[go: up one dir, main page]

JP4462435B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4462435B2
JP4462435B2 JP2005331047A JP2005331047A JP4462435B2 JP 4462435 B2 JP4462435 B2 JP 4462435B2 JP 2005331047 A JP2005331047 A JP 2005331047A JP 2005331047 A JP2005331047 A JP 2005331047A JP 4462435 B2 JP4462435 B2 JP 4462435B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid level
heat exchanger
level detection
receiver tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005331047A
Other languages
Japanese (ja)
Other versions
JP2007139244A (en
Inventor
哲也 伊藤
聡 冨岡
隆廣 松永
剛 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2005331047A priority Critical patent/JP4462435B2/en
Publication of JP2007139244A publication Critical patent/JP2007139244A/en
Application granted granted Critical
Publication of JP4462435B2 publication Critical patent/JP4462435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和機などに適用される冷凍装置に関し、さらに詳しく言えば、凝縮器と蒸発器との間にレシーバタンク(気液分離器)と過冷却熱交換器とが接続されているとともに、さらにレシーバタンクに液面検知手段が設けられている冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus applied to an air conditioner, and more specifically, a receiver tank (gas-liquid separator) and a supercooling heat exchanger are connected between a condenser and an evaporator. In addition, the present invention relates to a refrigeration apparatus in which a receiver tank is provided with a liquid level detection means.

空気調和機には、圧縮機,四方弁および室外熱交換器を有する室外機と、室内熱交換器を有する室内機とが含まれ、四方弁を切り替えることにより、冷房運転と暖房運転とが選択され、冷房運転時には室外熱交換器側が凝縮器で室内熱交換器側が蒸発器となり、これとは逆に、暖房運転時には室外熱交換器側が蒸発器で室内熱交換器側が凝縮器となる。   The air conditioner includes an outdoor unit having a compressor, a four-way valve and an outdoor heat exchanger, and an indoor unit having an indoor heat exchanger. By switching the four-way valve, a cooling operation and a heating operation are selected. In the cooling operation, the outdoor heat exchanger side is a condenser and the indoor heat exchanger side is an evaporator. On the contrary, in the heating operation, the outdoor heat exchanger side is an evaporator and the indoor heat exchanger side is a condenser.

空気調和機の中でも、1台の室外機に対して複数台の室内機が接続される多室型空気調和機においては、運転モード(冷房もしくは暖房)や運転室内機容量,それに室内外の温度条件によって運転に必要とされる冷媒量が変化する。   Among air conditioners, in a multi-room type air conditioner in which multiple indoor units are connected to one outdoor unit, the operation mode (cooling or heating), the capacity of the operating indoor unit, and the indoor and outdoor temperatures The amount of refrigerant required for operation varies depending on conditions.

その冷媒量の差を吸収するために、通常、凝縮器と蒸発器との間にレシーバタンクが設けられる。冷凍サイクル内の冷媒充填量が適正であるかどうかを監視するため、レシーバタンク内の液面レベルを検知する技術が種々提案されている。   In order to absorb the difference in the refrigerant amount, a receiver tank is usually provided between the condenser and the evaporator. Various techniques for detecting the liquid level in the receiver tank have been proposed in order to monitor whether or not the refrigerant charge amount in the refrigeration cycle is appropriate.

その一例として、特許文献1に記載の発明では、レシーバタンクの上下の異なる位置に配管を接続して、その各配管から取り出した冷媒を減圧した後の冷媒温度差から、レシーバタンク内の液面レベルを検知するようにしている。   As an example, in the invention described in Patent Literature 1, pipes are connected to different positions above and below the receiver tank, and the liquid level in the receiver tank is calculated from the refrigerant temperature difference after decompressing the refrigerant taken out from each pipe. The level is detected.

しかしながら、レシーバタンクの上下の異なる位置に接続された各配管から得られる冷媒温度に差がない場合、その高さ範囲内(2本の配管がレシーバタンクの例えば最上位と最下位とに接続されている場合にはレシーバタンク内の全体)の冷媒が液相であるのか、気相であるのかまでは判別することができない。   However, if there is no difference in the refrigerant temperature obtained from the pipes connected to different positions above and below the receiver tank, within the height range (two pipes are connected to the receiver tank, for example, the top and bottom If it is, it cannot be determined whether the refrigerant in the receiver tank as a whole is in the liquid phase or in the gas phase.

また、レシーバタンクから取り出した冷媒を減圧しただけでは、液冷媒とガス冷媒との温度差が出にくく、確実に液面レベルを検知することが難しい。図7は上記特許文献1に図3として記載されているモリエル線図を転記したもので、点20を通る等温度線22と点21を通る等温度線23との間の幅が液冷媒とガス冷媒との温度差であるが、その幅が狭いため、特に近年の環境問題から推奨されているノンフロンタイプのR410A冷媒となると、その高圧ガス飽和冷媒と高圧液飽和冷媒とを減圧しても、ほとんど温度差がでない。   Further, if the refrigerant taken out from the receiver tank is only decompressed, it is difficult to produce a temperature difference between the liquid refrigerant and the gas refrigerant, and it is difficult to reliably detect the liquid level. FIG. 7 is a transcription of the Mollier diagram described in FIG. 3 in Patent Document 1 above. The width between the isothermal line 22 passing through the point 20 and the isothermal line 23 passing through the point 21 is the liquid refrigerant. Although it is a temperature difference from a gas refrigerant, its width is narrow. Therefore, in the case of a non-fluorocarbon type R410A refrigerant that has been recommended especially in recent environmental problems, even if the high-pressure gas saturated refrigerant and the high-pressure liquid saturated refrigerant are decompressed, There is almost no temperature difference.

そこで、本出願人は、レシーバタンクから取り出した冷媒を減圧したのち加熱することにより、液冷媒とガス冷媒とで明らかな温度差がでるようにし、かつ、レシーバタンク内が液冷媒だけもしくはガス冷媒だけとなった場合においても、その相状態を検知可能とした発明を特願2005−70295として出願している(以下、先願発明と言う)。   Therefore, the applicant of the present invention reduces the temperature of the refrigerant taken out from the receiver tank and then heats it, so that a clear temperature difference between the liquid refrigerant and the gas refrigerant occurs, and the receiver tank has only the liquid refrigerant or the gas refrigerant. In the case where the phase state is only, the invention that makes it possible to detect the phase state has been filed as Japanese Patent Application No. 2005-70295 (hereinafter referred to as the prior invention).

上記先願発明を図4ないし図6により説明する。図4は上記先願発明が適用された空気調和機の全体的な構成を示す模式図,図5は上記先願発明が備える液面検知手段を示す模式図,図6は上記先願発明の作用を説明するためのモリエル線図である。   The prior application invention will be described with reference to FIGS. 4 is a schematic diagram showing the overall configuration of an air conditioner to which the invention of the prior application is applied, FIG. 5 is a schematic diagram showing liquid level detection means provided in the invention of the prior application, and FIG. 6 is a diagram of the invention of the prior application. It is a Mollier diagram for demonstrating an effect | action.

まず、図4を参照して、上記先願発明に係る空気調和機には、室外機10と室内機20とが含まれる。室外機10と室内機20は、それらが所定の配管部材を介して接続されるスプリット型で、冷房運転と暖房運転とが可能なヒートポンプ式の冷媒回路を備える。   First, referring to FIG. 4, the air conditioner according to the prior invention includes an outdoor unit 10 and an indoor unit 20. The outdoor unit 10 and the indoor unit 20 are a split type in which they are connected via a predetermined piping member, and include a heat pump type refrigerant circuit capable of cooling operation and heating operation.

そのため、室外機10には、基本的な構成として、圧縮機11,四方弁12,室外送風ファン13aを有する室外熱交換器13,レシーバタンク(気液分離器)14およびアキュムレータ15が設けられている。   Therefore, the outdoor unit 10 is provided with a compressor 11, a four-way valve 12, an outdoor heat exchanger 13 having an outdoor blower fan 13a, a receiver tank (gas-liquid separator) 14, and an accumulator 15 as a basic configuration. Yes.

室内機20は、基本的な構成として、室内送風ファン21aを有する室内熱交換器21を備え、その一端は電子膨張弁23およびレシーバタンク14を介して室外熱交換器13に接続され、他端は四方弁12を介して圧縮機11もしくはアキュムレータ15のいずれか一方に選択的に接続される。   As a basic configuration, the indoor unit 20 includes an indoor heat exchanger 21 having an indoor fan 21a, one end of which is connected to the outdoor heat exchanger 13 via an electronic expansion valve 23 and a receiver tank 14, and the other end. Is selectively connected to either the compressor 11 or the accumulator 15 via the four-way valve 12.

冷房運転時には、四方弁12が図1の実線のように切り替えられ、冷媒が圧縮機11→四方弁12→室外熱交換器13→レシーバタンク14→電子膨張弁23→室内熱交換器21→四方弁12→アキュムレータ15→圧縮機11へと流れる。この場合、室外熱交換器13が凝縮器として作用し、室内熱交換器21が蒸発器となる。   During the cooling operation, the four-way valve 12 is switched as indicated by the solid line in FIG. 1, and the refrigerant is compressor 11 → four-way valve 12 → outdoor heat exchanger 13 → receiver tank 14 → electronic expansion valve 23 → indoor heat exchanger 21 → four-way. It flows from the valve 12 to the accumulator 15 to the compressor 11. In this case, the outdoor heat exchanger 13 acts as a condenser, and the indoor heat exchanger 21 becomes an evaporator.

暖房運転時には、四方弁12が図1の鎖線のように切り替えられ、冷媒が圧縮機11→四方弁12→室内熱交換器21→電子膨張弁23→レシーバタンク14→室外熱交換器13→四方弁12→アキュムレータ15→圧縮機11へと流れる。この場合、室内熱交換器21が凝縮器として作用し、室外熱交換器13が蒸発器となる。冷房運転,暖房運転のいずれの場合でも、アキュムレータ15を含む配管系が冷凍サイクル(冷媒回路)の低圧側配管系となる。   During the heating operation, the four-way valve 12 is switched as indicated by the chain line in FIG. 1, and the refrigerant is compressor 11 → four-way valve 12 → indoor heat exchanger 21 → electronic expansion valve 23 → receiver tank 14 → outdoor heat exchanger 13 → four-way. It flows from the valve 12 to the accumulator 15 to the compressor 11. In this case, the indoor heat exchanger 21 acts as a condenser, and the outdoor heat exchanger 13 becomes an evaporator. In both the cooling operation and the heating operation, the piping system including the accumulator 15 is the low-pressure side piping system of the refrigeration cycle (refrigerant circuit).

上記先願発明において、低圧側配管系とレシーバタンク14との間に、レシーバタンク14内の液面を検知するための液面検知手段30が設けられる。上記先願発明において、この冷媒液面検知手段30は、後述するように冷媒状態検知手段としても動作する。   In the above-mentioned prior application invention, the liquid level detecting means 30 for detecting the liquid level in the receiver tank 14 is provided between the low pressure side piping system and the receiver tank 14. In the prior invention, the refrigerant liquid level detecting means 30 also operates as a refrigerant state detecting means as will be described later.

図5を参照して、液面検知手段30は、レシーバタンク14の異なる高さ位置に接続される液面検知用配管を備える。その高さ位置は少なくとも上限位置と下限位置の2個所であるが、この例では上限位置,中間位置および下限位置の3個所とし、上限位置に第1液面検知用配管31,中間位置に第2液面検知用配管32,下限位置に第3液面検知用配管33を接続している。   Referring to FIG. 5, the liquid level detection means 30 includes a liquid level detection pipe connected to different height positions of the receiver tank 14. The height position is at least two places, an upper limit position and a lower limit position. In this example, there are three places, an upper limit position, an intermediate position, and a lower limit position. A second liquid level detection pipe 32 and a third liquid level detection pipe 33 are connected to the lower limit position.

各液面検知用配管31,32,33には、減圧手段としてのキャピラリチューブ31a,32a,33aが設けられる。各キャピラリチューブの仕様は同一であることを条件として任意に決められてよいが、一例として内径0.8mm,長さ1000mmのキャピラリチューブを用いることができる。   Each liquid level detection pipe 31, 32, 33 is provided with capillary tubes 31a, 32a, 33a as decompression means. The specifications of each capillary tube may be arbitrarily determined on the condition that they are the same, but as an example, a capillary tube having an inner diameter of 0.8 mm and a length of 1000 mm can be used.

キャピラリチューブ31a,32a,33aの下流側には、減圧された冷媒を加熱するための加熱手段34が設けられる。加熱手段34をキャピラリチューブ31a,32a,33aの上流側に設けてもよい。加熱手段34には電気ヒータなどを用いてもよいが、圧縮機11の冷媒吐出管から発熱される熱を利用することが好ましい。これには、配管の一部分を冷媒吐出管に沿わせて溶接すればよい。   A heating means 34 for heating the decompressed refrigerant is provided on the downstream side of the capillary tubes 31a, 32a, 33a. The heating means 34 may be provided on the upstream side of the capillary tubes 31a, 32a, 33a. An electric heater or the like may be used as the heating unit 34, but it is preferable to use heat generated from the refrigerant discharge pipe of the compressor 11. For this purpose, a part of the pipe may be welded along the refrigerant discharge pipe.

また、各液面検知用配管31,32,33には、加熱された冷媒の温度を検出する例えばサーミスタからなる温度センサ31b,32b,33bが設けられる。各温度センサ31b,32b,33bにて検出された冷媒温度は制御部(CPU)30Aに入力され、制御部30Aは、それらの検出冷媒温度に基づいてレシーバタンク14内の液面レベルや相状態を判定する。   Each of the liquid level detection pipes 31, 32, 33 is provided with temperature sensors 31b, 32b, 33b made of, for example, a thermistor for detecting the temperature of the heated refrigerant. The refrigerant temperatures detected by the temperature sensors 31b, 32b, and 33b are input to the control unit (CPU) 30A, and the control unit 30A determines the liquid level and phase state in the receiver tank 14 based on the detected refrigerant temperatures. Determine.

各液面検知用配管31,32,33は、加熱手段34による冷媒の加熱後、最終的に1本にまとめられ、電磁弁35を介して冷凍サイクルの低圧側配管系に含まれているアキュムレータ15に接続される。   The liquid level detection pipes 31, 32, 33 are finally combined into one after the refrigerant is heated by the heating means 34, and are accumulators included in the low-pressure side pipe system of the refrigeration cycle via the electromagnetic valve 35. 15 is connected.

ここで、レシーバタンク14内の液面レベルが上限位置と中間位置との間にあり、第1液面検知用配管31にはガス冷媒が流され、第2,第3液面検知用配管32,33には液冷媒が流されるとして、冷媒液面検知手段30の作用について説明する。なお、第2液面検知用配管32と第3液面検知用配管33は同一条件下におかれるため、液冷媒側は第3液面検知用配管33について説明する。   Here, the liquid level in the receiver tank 14 is between the upper limit position and the intermediate position, the gas refrigerant flows through the first liquid level detection pipe 31, and the second and third liquid level detection pipes 32. , 33, the operation of the refrigerant liquid level detection means 30 will be described on the assumption that liquid refrigerant flows. Since the second liquid level detection pipe 32 and the third liquid level detection pipe 33 are placed under the same conditions, the third liquid level detection pipe 33 will be described on the liquid refrigerant side.

第1液面検知用配管31において、キャピラリチューブ31aの入口点をA1,出口点をC1,温度センサ31bの検出点をE1とする。また、第3液面検知用配管33において、キャピラリチューブ33aの入口点をB1,出口点をD1,温度センサ33bの検出点をF1とする。   In the first liquid level detection pipe 31, the inlet point of the capillary tube 31a is A1, the outlet point is C1, and the detection point of the temperature sensor 31b is E1. In the third liquid level detection pipe 33, the inlet point of the capillary tube 33a is B1, the outlet point is D1, and the detection point of the temperature sensor 33b is F1.

圧力系は、レシーバタンク14内の圧力を吐出圧力Ph,上記検出点E1,F1での飽和圧力をPm,電磁弁35の流出側の圧力を吸入圧力Plとする。これらの各圧力は図示しない圧力センサにより計測されることが好ましいが、上記飽和圧力Pmについては、アキュムレータ15の低圧配管系の低圧圧力センサ16にて測定される低圧圧力値から液面検出部までの圧力損失分を考慮して計算により求められる推定値を採用してもよい。   In the pressure system, the pressure in the receiver tank 14 is the discharge pressure Ph, the saturation pressure at the detection points E1 and F1 is Pm, and the pressure on the outflow side of the solenoid valve 35 is the suction pressure Pl. Each of these pressures is preferably measured by a pressure sensor (not shown), but the saturation pressure Pm is measured from the low pressure value measured by the low pressure sensor 16 of the low pressure piping system of the accumulator 15 to the liquid level detector. An estimated value obtained by calculation in consideration of the pressure loss may be adopted.

電磁弁35を開けると、第1液面検知用配管31にはガス冷媒が流され、第3液面検知用配管33には液冷媒が流される。その各冷媒は、それぞれキャピラリチューブ31a,33aに等しく減圧され、図6のモリエル線図に示すように、A1点はC1点の状態となり、B1点はD1点の状態となる。   When the electromagnetic valve 35 is opened, the gas refrigerant flows through the first liquid level detection pipe 31 and the liquid refrigerant flows through the third liquid level detection pipe 33. Each refrigerant is decompressed equally to the capillary tubes 31a and 33a, and as shown in the Mollier diagram of FIG. 6, point A1 is in the state of point C1, and point B1 is in the state of point D1.

C1点とD1点はともにPmの圧力線上にあるため同一温度であるが、その後、加熱手段34での加熱(好ましくは圧縮機11の冷媒吐出管との熱交換)により、第1液面検知用配管31側のガス冷媒はC1点から過熱領域内のE1点にまで温度上昇する。R410Aの場合でも、E1点の温度TEは、C1点の温度TCよりも好ましくは10℃以上高くなる(TE>TC+10℃)。   Since C1 point and D1 point are both on the pressure line of Pm, they are at the same temperature. Thereafter, the first liquid level detection is performed by heating by the heating means 34 (preferably heat exchange with the refrigerant discharge pipe of the compressor 11). The temperature of the gas refrigerant on the piping 31 side rises from point C1 to point E1 in the overheated region. Even in the case of R410A, the temperature TE at the point E1 is preferably higher by 10 ° C. or more than the temperature TC at the point C1 (TE> TC + 10 ° C.).

これに対して、第3液面検知用配管33側の冷媒は液冷媒であるため、減圧して加熱したのちもエンタルピーは上昇するが温度は変わらず飽和領域に存在し、D1点が同じ温度のF1点に移動するだけである。すなわち、D1点の温度TDとF1点の温度TFは同温度である(TD=TF)。   On the other hand, since the refrigerant on the third liquid level detection pipe 33 side is a liquid refrigerant, the enthalpy rises even after the pressure is reduced and heated, but the temperature does not change and exists in the saturation region, and the point D1 has the same temperature. It just moves to F1 point. That is, the temperature TD at the point D1 and the temperature TF at the point F1 are the same temperature (TD = TF).

制御部30Aは、温度センサ31bにて検出されたE1点の温度TEと、温度センサ33bにて検出されたF1点の温度TFとを比較して、レシーバタンク14内の液面レベルを判定する。この場合、TE>TFであるから、液面レベルが上限位置と下限位置との間にあると判定するが、上記先願発明によれば、その温度差が大きいため、判定結果に高い信頼性が得られる。   The controller 30A compares the temperature TE at the point E1 detected by the temperature sensor 31b with the temperature TF at the point F1 detected by the temperature sensor 33b, and determines the liquid level in the receiver tank 14. . In this case, since TE> TF, it is determined that the liquid level is between the upper limit position and the lower limit position. However, according to the prior invention, the temperature difference is large, so the determination result has high reliability. Is obtained.

ところで、温度センサ31bの検出温度TEと温度センサ33bの検出温度TFとが等しい場合には、レシーバタンク14内がガス冷媒だけ、もしくは液冷媒だけの2通りが想定される。このレシーバタンク14内の全体の相状態を判定可能とするため、上記先願発明において、制御部30Aは次の処理を行う。   By the way, when the detected temperature TE of the temperature sensor 31b and the detected temperature TF of the temperature sensor 33b are equal, the receiver tank 14 is assumed to have only two types of gas refrigerant or liquid refrigerant. In order to make it possible to determine the overall phase state in the receiver tank 14, in the prior application invention, the control unit 30A performs the following processing.

すなわち、F1点での圧力Pmから求められる飽和温度T(Pm)を基準温度Tsとし、この基準温度Tsと温度センサ33bから得られる検出温度TFとを比較し、Dを所定値として、TF−Ts<Dを満たした場合には、レシーバタンク14内が液冷媒だけの状態で、TF−Ts<Dを満たさない場合には、レシーバタンク14内がガス冷媒だけの状態であると判定する。   That is, the saturation temperature T (Pm) obtained from the pressure Pm at the point F1 is set as the reference temperature Ts, the reference temperature Ts is compared with the detected temperature TF obtained from the temperature sensor 33b, D is set as a predetermined value, and TF− When Ts <D is satisfied, it is determined that the receiver tank 14 is in a state of only liquid refrigerant, and when TF−Ts <D is not satisfied, the receiver tank 14 is in a state of only gas refrigerant.

なお、上記したように、F1点での飽和温度T(Pm)は、低圧圧力センサ16にて測定される低圧圧力値から推定される推定値であってもよいが、そのF1点での推定飽和温度Ts’(Pm)は、
Ts’(Pm)=T(Pl)+dT
により求められる。式中、T(Pl)は電磁弁35の吸入圧力Pl側の低圧飽和温度,dTは電磁弁35での温度損失で、
dT=C1×(Ph−Pl)+C2
により算出される(C1,C2は定数)。
As described above, the saturation temperature T (Pm) at the point F1 may be an estimated value estimated from the low pressure value measured by the low pressure sensor 16, but is estimated at the point F1. The saturation temperature Ts ′ (Pm) is
Ts ′ (Pm) = T (Pl) + dT
It is calculated by. Where T (Pl) is the low pressure saturation temperature on the suction pressure Pl side of the solenoid valve 35, dT is the temperature loss at the solenoid valve 35,
dT = C1 × (Ph−Pl) + C2
(C1 and C2 are constants).

以上説明したように、上記先願発明によれば、レシーバタンク14内から冷媒を取り出し、その冷媒を減圧したのち、加熱するようにしたことにより、液冷媒とガス冷媒とで大きな温度差が出るため、レシーバタンク内の液面レベルを確実に検知することができる。また、レシーバタンク14内が液冷媒だけもしくはガス冷媒だけとなった場合でも、その相状態をも検知することができる。   As described above, according to the invention of the prior application, a large temperature difference is generated between the liquid refrigerant and the gas refrigerant because the refrigerant is taken out from the receiver tank 14 and the refrigerant is decompressed and then heated. Therefore, the liquid level in the receiver tank can be reliably detected. Even when only the liquid refrigerant or the gas refrigerant is contained in the receiver tank 14, the phase state can be detected.

特開平6−201234号公報JP-A-6-201234

ところで、上記先願発明では、液面検知用としてレシーバタンク14から取り出した冷媒を低圧側配管系のアキュムレータ15に戻すようにしているため、F1点のエンタルピをIf[kJ/kg],C1点のエンタルピをIc[kJ/kg],取り出した冷媒の質量をqm[kg/s]とすると、Q=qm×(Ic−If)[kW]の蒸発能力を無駄に捨てていることになる。レシーバタンク14内の液面が上昇し、液冷媒の取り出し量が増えるに伴って、無駄に捨てる冷媒(室外機10内でのバイバスロス)が多くなる。   By the way, in the prior invention, since the refrigerant taken out from the receiver tank 14 for detecting the liquid level is returned to the accumulator 15 of the low-pressure side piping system, the enthalpy at the point F1 is If [kJ / kg], point C1. Is ic [kJ / kg] and the mass of the extracted refrigerant is qm [kg / s], the evaporation capacity of Q = qm × (Ic−If) [kW] is wasted. As the liquid level in the receiver tank 14 rises and the amount of liquid refrigerant taken out increases, the amount of refrigerant that is wasted (bypass loss in the outdoor unit 10) increases.

そのため、液面検知を行うときにのみ電磁弁35を開き、それ以外は電磁弁35を閉じるように制御しているが、これによると、電磁弁35の開閉により室外機10の状態が変化し、他の制御に悪影響を与えることがあり、また、液面を常時検知していないため、液面状態に応じて動作する制御系に遅れが生ずることもある、などの問題がある。   For this reason, the solenoid valve 35 is controlled to open only when the liquid level is detected and the solenoid valve 35 is closed otherwise. However, according to this, the state of the outdoor unit 10 is changed by opening and closing the solenoid valve 35. Other control may be adversely affected, and since the liquid level is not constantly detected, there is a problem that a delay may occur in the control system that operates according to the liquid level state.

したがって、本発明の課題は、レシーバタンクから冷媒を取り出してその液面を検知する液面検知手段を有する冷凍装置において、液面検知を行うことによる能力ロスを少なくするとともに、液面の常時検知を可能とすることにある。   Accordingly, an object of the present invention is to reduce the capacity loss due to the liquid level detection and constantly detect the liquid level in the refrigeration apparatus having the liquid level detecting means for taking out the refrigerant from the receiver tank and detecting the liquid level. Is to make it possible.

上記課題を解決するため、本発明は、圧縮機,凝縮器および蒸発器を含む冷凍サイクルを備え、上記凝縮器と上記蒸発器との間にレシーバタンクと過冷却熱交換器とが接続されているとともに、上記レシーバタンクに液面検知手段が設けられている冷凍装置において、上記液面検知手段は、一端が上記レシーバタンクの所定高さ部位に接続される少なくとも1本の液面検知用配管と、上記液面検知用配管内を流れる冷媒を減圧する減圧手段と、上記液面検知用配管内の冷媒を加熱する加熱手段と、上記加熱手段にて加熱された冷媒の温度を検出する温度検出手段とを有し、上記液面検知用配管の他端が、上記過冷却熱交換器の冷却側配管に設けられている過冷却熱交換器用電子膨張弁の下流側で上記冷却側配管に接続され、上記液面検知に用いた冷媒が上記過冷却熱交換器に流されることを特徴としている。 In order to solve the above problems, the present invention includes a refrigeration cycle including a compressor, a condenser, and an evaporator, and a receiver tank and a supercooling heat exchanger are connected between the condenser and the evaporator. In the refrigeration apparatus in which the receiver tank is provided with a liquid level detection means, the liquid level detection means has at least one liquid level detection pipe having one end connected to a predetermined height portion of the receiver tank. Pressure reducing means for reducing the pressure of the refrigerant flowing in the liquid level detection pipe, heating means for heating the refrigerant in the liquid level detection pipe, and temperature for detecting the temperature of the refrigerant heated by the heating means And the other end of the liquid level detection pipe is connected to the cooling side pipe on the downstream side of the electronic expansion valve for the supercooling heat exchanger provided in the cooling side pipe of the supercooling heat exchanger. Connected and used for liquid level detection Refrigerant is characterized by flowing to the subcooling heat exchanger.

本発明の好ましい態様によれば、上液面検知に用いた冷媒の蒸発潜熱の利用だけでは目標とする過冷却が得られない場合、追加的に上記過冷却熱交換器用電子膨張弁が開く方向に制御される。 According to a preferred embodiment of the present invention, if only the use of vaporization latent heat of the refrigerant used for detection on SL liquid surface is not supercooled to obtain a target, additionally the supercooling heat exchanger electronic expansion valve is opened Controlled in direction.

上記液面検知手段は、上記温度検出手段から得られる冷媒温度に基づいて、上記液面検知用配管の一端が接続されている位置での上記レシーバタンク内の冷媒の相状態を検知する。また、上記加熱手段として、上記圧縮機の冷媒吐出管から発熱される熱を利用することが好ましい。   The liquid level detection means detects the phase state of the refrigerant in the receiver tank at a position where one end of the liquid level detection pipe is connected based on the refrigerant temperature obtained from the temperature detection means. Moreover, it is preferable to use the heat generated from the refrigerant discharge pipe of the compressor as the heating means.

本発明によれば、レシーバタンクから取り出された冷媒は、液面検知用配管内で減圧され加熱されたのち、過冷却熱交換器の冷却側配管に供給されるため、その蒸発潜熱を冷媒の過冷却に有効に利用することができる。したがって、レシーバタンクから冷媒を常時取り出して、液面を常時監視するようにしても能力ロスを少なくすることができ、また、制御性(制御の応答性)も改善される。   According to the present invention, the refrigerant taken out from the receiver tank is depressurized and heated in the liquid level detection pipe and then supplied to the cooling side pipe of the supercooling heat exchanger. It can be effectively used for supercooling. Therefore, even if the refrigerant is always taken out from the receiver tank and the liquid level is constantly monitored, the capacity loss can be reduced, and the controllability (control responsiveness) is also improved.

次に、図1ないし図3により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。図1は本発明の冷凍装置を空気調和機に適用した例の全体的な構成を示す模式図,図2は本発明の要部であるレシーバタンクの液面検知手段と過冷却熱交換器とを拡大して示す模式図,図3は本発明の作用を説明するためのモリエル線図である。なお、図1,図2において、先の図4,図5で説明した上記先願発明と同一もしくは同一と見なされてよい構成要素には同じ参照符号を用いている。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 3, but the present invention is not limited to this. FIG. 1 is a schematic diagram showing an overall configuration of an example in which the refrigeration apparatus of the present invention is applied to an air conditioner. FIG. 2 is a schematic diagram of a liquid level detection means of a receiver tank, a supercooling heat exchanger, FIG. 3 is a Mollier diagram for explaining the operation of the present invention. 1 and 2, the same reference numerals are used for components that may be regarded as the same as or the same as those of the prior application invention described with reference to FIGS. 4 and 5.

まず、図1を参照して、この実施形態に係る空気調和機の全体的な構成を説明する。この空気調和機には、室外機10と室内機20とが含まれている。室外機10と室内機20は、それらが所定の配管部材を介して接続されるスプリット型であるが、室内機20は壁掛け式,天井埋め込み式もしくは床置き式のいずれであってもよい。なお、この例において、室内機20には、同一構成で並列的に接続された2台の室内機20a,20bが含まれている。   First, the overall configuration of the air conditioner according to this embodiment will be described with reference to FIG. This air conditioner includes an outdoor unit 10 and an indoor unit 20. The outdoor unit 10 and the indoor unit 20 are of a split type in which they are connected via a predetermined piping member. However, the indoor unit 20 may be of a wall-mounted type, a ceiling embedded type, or a floor type. In this example, the indoor unit 20 includes two indoor units 20a and 20b connected in parallel with the same configuration.

この例における空気調和機は、冷房運転と暖房運転とが可能なヒートポンプ式の冷媒回路を備えている。そのため、室外機10は、基本的な構成として、圧縮機11,四方弁12,室外送風ファン13aを有する室外熱交換器13,レシーバタンク(気液分離器)14およびアキュムレータ15を備えるが、この場合、レシーバタンク14には液面検知手段30が設けられ、また、レシーバタンク14には過冷却熱交換器40が接続される。この例において、圧縮機11には、インバータ制御による可変速型圧縮機11aと、一定速型圧縮機11bとが含まれている。   The air conditioner in this example includes a heat pump type refrigerant circuit capable of cooling operation and heating operation. Therefore, the outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13 having an outdoor blower fan 13a, a receiver tank (gas-liquid separator) 14, and an accumulator 15 as a basic configuration. In this case, the receiver tank 14 is provided with the liquid level detecting means 30, and the receiver tank 14 is connected with the supercooling heat exchanger 40. In this example, the compressor 11 includes a variable speed compressor 11a controlled by an inverter and a constant speed compressor 11b.

図2を参照して、液面検知手段30は、上記先願発明の図5で説明したのと同じく、レシーバタンク14の例えば上限位置に接続される第1液面検知用配管31,中間位置に接続される第2液面検知用配管32および下限位置に接続される第3液面検知用配管33の3本の液面検知用配管を備えている。   Referring to FIG. 2, the liquid level detection means 30 is the same as the first liquid level detection pipe 31 connected to the upper limit position of the receiver tank 14, for example, as described in FIG. Three liquid level detection pipes 32 and a third liquid level detection pipe 33 connected to the lower limit position.

各液面検知用配管31,32,33には、減圧手段としてのキャピラリチューブ31a,32a,33aが設けられ、その下流側には、減圧された冷媒を加熱するための加熱手段34が設けられている。加熱手段34をキャピラリチューブ31a,32a,33aの上流側に設けてもよい。なお、この例では、キャピラリチューブ31a,32a,33aの上流側に、キャピラリチューブの目詰まり防止用のストレーナ31c,32c,33cがさらに設けられている。   Each of the liquid level detection pipes 31, 32, 33 is provided with capillary tubes 31a, 32a, 33a as pressure reducing means, and on the downstream side thereof, heating means 34 for heating the decompressed refrigerant is provided. ing. The heating means 34 may be provided on the upstream side of the capillary tubes 31a, 32a, 33a. In this example, strainers 31c, 32c, and 33c for preventing clogging of the capillary tube are further provided upstream of the capillary tubes 31a, 32a, and 33a.

加熱手段34には電気ヒータなどを用いてもよいが、圧縮機11の冷媒吐出管から発熱される熱を利用することが好ましい。これには、配管の一部分を冷媒吐出管に沿わせて溶接すればよい。   An electric heater or the like may be used as the heating unit 34, but it is preferable to use heat generated from the refrigerant discharge pipe of the compressor 11. For this purpose, a part of the pipe may be welded along the refrigerant discharge pipe.

また、各液面検知用配管31,32,33には、加熱された冷媒の温度を検出する例えばサーミスタからなる温度センサ31b,32b,33bが設けられている。各温度センサ31b,32b,33bにて検出された冷媒温度は制御部(図5の制御部30A)に入力され、制御部は、それらの検出冷媒温度に基づいて、上記先願発明で説明したところにしたがって、レシーバタンク14内の液面レベルや相状態を判定する。   Each of the liquid level detection pipes 31, 32, 33 is provided with temperature sensors 31b, 32b, 33b made of, for example, a thermistor for detecting the temperature of the heated refrigerant. The refrigerant temperature detected by each temperature sensor 31b, 32b, 33b is input to the control unit (control unit 30A in FIG. 5), and the control unit has been described in the above-mentioned prior invention based on the detected refrigerant temperature. Accordingly, the liquid level in the receiver tank 14 and the phase state are determined.

過冷却熱交換器40は、内側の冷却側配管(内管)41と外側の被冷却側配管(外管)42とを同軸配管とした2重熱交換器で、外側の被冷却側配管42には、レシーバタンク14から取り出した液冷媒が流され、内側の冷却側配管41には、レシーバタンク14の底部から取り出した液冷媒を過冷却熱交換器用電子膨張弁43で減圧し、低圧ガス状態とした冷媒が流される。   The supercooling heat exchanger 40 is a double heat exchanger in which an inner cooling side pipe (inner pipe) 41 and an outer cooled side pipe (outer pipe) 42 are coaxial pipes, and the outer cooled side pipe 42. The liquid refrigerant taken out from the receiver tank 14 is flowed, and the liquid refrigerant taken out from the bottom of the receiver tank 14 is decompressed by the electronic expansion valve 43 for the supercooling heat exchanger in the inner cooling side pipe 41, and the low-pressure gas The refrigerant in the state is flowed.

本発明において、上記液面検知手段30の各液面検知用配管31,32,33は、加熱手段34による冷媒の加熱後、最終的に1本にまとめられ、電磁弁35を介して過冷却熱交換器用電子膨張弁43の下流側で過冷却熱交換器40の内側の冷却側配管41に供給される。   In the present invention, the liquid level detection pipes 31, 32, 33 of the liquid level detection means 30 are finally combined into one after the refrigerant is heated by the heating means 34, and are supercooled via the electromagnetic valve 35. It is supplied to the cooling side pipe 41 inside the supercooling heat exchanger 40 on the downstream side of the electronic expansion valve 43 for heat exchanger.

なお、上記の例とは逆に、内管41を被冷却側配管として、レシーバタンク14から取り出した液冷媒を流し、外管42を冷却側配管として、過冷却熱交換器用電子膨張弁43で減圧し、低圧ガス状態とした冷媒および液面検知手段30からの冷媒を流す構成としてもよい。   Contrary to the above example, the liquid refrigerant taken out from the receiver tank 14 is flowed with the inner pipe 41 as the cooled pipe, and the electronic expansion valve 43 for the supercooling heat exchanger is used with the outer pipe 42 as the cooling pipe. It is good also as a structure which flows the refrigerant | coolant from the pressure reduction and the low pressure gas state, and the liquid level detection means 30.

各室内機20a,20bは、室内送風ファン21aを有する室内熱交換器21を備え、各室内機20a,20bごとに減圧手段としての電子膨張弁23が設けられ、電子膨張弁23により流量調整が行われる。   Each indoor unit 20a, 20b includes an indoor heat exchanger 21 having an indoor blower fan 21a. Each indoor unit 20a, 20b is provided with an electronic expansion valve 23 as a decompression means, and the flow rate is adjusted by the electronic expansion valve 23. Done.

室内熱交換器21の一端は、電子膨張弁23,過冷却熱交換器40およびレシーバタンク14を介して室外熱交換器13に接続され、他端は四方弁12を介して圧縮機11もしくはアキュムレータ15のいずれか一方に選択的に接続される。   One end of the indoor heat exchanger 21 is connected to the outdoor heat exchanger 13 via the electronic expansion valve 23, the supercooling heat exchanger 40 and the receiver tank 14, and the other end is connected to the compressor 11 or accumulator via the four-way valve 12. 15 is selectively connected to any one of 15.

冷房運転時には、四方弁12が図1の実線のように切り替えられ、冷媒が圧縮機11→四方弁12→室外熱交換器13→レシーバタンク14→過冷却熱交換器40→電子膨張弁23→室内熱交換器21→四方弁12→アキュムレータ15→圧縮機11へと流れる。この場合、室外熱交換器13が凝縮器として作用し、室内熱交換器21が蒸発器となる。   At the time of cooling operation, the four-way valve 12 is switched as shown by the solid line in FIG. 1, and the refrigerant is compressor 11 → four-way valve 12 → outdoor heat exchanger 13 → receiver tank 14 → supercooling heat exchanger 40 → electronic expansion valve 23 → It flows from the indoor heat exchanger 21 → the four-way valve 12 → the accumulator 15 → the compressor 11. In this case, the outdoor heat exchanger 13 acts as a condenser, and the indoor heat exchanger 21 becomes an evaporator.

この冷房運転時において、室内熱交換器21の冷媒流入側に設けられている蒸発温度検出サーミスタ22aの検出温度をTHin,冷媒流出側に設けられているスーパーヒート(SH)検出サーミスタ22bの検出温度をTHoutとすると、室内機20側の図示しない制御部は、室内機20側の電子膨張弁23をつぎのように制御して、目標SH制御(能力最大制御)を行う。 During this cooling operation, the temperature detected by the evaporation temperature detection thermistor 22a provided at a refrigerant inlet side of the indoor heat exchanger 21 TH in, the detection of superheat (SH) detecting thermistor 22b provided on the refrigerant outlet side When the temperature is TH out , a control unit (not shown) on the indoor unit 20 side controls the electronic expansion valve 23 on the indoor unit 20 side as follows to perform target SH control (maximum capability control).

すなわち、実際のSHをSH(=THout−THin)とし、目標SHをSHとして、SH<SHの場合には、電子膨張弁23を絞るように制御し、SH>SHの場合には、電子膨張弁23を開くように制御する。一般的に能力を最大限発揮させるには、SH=1〜3℃に設定される。 That is, the actual SH is SH R (= TH out −TH in ), the target SH is SH T , and when SH T <SH R , the electronic expansion valve 23 is controlled so that SH T > SH In the case of R , the electronic expansion valve 23 is controlled to open. In general, SH T = 1 to 3 ° C. is set in order to maximize the ability.

また、室温制御との関係についていえば、室内機20の設定温度TSET(通常,18〜30℃)と、図示しない温度センサにより検出される室内温度TROOMとの差に応じて、目標SH(SH)を変える。すなわち、TROOM−TSETが小さい場合には、電子膨張弁23を絞って目標SHを大きくし、TROOM−TSETが大きい場合には、電子膨張弁23を開いて目標SHを小さくする。 Regarding the relationship with the room temperature control, the target SH is set according to the difference between the set temperature T SET (usually 18 to 30 ° C.) of the indoor unit 20 and the indoor temperature T ROOM detected by a temperature sensor (not shown). Change (SH T ). That is, when T ROOM -T SET is small, the electronic expansion valve 23 is throttled to increase the target SH T , and when T ROOM -T SET is large, the electronic expansion valve 23 is opened and the target SH T is decreased. To do.

なお、暖房運転時には、四方弁12が図1の鎖線のように切り替えられ、冷媒が圧縮機11→四方弁12→室内熱交換器21→電子膨張弁23→過冷却熱交換器40→レシーバタンク14→室外熱交換器13→四方弁12→アキュムレータ15→圧縮機11へと流れる。この場合、室内熱交換器21が凝縮器として作用し、室外熱交換器13が蒸発器となる。   During the heating operation, the four-way valve 12 is switched as indicated by a chain line in FIG. 1, and the refrigerant is compressor 11 → four-way valve 12 → indoor heat exchanger 21 → electronic expansion valve 23 → supercooling heat exchanger 40 → receiver tank. 14 → outdoor heat exchanger 13 → four-way valve 12 → accumulator 15 → compressor 11. In this case, the indoor heat exchanger 21 acts as a condenser, and the outdoor heat exchanger 13 becomes an evaporator.

ここで、過冷却熱交換器40の作用・効果について説明する。過冷却熱交換器40を用いるのは、冷房運転時,レシーバタンク14から取り出された冷媒(この時点では液飽和状態)を過冷却して液状態とすることにより、冷凍効果を大きくするためである。   Here, the operation and effect of the supercooling heat exchanger 40 will be described. The reason for using the supercooling heat exchanger 40 is to increase the refrigeration effect by supercooling the refrigerant (liquid saturated state at this time) taken out from the receiver tank 14 during cooling operation to bring it into a liquid state. is there.

図3のモリエル線図を参照して、過冷却熱交換器40を用いない場合の冷凍サイクルのモリエル線図は、A→B→C→Dとなる。A点はレシーバタンク14の出口で液飽和線上である。B点は室内熱交換器21の入口側,C点は圧縮機11の吸入側,D点は圧縮機11の吐出側である。この冷凍サイクルの冷凍効果はΔIbであり、室内機20での冷房能力Qbは、冷媒循環量をqmbとすると、Qb=qmb×ΔIb[kW]で表される。   With reference to the Mollier diagram of FIG. 3, the Mollier diagram of the refrigeration cycle when the supercooling heat exchanger 40 is not used is A → B → C → D. Point A is on the liquid saturation line at the outlet of the receiver tank 14. Point B is the inlet side of the indoor heat exchanger 21, point C is the suction side of the compressor 11, and point D is the discharge side of the compressor 11. The refrigeration effect of this refrigeration cycle is ΔIb, and the cooling capacity Qb in the indoor unit 20 is represented by Qb = qmb × ΔIb [kW], where the refrigerant circulation amount is qmb.

これに対して、過冷却熱交換器40を用いた場合の冷凍サイクルのモリエル線図は、E→F→C→Dとなる。すなわち、A点の冷媒を過冷却熱交換器40で過冷却することにより、E点に変化する。この冷凍サイクルの冷凍効果はΔIfであり、室内機20での冷房能力Qfは、冷媒循環量をqmfとすると、Qf=qmf×ΔIf[kW]で表される。   On the other hand, the Mollier diagram of the refrigeration cycle when the supercooling heat exchanger 40 is used is E → F → C → D. That is, when the refrigerant at point A is supercooled by the supercooling heat exchanger 40, the refrigerant changes to point E. The refrigeration effect of this refrigeration cycle is ΔIf, and the cooling capacity Qf in the indoor unit 20 is represented by Qf = qmf × ΔIf [kW] where the refrigerant circulation amount is qmf.

この場合、冷媒の一部を過冷却熱交換器40でアキュムレータ15側にバイパスしているため、qmb>qmfとなるが、ΔIb<ΔIfであるため、過冷却熱交換器40を用いた冷凍サイクルの方が能力,効率ともに高くなる。換言すれば、通常、Qb<Qfとなるように過冷却熱交換器40を設計している。   In this case, since a part of the refrigerant is bypassed to the accumulator 15 side by the supercooling heat exchanger 40, qmb> qmf is satisfied. However, since ΔIb <ΔIf, the refrigeration cycle using the supercooling heat exchanger 40 Has higher ability and efficiency. In other words, normally, the supercooling heat exchanger 40 is designed so that Qb <Qf.

なお、上記2つの冷凍サイクルでC点を共通としているが、これは室内機20側の電子膨張弁23の制御によるもので、室内機20側では図3に示すSH(スーパーヒート,過熱度)が上記したように目標値(例えば3℃)に追従するように制御している。よって、モリエル線図上では、過冷却が増えた分だけ、冷凍効果が高められる。   The point C is common to the above two refrigeration cycles, but this is due to the control of the electronic expansion valve 23 on the indoor unit 20 side. On the indoor unit 20 side, SH (superheat, degree of superheat) shown in FIG. Is controlled to follow a target value (for example, 3 ° C.) as described above. Therefore, on the Mollier diagram, the refrigeration effect is enhanced by the amount of increased supercooling.

過冷却熱交換器40を用いるもう一つの理由は、室外機10と室内機20との間の配管が長い場合、液配管での圧力損失が大きくなるため、図3のモリエル線図に示すように、室外機10の出口での冷媒状態がA点のとき、室内機20側の電子膨張弁23の手前側で冷媒状態はG点となる。   Another reason for using the supercooling heat exchanger 40 is that when the piping between the outdoor unit 10 and the indoor unit 20 is long, the pressure loss in the liquid piping increases, so that the Mollier diagram of FIG. In addition, when the refrigerant state at the outlet of the outdoor unit 10 is point A, the refrigerant state is point G on the front side of the electronic expansion valve 23 on the indoor unit 20 side.

過冷却熱交換器40を用いていない冷凍サイクルでは、圧力損失があると液冷媒は容易に2相冷媒となってしまう。室内機20の電子膨張弁23の手前側で冷媒が2相状態となると、電子膨張弁23から冷媒音が発生する。これは空気調和機としては大きな問題である。   In a refrigeration cycle that does not use the supercooling heat exchanger 40, the liquid refrigerant easily becomes a two-phase refrigerant if there is a pressure loss. When the refrigerant enters a two-phase state on the front side of the electronic expansion valve 23 of the indoor unit 20, refrigerant sound is generated from the electronic expansion valve 23. This is a big problem as an air conditioner.

これに対して、過冷却熱交換器40を用いた冷凍サイクルでは、室外機10の出口での冷媒が十分に過冷却されているため、仮に配管系に圧力損失があっても、室内機20の電子膨張弁23の手前において冷媒を液状態に保つことができる。図3のモリエル線図で説明すると、E点の冷媒が配管での圧力損失によりH点に変化しても、冷媒はまだ液領域であるため、電子膨張弁23から冷媒音が発生することはない。   On the other hand, in the refrigeration cycle using the supercooling heat exchanger 40, since the refrigerant at the outlet of the outdoor unit 10 is sufficiently subcooled, even if there is a pressure loss in the piping system, the indoor unit 20 The refrigerant can be kept in a liquid state before the electronic expansion valve 23. Referring to the Mollier diagram of FIG. 3, even if the refrigerant at point E changes to point H due to pressure loss in the piping, the refrigerant is still in the liquid region, so that the refrigerant noise is generated from the electronic expansion valve 23. Absent.

本発明では、上記したように、液面検知手段30で使用した冷媒を過冷却熱交換器40の冷却側配管41に供給する。この液面検知に使用した冷媒は、先にも説明したように、Q=qm×(Ic−If)[kW]の蒸発潜熱をもっているため、被冷却側配管42内を流れる液冷媒の過冷却に有効に利用することができる。   In the present invention, as described above, the refrigerant used in the liquid level detection means 30 is supplied to the cooling side pipe 41 of the supercooling heat exchanger 40. As described above, since the refrigerant used for the liquid level detection has latent heat of vaporization of Q = qm × (Ic−If) [kW], the supercooling of the liquid refrigerant flowing in the cooled pipe 42 is performed. Can be used effectively.

過冷却熱交換器用電子膨張弁43は、図示しない室外機制御部により、被冷却側配管42の冷媒流入側温度センサ44での検出温度TLinと、冷媒流出側温度センサ45での検出温度TLoutとの温度差(TLin−TLout:これが過冷却)が目標値に追従するように制御される。 The electronic expansion valve 43 for the supercooling heat exchanger is detected by the outdoor unit control unit (not shown) by the detected temperature TL in at the refrigerant inflow side temperature sensor 44 of the cooled side pipe 42 and the detected temperature TL at the refrigerant outflow side temperature sensor 45. Control is performed so that the temperature difference from out (TL in −TL out : this is supercooling) follows the target value.

これと並行して、過冷却熱交換器用電子膨張弁43は、冷却側配管41の冷媒流入側温度センサ46での検出温度TGinと、冷媒流出側温度センサ47での検出温度TGoutとの温度差(TGin−TGout:過冷却熱交換器40でのスーパーヒート)が一定以上になるように制御される。このスーパーヒート制御は、冷凍サイクルの吸入側に湿った冷媒(蒸発潜熱を有する冷媒)を返さない,すなわち能力ロスを生じさせないために行われる。 In parallel with this, the electronic expansion valve 43 for the supercooling heat exchanger has a detection temperature TG in at the refrigerant inflow side temperature sensor 46 of the cooling side pipe 41 and a detection temperature TG out at the refrigerant outflow side temperature sensor 47. The temperature difference (TG in −TG out : superheat in the supercooling heat exchanger 40) is controlled to be a certain level or more. This super heat control is performed in order not to return the wet refrigerant (refrigerant having latent heat of evaporation) to the suction side of the refrigeration cycle, that is, to prevent a loss of capacity.

上記したように、本発明では、液面検知に用いた蒸発潜熱を有する冷媒を過冷却熱交換器40に流すが、それでも目標の過冷却に達しない場合は、過冷却熱交換器用電子膨張弁43を上記のように制御すればよい。なお、暖房運転時には、室外機10が蒸発器として機能するため、過冷却熱交換器40も蒸発器の一つとして用いられる。   As described above, in the present invention, the refrigerant having the latent heat of vaporization used for liquid level detection is caused to flow to the supercooling heat exchanger 40. If the target supercooling is still not reached, the electronic expansion valve for the supercooling heat exchanger is used. 43 may be controlled as described above. In addition, since the outdoor unit 10 functions as an evaporator during heating operation, the supercooling heat exchanger 40 is also used as one of the evaporators.

なお、液面検知手段30の電磁弁35は、液面検知時にのみ開としてもよいが、本発明によれば、液面検知に用いた蒸発潜熱を有する冷媒を過冷却熱交換器40用の冷媒として有効に使用することができるため、能力的にも、また、制御の応答性を改善するうえでも電磁弁35を常時開放とすることが好ましい。   The electromagnetic valve 35 of the liquid level detection means 30 may be opened only at the time of liquid level detection. However, according to the present invention, the refrigerant having latent heat of vaporization used for liquid level detection is used for the supercooling heat exchanger 40. Since it can be used effectively as a refrigerant, it is preferable to always open the electromagnetic valve 35 in terms of performance and in order to improve control responsiveness.

本発明の冷凍装置を空気調和機に適用した例の全体的な構成を示す模式図。The schematic diagram which shows the whole structure of the example which applied the freezing apparatus of this invention to the air conditioner. 本発明の要部であるレシーバタンクの液面検知手段と過冷却熱交換器とを拡大して示す模式図。The schematic diagram which expands and shows the liquid level detection means and supercooling heat exchanger of the receiver tank which are the principal parts of this invention. 本発明の作用を説明するためのモリエル線図。The Mollier diagram for demonstrating the effect | action of this invention. 先願発明の構成を示す模式図。The schematic diagram which shows the structure of prior invention. 上記先願発明が備える液面検知手段を示す模式図。The schematic diagram which shows the liquid level detection means with which the said prior application invention is equipped. 上記先願発明の液面検知手段の作用を説明するためのモリエル線図。The Mollier diagram for demonstrating the effect | action of the liquid level detection means of the said prior application invention. 従来例(特許文献1)での冷凍サイクルのモリエル線図。The Mollier diagram of the refrigerating cycle in a prior art example (patent document 1).

符号の説明Explanation of symbols

10 室外機
11 圧縮機
12 四方弁
13 室外熱交換器
14 レシーバタンク
15 アキュムレータ
20 室内機
21 室内熱交換器
23 電子膨張弁
30 冷媒液面検知手段
31〜33 液面検知用配管
31a〜33a キャピラリチューブ(減圧手段)
31b〜33b 温度センサ
34 加熱手段
35 電磁弁
40 過冷却熱交換器
41 冷却側配管
42 被冷却側配管
43 過冷却熱交換器用電子膨張弁
DESCRIPTION OF SYMBOLS 10 Outdoor unit 11 Compressor 12 Four-way valve 13 Outdoor heat exchanger 14 Receiver tank 15 Accumulator 20 Indoor unit 21 Indoor heat exchanger 23 Electronic expansion valve 30 Refrigerant liquid level detection means 31-33 Liquid level detection piping 31a-33a Capillary tube (Pressure reduction means)
31b to 33b Temperature sensor 34 Heating means 35 Electromagnetic valve 40 Supercooling heat exchanger 41 Cooling side piping 42 Cooled side piping 43 Electronic expansion valve for supercooling heat exchanger

Claims (4)

圧縮機,凝縮器および蒸発器を含む冷凍サイクルを備え、上記凝縮器と上記蒸発器との間にレシーバタンクと過冷却熱交換器とが接続されているとともに、上記レシーバタンクに液面検知手段が設けられている冷凍装置において、
上記液面検知手段は、一端が上記レシーバタンクの所定高さ部位に接続される少なくとも1本の液面検知用配管と、上記液面検知用配管内を流れる冷媒を減圧する減圧手段と、上記液面検知用配管内の冷媒を加熱する加熱手段と、上記加熱手段にて加熱された冷媒の温度を検出する温度検出手段とを有し、
上記液面検知用配管の他端が、上記過冷却熱交換器の冷却側配管に設けられている過冷却熱交換器用電子膨張弁の下流側で上記冷却側配管に接続され、上記液面検知に用いた冷媒が上記過冷却熱交換器に流されることを特徴とする冷凍装置。
A refrigeration cycle including a compressor, a condenser and an evaporator is provided, a receiver tank and a supercooling heat exchanger are connected between the condenser and the evaporator, and a liquid level detecting means is provided in the receiver tank. In the refrigeration apparatus provided with
The liquid level detection means includes at least one liquid level detection pipe, one end of which is connected to a predetermined height portion of the receiver tank, a pressure reduction means for depressurizing the refrigerant flowing in the liquid level detection pipe, Heating means for heating the refrigerant in the liquid level detection pipe, and temperature detection means for detecting the temperature of the refrigerant heated by the heating means,
The other end of the liquid level detection pipe is connected to the cooling side pipe on the downstream side of the electronic expansion valve for the supercooling heat exchanger provided in the cooling side pipe of the supercooling heat exchanger , and the liquid level detection A refrigeration apparatus wherein the refrigerant used in the above is passed through the supercooling heat exchanger.
上記液面検知に用いた冷媒の蒸発潜熱の利用だけでは目標とする過冷却が得られない場合、追加的に上記過冷却熱交換器用電子膨張弁を開く方向に制御することを特徴とする請求項に記載の冷凍装置。 When the target supercooling cannot be obtained only by using the latent heat of vaporization of the refrigerant used for the liquid level detection, the electronic expansion valve for the supercooling heat exchanger is additionally controlled to open. Item 2. The refrigeration apparatus according to item 1 . 上記液面検知手段は、上記温度検出手段から得られる冷媒温度に基づいて、上記液面検知用配管の一端が接続されている位置での上記レシーバタンク内の冷媒の相状態を検知することを特徴とする請求項1または2に記載の冷凍装置。 The liquid level detection means detects the phase state of the refrigerant in the receiver tank at a position where one end of the liquid level detection pipe is connected based on the refrigerant temperature obtained from the temperature detection means. The refrigeration apparatus according to claim 1 or 2, characterized in that 上記加熱手段として、上記圧縮機の冷媒吐出管から発熱される熱を利用することを特徴とする請求項1ないしのいずれか1項に記載の冷凍装置。 The refrigeration apparatus according to any one of claims 1 to 3 , wherein heat generated from a refrigerant discharge pipe of the compressor is used as the heating means.
JP2005331047A 2005-11-16 2005-11-16 Refrigeration equipment Expired - Fee Related JP4462435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331047A JP4462435B2 (en) 2005-11-16 2005-11-16 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331047A JP4462435B2 (en) 2005-11-16 2005-11-16 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2007139244A JP2007139244A (en) 2007-06-07
JP4462435B2 true JP4462435B2 (en) 2010-05-12

Family

ID=38202333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331047A Expired - Fee Related JP4462435B2 (en) 2005-11-16 2005-11-16 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4462435B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582773B2 (en) * 2009-12-10 2014-09-03 三菱重工業株式会社 Air conditioner and refrigerant amount detection method for air conditioner
JP5645617B2 (en) * 2010-11-18 2014-12-24 三菱重工業株式会社 Heating medium heating device
JP5213990B2 (en) * 2011-04-27 2013-06-19 三菱電機株式会社 Refrigeration air conditioner
JP5839084B2 (en) 2013-10-07 2016-01-06 ダイキン工業株式会社 Refrigeration equipment
WO2019008660A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Air conditioning system
WO2020217423A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Heat-source-side unit and refrigeration cycle apparatus comprising same
WO2020217424A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Heat-source unit and refrigeration cycle device provided with same
JP7278376B2 (en) * 2019-06-20 2023-05-19 三菱電機株式会社 Outdoor unit, refrigeration cycle device and refrigerator
JP7393536B2 (en) * 2020-05-14 2023-12-06 三菱電機株式会社 Refrigeration equipment
CN114413404B (en) * 2021-12-20 2023-05-26 青岛海尔空调电子有限公司 Method and device for reducing noise of air-conditioning refrigerant, air conditioner, and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286333A (en) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp Freezing apparatus
JP2005282885A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Air conditioner
JP2005308393A (en) * 2005-07-25 2005-11-04 Daikin Ind Ltd Refrigeration apparatus and refrigerant amount detection method for refrigeration apparatus

Also Published As

Publication number Publication date
JP2007139244A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP6351848B2 (en) Refrigeration cycle equipment
CN109154463B (en) Air conditioning apparatus
US8020393B2 (en) Heat pump type hot water supply outdoor apparatus
EP1826513B1 (en) Refrigerating air conditioner
JP4069947B2 (en) Refrigeration equipment
CN102032698B (en) Refrigeration cycle apparatus and hot water heater
JP6223469B2 (en) Air conditioner
CN100504239C (en) Freezing device and air conditioner using same
CN102419024A (en) Refrigeration cycle device and hot water heating device
WO2020208776A1 (en) Air conditioning apparatus
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
JP5274174B2 (en) Air conditioner
JPWO2019082372A1 (en) Refrigeration cycle equipment
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
WO2012042692A1 (en) Refrigeration cycle device
CN107923680A (en) Refrigerating circulatory device
JP4462435B2 (en) Refrigeration equipment
JP6758506B2 (en) Air conditioner
US8205463B2 (en) Air conditioner and method of controlling the same
JP2007255866A (en) Air conditioner
US12215906B2 (en) Heat pump system and method for controlling the same
JP4644923B2 (en) Refrigerant circuit device
JP4462436B2 (en) Refrigeration equipment
CN114270108B (en) Heat source unit and refrigerating device
US20200124328A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees