JPS6345030B2 - - Google Patents
Info
- Publication number
- JPS6345030B2 JPS6345030B2 JP57204974A JP20497482A JPS6345030B2 JP S6345030 B2 JPS6345030 B2 JP S6345030B2 JP 57204974 A JP57204974 A JP 57204974A JP 20497482 A JP20497482 A JP 20497482A JP S6345030 B2 JPS6345030 B2 JP S6345030B2
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- superheat
- refrigerant
- inlet
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 14
- 238000005057 refrigeration Methods 0.000 claims description 14
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【発明の詳細な説明】
この発明は、圧縮機入口側の開放端の冷媒温度
とこの入口冷媒配管内の冷媒温度との差で吸入冷
媒のスーパヒート量を演算して膨張弁の制御を行
うようにした冷凍サイクルのスーパヒート検知シ
ステムに関する。DETAILED DESCRIPTION OF THE INVENTION This invention controls an expansion valve by calculating the superheat amount of suction refrigerant based on the difference between the refrigerant temperature at the open end on the inlet side of the compressor and the refrigerant temperature in this inlet refrigerant pipe. This invention relates to a superheat detection system for a refrigeration cycle.
従来、冷凍サイクルの減圧装置として、温度式
自動膨張弁を使用しているが、スーパヒート量を
制御する部分の配管に感温筒を接触させて温度変
化を圧力変化に変換しているため、応答が遅くな
る。このため急激な負荷変動に追従できなく液バ
ツクを起こしたり、ハンチングを起こしやすい欠
点を有していた。 Conventionally, a thermostatic automatic expansion valve has been used as a pressure reducing device in the refrigeration cycle, but since a thermosensitive cylinder is brought into contact with the piping in the section that controls the amount of superheat, and changes in temperature are converted into changes in pressure, the response is is delayed. For this reason, it has the disadvantage that it cannot follow sudden load fluctuations, causing liquid backlash or hunting.
また、スーパヒートを直接に検知してないた
め、空調機の運転状態に合つた最適なスーパヒー
ト量に任意にコントロールすることが不可能であ
つた。 Furthermore, since superheat is not directly detected, it has been impossible to arbitrarily control the amount of superheat to be optimal for the operating conditions of the air conditioner.
さらに、従来電気式膨張弁の制御信号として、
スーパヒート量を検知するようにしているもの
は、蒸発器の入口とか中間部の温度(Te)と圧
縮機入口温度(Ts)とを検知し、簡易的にスー
パヒート量(SH)をSH=Ts−Teとしている
が、蒸発器入口とか中間部と圧縮機入口とには圧
力低下がある。この低下量が運転状態により変化
するため正確にスーパヒート量を検知することが
不可能であつた。 Furthermore, as a control signal for conventional electric expansion valves,
The device that detects the amount of superheat detects the temperature at the inlet or middle part of the evaporator (Te) and the temperature at the inlet of the compressor (Ts), and simply calculates the amount of superheat (SH) by SH = Ts - Although it is set as Te, there is a pressure drop at the evaporator inlet, middle part, and compressor inlet. Since this amount of decrease changes depending on the operating conditions, it has been impossible to accurately detect the amount of superheat.
また、圧力センサと温度センサを圧縮機入口に
設けスーパヒート量を検知するものがある。しか
し、圧力センサが高価なため機器のコストアツプ
となる欠点を有している。 In addition, there is a system that detects the amount of superheat by installing a pressure sensor and a temperature sensor at the inlet of the compressor. However, since the pressure sensor is expensive, it has the disadvantage of increasing the cost of the equipment.
この発明は、上記従来の欠点を除去するために
なされたもので、圧縮機吸入冷媒のスーパヒート
量の絶対値を正確に検知し、きめ細い膨張弁の制
御ができる冷凍サイクルのスーパヒート検知シス
テムを提供することを目的とする。 This invention was made to eliminate the above-mentioned conventional drawbacks, and provides a refrigeration cycle superheat detection system that can accurately detect the absolute value of the amount of superheat in the refrigerant sucked into a compressor and can precisely control the expansion valve. The purpose is to
以下、この発明の冷凍サイクルのスーパヒート
検知システムの実施例について図面に基づき説明
する。第1図はその一実施例の冷凍回路図であ
り、第2図は第1図におけるバイパス路付近の拡
大図である。この第1図および第2図の両図にお
いて、1は圧縮機であり、この圧縮機1から吐出
された高温高圧の冷媒ガスは四方弁2を通り、暖
房運転時には四方弁2から室外側熱交換器3に送
られ、そこで凝縮液化され、キヤピラリチユーブ
4a,4bを経由して、電気式膨張弁5で減圧さ
れて室内側熱交換器6に送られ、そこで蒸発して
ガス化し、低温低圧の冷媒ガスとなつて四方弁2
を経由してアキユームレータ7に送られ、さら
に、アキユームレータ7から吸入配管15を経て
圧縮機1に吸入されるようになつている。 Embodiments of the superheat detection system for a refrigeration cycle according to the present invention will be described below with reference to the drawings. FIG. 1 is a refrigeration circuit diagram of one embodiment, and FIG. 2 is an enlarged view of the vicinity of the bypass path in FIG. 1. In both Fig. 1 and Fig. 2, 1 is a compressor, and the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through a four-way valve 2. It is sent to the exchanger 3, where it is condensed and liquefied, and then passed through the capillary tubes 4a and 4b, reduced in pressure by the electric expansion valve 5, and sent to the indoor heat exchanger 6, where it is evaporated and gasified. Four-way valve 2 becomes low-pressure refrigerant gas
The air is sent to the accumulator 7 via the .
上記電気式膨張弁5と室内側熱交換器6との間
と吸入配管15との間には第2図の拡大図より明
らかなように、バイパス路9が設けられており、
このバイパス路9の途中にはキヤピラリチユーブ
10が設けられている。 As is clear from the enlarged view of FIG. 2, a bypass path 9 is provided between the electric expansion valve 5, the indoor heat exchanger 6, and the suction pipe 15.
A capillary tube 10 is provided in the middle of this bypass path 9.
また、バイパス路9の圧縮機1の吸入配管15
側の開方端に冷媒の温度を検知する温度センサ1
1が設けられているとともに、吸入配管15にも
この吸入配管15内の冷媒の温度を検知する温度
センサ8が取り付けられている。両温度センサ8
と11の検出出力は制御器12に送るようになつ
ている。 In addition, the suction pipe 15 of the compressor 1 in the bypass path 9
Temperature sensor 1 that detects the temperature of the refrigerant at the open end of the side
1 is provided, and a temperature sensor 8 is also attached to the suction pipe 15 to detect the temperature of the refrigerant in the suction pipe 15. Both temperature sensors 8
The detection outputs of and 11 are sent to a controller 12.
この制御器12は両温度センサ8,12の検出
出力を受けて、圧縮機1の吸入冷媒のスーパヒー
ト量を演算して、それによつて、電気式膨張弁5
の開度制御を行うようになつている。 This controller 12 receives the detection outputs of both temperature sensors 8 and 12, calculates the amount of superheat of the refrigerant sucked into the compressor 1, and thereby calculates the superheat amount of the refrigerant sucked into the compressor 1.
It is designed to control the opening of the valve.
また、第3図は上記バイパス路9の部分の別の
実施例の拡大図である。この第3図はバイパス路
9を電気式膨張弁5の出入口両端からキヤピラリ
チユーブ13,14を介してとつた例であり、電
気式膨張弁5の出入口が開放とならないようにキ
ヤピラリチユーブ13と14が追加されている。 Further, FIG. 3 is an enlarged view of another embodiment of the bypass path 9 portion. FIG. 3 shows an example in which the bypass path 9 is routed from both ends of the inlet and outlet of the electric expansion valve 5 via capillary tubes 13 and 14. and 14 have been added.
以上のように構成されたこの発明の冷凍サイク
ルのスーパヒート検知システムにおいて、特に第
3図で示す場合には、冷房運転中も暖房運転中も
高圧側から冷媒がバイパス路9に流入することに
なる。 In the refrigeration cycle superheat detection system of the present invention configured as described above, especially in the case shown in FIG. 3, refrigerant flows into the bypass path 9 from the high pressure side during both cooling and heating operations. .
また、第4図にモリエル線図上のこの発明のシ
ステムの概略を示す。第4図において、横軸Hは
エンタルピーを、縦軸Pは圧力を示す。第4図の
うちTdは圧縮機吐出冷媒温度を示し、Aは電気
式膨張弁5の入口の高圧冷媒液を示す。この液が
第3図のキヤピラリチユーブ13または14を経
由してさらにキヤピラリチユーブ10を経由して
低圧側の吸入配管15に開口した開放端16で吸
入圧力に相当する温度T11を発生する。 Further, FIG. 4 shows an outline of the system of the present invention on a Mollier diagram. In FIG. 4, the horizontal axis H represents enthalpy, and the vertical axis P represents pressure. In FIG. 4, Td indicates the compressor discharge refrigerant temperature, and A indicates the high-pressure refrigerant liquid at the inlet of the electric expansion valve 5. This liquid passes through the capillary tube 13 or 14 shown in FIG. 3, further passes through the capillary tube 10, and generates a temperature T 11 corresponding to the suction pressure at the open end 16 opened to the suction pipe 15 on the low pressure side. .
この飽和温度を温度センサ11によつて検知
し、さらに吸入冷媒の温度T8を温度センサ8で
検知することにより制御器12でスーパヒート量
(T8−T3)を検出できるようになつている。 By detecting this saturation temperature with the temperature sensor 11 and further detecting the temperature T 8 of the suction refrigerant with the temperature sensor 8, the controller 12 can detect the superheat amount (T 8 −T 3 ). .
以上のように、この発明の冷凍サイクルのスー
パヒート検知システムによれば、電気式膨張弁の
入口または出口あるいは両方より、キヤピラリチ
ユーブを経由して圧縮機入口またはアキユムレー
タ入口に至るバイパス路を設け、このバイパス路
における開放端での冷媒ガスの吸入圧力に相当す
る温度と室内側熱交換器からアキユームレータに
導入されて圧縮機に吸入される冷媒ガスの温度と
を検出して、制御器で両温度の差により圧縮機の
吸入冷媒ガスのスーパヒート量を演算して電気式
膨張弁を制御するようにしたので、スーパヒート
量の絶対値が検知でき、室内側熱交換器(蒸発
器)入口から出口まで圧力損失があつても電気式
膨張弁の正確な制御が可能となり、圧縮機の保護
および制御性が向上し、省エネルギ運転もきめ細
かく実行できることになる。 As described above, according to the superheat detection system for a refrigeration cycle of the present invention, a bypass path is provided from the inlet and/or outlet of the electric expansion valve to the compressor inlet or the accumulator inlet via the capillary tube, The controller detects the temperature corresponding to the suction pressure of the refrigerant gas at the open end of this bypass path and the temperature of the refrigerant gas introduced from the indoor heat exchanger into the accumulator and sucked into the compressor. Since the electric expansion valve is controlled by calculating the amount of superheat of the refrigerant gas sucked into the compressor based on the difference between the two temperatures, the absolute value of the amount of superheat can be detected, and the amount of superheat can be detected from the indoor heat exchanger (evaporator) inlet. Even if there is a pressure loss up to the outlet, it is possible to accurately control the electric expansion valve, improving protection and controllability of the compressor, and enabling detailed energy-saving operation.
第1図はこの発明の冷凍サイクルのスーパヒー
ト検知システムの一実施例を示す冷凍回路図、第
2図は同上冷凍サイクルのスーパヒート検知シス
テムにおけるバイパス路付近の拡大図、第3図は
同上冷凍サイクルのスーパヒート検知システムに
おけるバイパス路別の実施例の拡大図、第4図は
同上冷凍サイクルのスーパヒート検知システムの
冷媒挙動を示すモリエル線図である。
1……圧縮機、2……四方弁、3……室外側熱
交換器、4a,4b,10……キヤピラリチユー
ブ、5……電気式熱膨張弁、6……室内側熱交換
器、7……アキユムレータ、8,11……温度セ
ンサ、9……バイパス路、12……制御器、15
……吸入配管、16……開放端。なお、図中同一
符号は同一または相当部分を示す。
Fig. 1 is a refrigeration circuit diagram showing an embodiment of the superheat detection system for the refrigeration cycle of the present invention, Fig. 2 is an enlarged view of the vicinity of the bypass passage in the superheat detection system for the above refrigeration cycle, and Fig. 3 is an enlarged view of the vicinity of the bypass passage in the superheat detection system for the above refrigeration cycle. FIG. 4, which is an enlarged view of an embodiment of each bypass path in the superheat detection system, is a Mollier diagram showing refrigerant behavior in the superheat detection system of the refrigeration cycle. 1... Compressor, 2... Four-way valve, 3... Outdoor heat exchanger, 4a, 4b, 10... Capillary tube, 5... Electric thermal expansion valve, 6... Indoor heat exchanger, 7... Accumulator, 8, 11... Temperature sensor, 9... Bypass path, 12... Controller, 15
...Suction piping, 16...Open end. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
を直列に接続してなる冷凍サイクルにおいて、前
記膨張弁入口または出口あるいは両方より、キヤ
ピラリチユーブを経由して圧縮機入口またはアキ
ユームレータ入口に至るバイパス路と、前記バイ
パス路の圧縮機入口側またはアキユームレータ入
口側の開放端の冷媒温度を検知する第1の温度セ
ンサと、前記圧縮機入口に冷媒を吸入する吸入配
管内の冷媒温度を検知する第2の温度センサと、
前記第1および第2の温度センサの検出出力の差
をもつて前記圧縮機の吸入冷媒のスーパヒート量
を演算して前記電気式膨張弁の開度制御を行う制
御器とを具備したことを特徴とする冷凍サイクル
のスーパヒート検知システム。1. In a refrigeration cycle in which a compressor, a condenser, an electric expansion valve, an evaporator, etc. are connected in series, the compressor inlet or accumulator is connected from the expansion valve inlet or outlet, or both, via a capillary tube. a bypass path leading to the inlet; a first temperature sensor that detects the refrigerant temperature at the open end of the bypass path on the compressor inlet side or the accumulator inlet side; and a first temperature sensor in the suction pipe that sucks refrigerant into the compressor inlet a second temperature sensor that detects refrigerant temperature;
A controller that controls the opening degree of the electric expansion valve by calculating the amount of superheat of the refrigerant sucked into the compressor using the difference between the detection outputs of the first and second temperature sensors. A superheat detection system for refrigeration cycles.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20497482A JPS5995348A (en) | 1982-11-22 | 1982-11-22 | Detecting system of superheating of refrigeration cycle |
AU19128/83A AU547326B2 (en) | 1982-11-22 | 1983-09-14 | Control of super-heat quantity to compressor by control of expansion valve |
GB08324678A GB2130747B (en) | 1982-11-22 | 1983-09-14 | Control device for refrigeration cycle |
DE19833340736 DE3340736A1 (en) | 1982-11-22 | 1983-11-10 | CONTROL DEVICE FOR A COOLING CIRCUIT |
HK728/87A HK72887A (en) | 1982-11-22 | 1987-10-07 | Control device for refrigeration cycle |
MY635/87A MY8700635A (en) | 1982-11-22 | 1987-12-30 | Control device for refrigeration cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20497482A JPS5995348A (en) | 1982-11-22 | 1982-11-22 | Detecting system of superheating of refrigeration cycle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5995348A JPS5995348A (en) | 1984-06-01 |
JPS6345030B2 true JPS6345030B2 (en) | 1988-09-07 |
Family
ID=16499373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20497482A Granted JPS5995348A (en) | 1982-11-22 | 1982-11-22 | Detecting system of superheating of refrigeration cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5995348A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0577588U (en) * | 1992-03-30 | 1993-10-22 | 豊田工機株式会社 | Tandem pump |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61134545A (en) * | 1984-12-01 | 1986-06-21 | 株式会社東芝 | Refrigeration cycle device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54147548A (en) * | 1978-05-11 | 1979-11-17 | Daikin Ind Ltd | Heat pump type air conditioner |
-
1982
- 1982-11-22 JP JP20497482A patent/JPS5995348A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54147548A (en) * | 1978-05-11 | 1979-11-17 | Daikin Ind Ltd | Heat pump type air conditioner |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0577588U (en) * | 1992-03-30 | 1993-10-22 | 豊田工機株式会社 | Tandem pump |
Also Published As
Publication number | Publication date |
---|---|
JPS5995348A (en) | 1984-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5241833A (en) | Air conditioning apparatus | |
JPH0226155B2 (en) | ||
JP3985092B2 (en) | Air conditioner | |
JP4462435B2 (en) | Refrigeration equipment | |
JP5989534B2 (en) | Refrigeration system apparatus and air conditioner | |
JPS6345030B2 (en) | ||
JPH04214153A (en) | Refrigerating cycle device | |
JP2904354B2 (en) | Air conditioner | |
JPH06317360A (en) | Multi-chamber type air conditioner | |
JP3395449B2 (en) | Air conditioner | |
KR880000935B1 (en) | Refrigeration Cycle Controls | |
JP2592141B2 (en) | Heat pump type air conditioner | |
JPH035826Y2 (en) | ||
JPS60133267A (en) | Separate type air conditioner | |
JPS63290368A (en) | Heat pump type air conditioner | |
JP2542649B2 (en) | Air conditioner | |
JPH085184A (en) | Multi-room type air conditioner | |
JP2005241169A (en) | Refrigerant circuit of air conditioner | |
JPS62299660A (en) | air conditioner | |
JPH08189735A (en) | Operation control device for air conditioner | |
JP2507400B2 (en) | Refrigerant heating type air conditioner | |
JPH0377424B2 (en) | ||
JPS5995349A (en) | Controller for electric type expansion valve | |
JPH0452465A (en) | Refrigeration equipment operation control device | |
JPH02282666A (en) | Heat pump type air conditioner |