度に収束す
るよう電動膨張弁の開度を制御する一方、吸込空気温度
がその設定値の上下一定範囲内に収束すると、吐出管温
度−最適温度間の温度差と吸込空気温度−設定値間の差
温とに応じて所定の重み付けをした値で電動膨張弁の開
度を制御するようにしたので、冷媒状態と蒸発器の能力
とが適正値になるよう微細に制御しながら、サーモオン
・オフ回数の低減による信頼性の向上を図ることができ
る。According to the invention of claim (2), in a refrigerating device including a refrigerant circuit in which a compressor, an evaporator, an electric expansion valve, and an evaporator are sequentially connected, the discharge pipe temperature is the evaporation temperature of the refrigerant at that time. While controlling the opening of the electric expansion valve to converge to the optimum temperature calculated based on the condensation temperature, if the intake air temperature converges within a certain range above and below the set value, the temperature between the discharge pipe temperature and the optimum temperature Since the opening degree of the electric expansion valve is controlled by a value weighted according to the difference and the temperature difference between the intake air temperature and the set value, the refrigerant state and the capacity of the evaporator have appropriate values. It is possible to improve reliability by reducing the number of times the thermostat is turned on and off while performing such fine control.
第1図は本発明の構成を示すブロック図である。第2図
以下は本発明の実施例を示し、第2図は空気調和装置の
構成を示す冷媒配管系統図、第3図及び第4図はコント
ローラの冷房運転時における制御内容を示し、第3図は
その電動膨張弁開度の制御のメインフロー、第4図は該
メインフローのうちファジー制御部分に係るサブフロー
をそれぞれ示すフローチャート図、第5図は吐出管温度
の最適制御の原理を説明するためのモリエル線図であ
る。 1……圧縮機 3……室外熱交換器(凝縮器又は蒸発器) 5……電動膨張弁 6……室内熱交換器(蒸発器又は凝縮器) 9……冷媒回路 51……最適温度演算手段 52……通常域開度制御手段 53……吐出温収束域開度制御手段 54……能力収束域開度制御手段 Thc……外熱交センサ(凝縮温度検出手段) The……内熱交センサ(蒸発温度検出手段) Th2……吐出管センサ(吐出温度検出手段) Thr……室内吸込センサ(吸込温度検出手段)FIG. 1 is a block diagram showing the configuration of the present invention. 2 and the following shows an embodiment of the present invention, FIG. 2 is a refrigerant piping system diagram showing a configuration of an air conditioner, FIGS. 3 and 4 show control contents during a cooling operation of a controller, and FIG. FIG. 4 is a flow chart showing a main flow for controlling the opening degree of the electric expansion valve, FIG. 4 is a flow chart showing a sub-flow relating to a fuzzy control portion of the main flow, and FIG. It is a Mollier diagram for. 1 ... Compressor 3 ... Outdoor heat exchanger (condenser or evaporator) 5 ... Electric expansion valve 6 ... Indoor heat exchanger (evaporator or condenser) 9 ... Refrigerant circuit 51 ... Optimum temperature calculation Means 52 …… Normal area opening degree control means 53 …… Discharge temperature convergence area opening degree control means 54 …… Capacity convergence area opening degree control means Thc …… External heat exchange sensor (condensation temperature detection means) The …… Internal heat exchange Sensor (evaporation temperature detection means) Th2 …… Discharge pipe sensor (discharge temperature detection means) Thr …… Indoor suction sensor (suction temperature detection means)
Claims (2)
膨張弁(5)及び蒸発器(6又は3)を順次接続してな
る冷媒回路(9)を備えた冷凍装置において、 上記蒸発器(6又は3)における冷媒の蒸発温度を検出
する蒸発温度検出手段(The)と、上記凝縮器(3又は
6)における冷媒の凝縮温度を検出する凝縮温度検出手
段(Thc)と、上記蒸発温度検出手段(The)及び凝縮温
度検出手段(Thc)の出力を受け、冷媒の蒸発温度と凝
縮温度とに応じて、最適な冷凍効果を与える吐出冷媒温
度の最適温度を演算する最適温度演算手段(51)と、吐
出冷媒温度を検出する吐出温度検出手段(Th2)と、該
吐出温度検出手段(Th2)の出力を受け、吐出冷媒温度
が上記最適温度演算手段(51)で演算される最適温度に
収束するよう上記電動膨張弁(5)の開度を制御する通
常域開度制御手段(52)とを備えるとともに、 上記蒸発器(6又は3)の吸込空気温度を検出する吸込
温度検出手段(Thr)と、該吸込温度検出手段(Thr)及
び上記吐出温度検出手段(Th2)の出力を受け、吐出冷
媒温度が上記最適温度演算手段(51)で演算される最適
温度の上下一定範囲内に収束すると、上記通常域開度制
御手段(52)の制御を強制的に停止させて、吸込空気温
度とその設定値との吸込差温に応じて上記電動膨張弁
(5)の開度を制御する収束域開度制御手段(53)とを
備えたことを特徴とする冷凍装置の運転制御装置。1. A refrigeration system provided with a refrigerant circuit (9) comprising a compressor (1), a condenser (3 or 6), an electric expansion valve (5) and an evaporator (6 or 3) which are sequentially connected. Evaporation temperature detection means (The) for detecting the evaporation temperature of the refrigerant in the evaporator (6 or 3), and condensation temperature detection means (Thc) for detecting the condensation temperature of the refrigerant in the condenser (3 or 6) Optimum for receiving the outputs of the evaporation temperature detecting means (The) and the condensation temperature detecting means (Thc) and calculating the optimum temperature of the discharge refrigerant temperature which gives the optimum refrigerating effect in accordance with the evaporation temperature and the condensation temperature of the refrigerant. The temperature calculation means (51), the discharge temperature detection means (Th2) for detecting the discharge refrigerant temperature, and the output of the discharge temperature detection means (Th2), the discharge refrigerant temperature is calculated by the optimum temperature calculation means (51). Of the electric expansion valve (5) so that it converges to the optimum temperature. And a suction temperature detecting means (Thr) for detecting the suction air temperature of the evaporator (6 or 3), and a suction temperature detecting means (Thr). When the output of the discharge temperature detecting means (Th2) and the discharge refrigerant temperature converge within a certain range above and below the optimum temperature calculated by the optimum temperature calculating means (51), the normal range opening control means (52) ) Is forcibly stopped, and a convergence range opening control means (53) for controlling the opening of the electric expansion valve (5) according to the suction temperature difference between the suction air temperature and its set value. An operation control device for a refrigeration system, which is provided.
膨張弁(5)及び蒸発器(6又は3)を順次接続してな
る冷媒回路(9)を備えた冷凍装置において、 上記蒸発器(6又は3)における冷媒の蒸発温度を検出
する蒸発温度検出手段(The)と、上記凝縮器(3又は
6)における冷媒の凝縮温度を検出する凝縮温度検出手
段(Thc)と、上記蒸発温度検出手段(The)及び凝縮温
度検出手段(Thc)の出力を受け、冷媒の蒸発温度と凝
縮温度とに応じて、最適な冷凍効果を与える最適温度を
演算する最適温度演算手段(51)と、吐出冷媒温度を検
出する吐出温度検出手段(Th2)と、該吐出温度検出手
段(Th2)の出力を受け、吐出冷媒温度が上記最適温度
演算手段(51)で演算される最適温度に収束するよう上
記電動膨張弁(5)の開度を制御する通常域開度制御手
段(52)とを備えるとともに、上記蒸発器(6又は3)
の吸込空気温度を検出する吸込温度検出手段(Thr)
と、該吸込温度検出手段(Thr)及び上記吐出温度検出
手段(Th2)の出力を受け、吸込空気温度がその設定温
度の上下所定範囲内に収束すると、上記通常域開度制御
手段(52)の制御を強制的に停止させて、上記吐出冷媒
温度−最適温度の温度差及び吸込空気温度−設定温度の
差温に所定の重み付けをした値に基づいて上記電動膨張
弁(5)の開度を変化させるよう制御する能力収束域開
度制御手段(54)とを備えたことを特徴とする冷凍装置
の運転制御装置。2. A refrigeration system provided with a refrigerant circuit (9) comprising a compressor (1), a condenser (3 or 6), an electric expansion valve (5) and an evaporator (6 or 3) which are sequentially connected. Evaporation temperature detection means (The) for detecting the evaporation temperature of the refrigerant in the evaporator (6 or 3), and condensation temperature detection means (Thc) for detecting the condensation temperature of the refrigerant in the condenser (3 or 6) An optimum temperature calculating means for receiving the outputs of the evaporation temperature detecting means (The) and the condensing temperature detecting means (Thc) and calculating an optimum temperature that gives an optimum refrigerating effect in accordance with the evaporation temperature and the condensation temperature of the refrigerant ( 51), a discharge temperature detecting means (Th2) for detecting the discharge refrigerant temperature, and an optimum temperature at which the discharge refrigerant temperature is calculated by the optimum temperature calculating means (51) by receiving the output of the discharge temperature detecting means (Th2). The opening degree of the electric expansion valve (5) is controlled to converge to Together and a normal range opening control means (52), the evaporator (6 or 3)
Suction temperature detection means (Thr) for detecting the suction air temperature of
And the output of the suction temperature detection means (Thr) and the discharge temperature detection means (Th2), and when the suction air temperature converges within a predetermined range above and below the set temperature, the normal range opening control means (52) Control is forcibly stopped, and the opening degree of the electric expansion valve (5) is determined based on a value obtained by weighting the temperature difference between the discharge refrigerant temperature-the optimum temperature and the suction air temperature-the set temperature by a predetermined weight. An operation control device for a refrigerating device, comprising: a capacity convergence range opening degree control means (54) for changing the temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2214204A JPH0833245B2 (en) | 1990-08-10 | 1990-08-10 | Refrigeration system operation controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2214204A JPH0833245B2 (en) | 1990-08-10 | 1990-08-10 | Refrigeration system operation controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0498050A JPH0498050A (en) | 1992-03-30 |
JPH0833245B2 true JPH0833245B2 (en) | 1996-03-29 |
Family
ID=16651958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2214204A Expired - Fee Related JPH0833245B2 (en) | 1990-08-10 | 1990-08-10 | Refrigeration system operation controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0833245B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833249B2 (en) * | 1990-10-29 | 1996-03-29 | 松下電器産業株式会社 | Heat pump controller |
JP3979232B2 (en) * | 2002-08-27 | 2007-09-19 | ダイキン工業株式会社 | Failure diagnosis apparatus and failure diagnosis method |
JP2009281648A (en) * | 2008-05-21 | 2009-12-03 | Daikin Ind Ltd | Heating system |
JP5821135B2 (en) | 2013-06-04 | 2015-11-24 | Smc株式会社 | Constant temperature liquid circulation device and temperature adjustment method for constant temperature liquid |
JP6320566B2 (en) * | 2015-01-08 | 2018-05-09 | 三菱電機株式会社 | Air conditioner |
CN110594981B (en) * | 2019-09-11 | 2021-03-02 | 南京晶华智能科技有限公司 | Method, device and system for indirectly acquiring evaporation temperature of air conditioner and storage medium |
CN113494761A (en) * | 2020-03-19 | 2021-10-12 | 佛山市云米电器科技有限公司 | Air blowing control method, air blowing device, air blowing system, and storage medium |
-
1990
- 1990-08-10 JP JP2214204A patent/JPH0833245B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0498050A (en) | 1992-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4562700A (en) | Refrigeration system | |
EP2075519B1 (en) | Air Conditoning system | |
US20080022706A1 (en) | Two-stage expansion refrigerating device | |
WO2000019155A1 (en) | Refrigerator | |
JP2002081767A (en) | Air conditioner | |
JPH11142001A (en) | Air conditioner | |
JP2500519B2 (en) | Operation control device for air conditioner | |
JPH06257828A (en) | Multi-chamber type air conditioning system | |
JP3334222B2 (en) | Air conditioner | |
JPH0833245B2 (en) | Refrigeration system operation controller | |
JP3028008B2 (en) | Air conditioner | |
JPH04222341A (en) | Air conditioner operation control device | |
JP2757685B2 (en) | Operation control device for air conditioner | |
JPH10185343A (en) | Refrigeration equipment | |
JP2000097481A (en) | Air conditioner | |
JP2974381B2 (en) | Air conditioner | |
JP3291357B2 (en) | Air conditioner | |
JPH0694954B2 (en) | Refrigerator superheat control device | |
JP3353367B2 (en) | Air conditioner | |
JPH0827080B2 (en) | Operation control device for air conditioner | |
JPH0814698A (en) | Operation control device for air conditioner | |
JPH05240522A (en) | Air conditioning apparatus | |
JPH08128747A (en) | Control device for air conditioner | |
JPH03186156A (en) | Air conditioner pressure equalization device | |
JPH0225103Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080329 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090329 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090329 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100329 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |