JPS63131027A - 超音波気体流量計 - Google Patents
超音波気体流量計Info
- Publication number
- JPS63131027A JPS63131027A JP61277308A JP27730886A JPS63131027A JP S63131027 A JPS63131027 A JP S63131027A JP 61277308 A JP61277308 A JP 61277308A JP 27730886 A JP27730886 A JP 27730886A JP S63131027 A JPS63131027 A JP S63131027A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- gas
- temp
- temperature
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 230000001902 propagating effect Effects 0.000 claims description 4
- 238000012935 Averaging Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/221—General power management systems
Landscapes
- Measuring Volume Flow (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
a、産業上の利用分野
本発明は、超音波を利用して管内を流れる気体の流量を
測定し、特に基準温度の状態に変換して測定するための
超音波気体流量計に関する。
測定し、特に基準温度の状態に変換して測定するための
超音波気体流量計に関する。
b、従来の技術
管内を流れる気体中に超音波を伝搬させて、その伝搬速
度の変化を利用して管内気体の流速、流量を測定する装
置は従来から知られている。例えば、流管の周壁に互い
に斜めに対向して、一対の超音波送受波用のプローブを
設置し、このプローブで流れに対して順方向および逆方
向に交互に超音波の送受信を行ない、それぞれの流管内
をよぎって伝搬する超音波の順、逆両方向における伝搬
時間(若しくはその逆数)の差を求めることにより管内
流体の流速を測定するものがある。
度の変化を利用して管内気体の流速、流量を測定する装
置は従来から知られている。例えば、流管の周壁に互い
に斜めに対向して、一対の超音波送受波用のプローブを
設置し、このプローブで流れに対して順方向および逆方
向に交互に超音波の送受信を行ない、それぞれの流管内
をよぎって伝搬する超音波の順、逆両方向における伝搬
時間(若しくはその逆数)の差を求めることにより管内
流体の流速を測定するものがある。
従来、このような流速計にあっては、測定値が測定流体
の温度に影響されないよう種々の工夫(例えば、それぞ
れの伝搬時間の逆数の差をとることにより、流体中の音
速の影響を除去している)がなされているが、それはあ
くまでも測定条件下で流速、流量を正確に求めようとす
るものである。
の温度に影響されないよう種々の工夫(例えば、それぞ
れの伝搬時間の逆数の差をとることにより、流体中の音
速の影響を除去している)がなされているが、それはあ
くまでも測定条件下で流速、流量を正確に求めようとす
るものである。
一方気体流量は同一流速であっても温度、圧力により変
化するので、一般にはここで得られた流量を標準温度、
標準圧力の状態に換算して出力または表示するのが通例
である。このため従来の超音波気体流量計にあっては、
流速計のほかに温度発信器および圧力発信器を設け、こ
れらの温度、圧力の出力信号により流速計の出力信号の
正規化演算を行なって、前記標準状態における気体の流
量を求めていた。
化するので、一般にはここで得られた流量を標準温度、
標準圧力の状態に換算して出力または表示するのが通例
である。このため従来の超音波気体流量計にあっては、
流速計のほかに温度発信器および圧力発信器を設け、こ
れらの温度、圧力の出力信号により流速計の出力信号の
正規化演算を行なって、前記標準状態における気体の流
量を求めていた。
C1発明が解決しようとする問題点
しかしながら、前記従来の超音波気体流量計においては
、実際の前記発信器の設置にあたり、圧力は測定点の相
違による誤差は比較的少なく、かつ超音波流速計を設置
する流管においては、ある程度の直管長が確保されてい
ることを考慮するとさほど問題とならないが、他方の温
度は流速計プローブと温度発信器の検出端は同一場所に
設置することは困難で、若干の隔たりがあることは免れ
ず、正確な正規化演算は困難であるという問題点があっ
た。
、実際の前記発信器の設置にあたり、圧力は測定点の相
違による誤差は比較的少なく、かつ超音波流速計を設置
する流管においては、ある程度の直管長が確保されてい
ることを考慮するとさほど問題とならないが、他方の温
度は流速計プローブと温度発信器の検出端は同一場所に
設置することは困難で、若干の隔たりがあることは免れ
ず、正確な正規化演算は困難であるという問題点があっ
た。
本発明はかかる点に鑑みなされたもので、その目的は前
記問題点を解消し、気体の流量測定に際し、前記正規化
演算のうちの温度補正のため、流速測定時に得られる超
音波の伝搬時間からその時の温度を導出し、これを基に
自動的に標準温度における流量を演算して、精度よく測
定できる超音波気体流量計を提供することにある。
記問題点を解消し、気体の流量測定に際し、前記正規化
演算のうちの温度補正のため、流速測定時に得られる超
音波の伝搬時間からその時の温度を導出し、これを基に
自動的に標準温度における流量を演算して、精度よく測
定できる超音波気体流量計を提供することにある。
d、 問題点を解決するための手段
前記目的を達成するための本発明の構成は、気体の流通
路の壁面に、該流通路の長軸方向に対して斜め方向に、
または斜め方向から超音波を対向して送受する一対の超
音波送受波器を配設し、気体の流れに順方向および逆方
向に超音波を伝搬させて、流通路内を伝搬する超音波の
順、送画方向におけるそれぞれの伝搬時間若しくはそれ
ぞれの逆数の差に基づいて気体の流量を測定する流量計
において、超音波の前記順、逆方向におけるそれぞれの
伝搬時間若しくはそれぞれの逆数の和と測定状態におけ
る前駆気体の温度との関係を記憶させた記憶手段と、前
記それぞれの伝搬時間若しくはそれぞれの逆数の和によ
り前記記憶手段から出力される前記気体の温度とあらか
じめ定めた基準温度との比に基づく係数を前記により測
定した流量測定値に演算させて、基準温度における流量
測定値に変換する温度変換演算手段とを備えたことを特
徴とする。
路の壁面に、該流通路の長軸方向に対して斜め方向に、
または斜め方向から超音波を対向して送受する一対の超
音波送受波器を配設し、気体の流れに順方向および逆方
向に超音波を伝搬させて、流通路内を伝搬する超音波の
順、送画方向におけるそれぞれの伝搬時間若しくはそれ
ぞれの逆数の差に基づいて気体の流量を測定する流量計
において、超音波の前記順、逆方向におけるそれぞれの
伝搬時間若しくはそれぞれの逆数の和と測定状態におけ
る前駆気体の温度との関係を記憶させた記憶手段と、前
記それぞれの伝搬時間若しくはそれぞれの逆数の和によ
り前記記憶手段から出力される前記気体の温度とあらか
じめ定めた基準温度との比に基づく係数を前記により測
定した流量測定値に演算させて、基準温度における流量
測定値に変換する温度変換演算手段とを備えたことを特
徴とする。
e、 作用
はじめに本発明の作用原理を説明する。第1図に示すよ
うに、流管1の内径をd、送受波器21.22.の間隔
をし、送受波器21 、22の軸線と管軸とのなす角を
θ、気体の音速を02その流速を■とすると、超音波を
流れに順方向に伝搬させたときの伝搬時間t1は、 流れに逆方向に伝搬させたときの伝搬時間t2は、1、
、1.の逆数の差から流速Vは 2cos 6 t、 t。
うに、流管1の内径をd、送受波器21.22.の間隔
をし、送受波器21 、22の軸線と管軸とのなす角を
θ、気体の音速を02その流速を■とすると、超音波を
流れに順方向に伝搬させたときの伝搬時間t1は、 流れに逆方向に伝搬させたときの伝搬時間t2は、1、
、1.の逆数の差から流速Vは 2cos 6 t、 t。
従って、流量qは
この測定時の温度、圧力をT、P、標準状態の温度。
圧力をT□Pいとすると、標準状態における流量qnは
となる。た\’LK。/には圧縮係数比である。一方、
気体の音速Cは で求められる。Cは一般に温度Tの関数であるから、C
= f (T)で表わされ、T=f−’(C)を求めれ
ば、Cより温度Tを求めることができる。従って、より
圧力Pを与えることにより、標準状態における流量q、
1を求めることができる。
気体の音速Cは で求められる。Cは一般に温度Tの関数であるから、C
= f (T)で表わされ、T=f−’(C)を求めれ
ば、Cより温度Tを求めることができる。従って、より
圧力Pを与えることにより、標準状態における流量q、
1を求めることができる。
ちなみに空気について考えると(Tは’に、 Cはm/
s)、t+ tz 上式第3項は(1/l+ +1/lz)の測定値より計
算により求められるが、演算のため計測時間は長くなる
。
s)、t+ tz 上式第3項は(1/l+ +1/lz)の測定値より計
算により求められるが、演算のため計測時間は長くなる
。
通常プラントにおける温度範囲は限られたものであるか
ら、(1/l+ + 1/lz)に対するTの関係(表
)をあらかじめROM上に記憶させ、(1/ t+ +
1/ tz)の値からTを求めるようにすることがで
きる。
ら、(1/l+ + 1/lz)に対するTの関係(表
)をあらかじめROM上に記憶させ、(1/ t+ +
1/ tz)の値からTを求めるようにすることがで
きる。
f、実施例
以下、図面に基づいて本発明の好適な実施例を例示的に
詳しく説明する。
詳しく説明する。
第1図は本発明の一実施例を示す超音波気体流量計のブ
ロック図、第2図は同流量計の各部における動作を説明
するタイムチャートである。両図において、気体が流管
1内を流れる方向に対し、超音波を順および逆方向に送
受波するための送受信ユニット3の順逆切替回路(SW
)31は、タイミングユニット5゛ のクロックパルス
発生器(CPG、)51を基に動作するタイマ(TM)
52の出力F(第2図イ)により動作し、超音波の伝搬
方向を切替える。送信波T(第2図口)はタイマ(TM
)52の指令により、送信回路(TX)32より発生さ
れ順逆切替回路(SW)31を経て、送波器21(また
は22)に与えられる。ここで超音波に変換されて、気
体中に超音波が送出される。受波器22(または21)
により受波された超音波信号をここで電気信号に変換し
、順逆切替回路(SW)31を経て受信回路(RX)3
3に入力する。受信回路(RX)33はこの電気信号を
所定のレベルまで増幅し、比較回路(COMP)34へ
送る (第2図ハ)。比較回路(COMP)34では、
この受信波を送受信ユニット3に内蔵される基準電圧V
tと比較し、VTより大きな受信波が到達すると出力パ
ルスを計数ユニット4のフリップフロップ回路(FF)
41に送出する。
ロック図、第2図は同流量計の各部における動作を説明
するタイムチャートである。両図において、気体が流管
1内を流れる方向に対し、超音波を順および逆方向に送
受波するための送受信ユニット3の順逆切替回路(SW
)31は、タイミングユニット5゛ のクロックパルス
発生器(CPG、)51を基に動作するタイマ(TM)
52の出力F(第2図イ)により動作し、超音波の伝搬
方向を切替える。送信波T(第2図口)はタイマ(TM
)52の指令により、送信回路(TX)32より発生さ
れ順逆切替回路(SW)31を経て、送波器21(また
は22)に与えられる。ここで超音波に変換されて、気
体中に超音波が送出される。受波器22(または21)
により受波された超音波信号をここで電気信号に変換し
、順逆切替回路(SW)31を経て受信回路(RX)3
3に入力する。受信回路(RX)33はこの電気信号を
所定のレベルまで増幅し、比較回路(COMP)34へ
送る (第2図ハ)。比較回路(COMP)34では、
この受信波を送受信ユニット3に内蔵される基準電圧V
tと比較し、VTより大きな受信波が到達すると出力パ
ルスを計数ユニット4のフリップフロップ回路(FF)
41に送出する。
計数ユニット4のこのフリップフロップ回路(FF)4
1は、タイマ(TM)52からの送信指令信号によりセ
ットされ、比較回路(COMP) 34の出力パルスに
よりリセットされる。フリップフロップ回路(FF)4
1の出力は、超音波の伝搬時間tuまたはt4に相当す
る時間だけI(レベルに保持される(第2図二)。カウ
ンタ(CNT)43はフリップフロップ回路(FF)4
1の出力がHレベルにある間、ANDゲート42を経て
クロックパルス発生器(CPGI)51からのクロック
パルスを計数する。このように計数ユニット4のカウン
タ(CNT)43は、順逆フラグ信号Fに従って時間1
..1.を計放し、計数を終了すると直ちにその計数デ
ータを平均化ユニット6へ送る。
1は、タイマ(TM)52からの送信指令信号によりセ
ットされ、比較回路(COMP) 34の出力パルスに
よりリセットされる。フリップフロップ回路(FF)4
1の出力は、超音波の伝搬時間tuまたはt4に相当す
る時間だけI(レベルに保持される(第2図二)。カウ
ンタ(CNT)43はフリップフロップ回路(FF)4
1の出力がHレベルにある間、ANDゲート42を経て
クロックパルス発生器(CPGI)51からのクロック
パルスを計数する。このように計数ユニット4のカウン
タ(CNT)43は、順逆フラグ信号Fに従って時間1
..1.を計放し、計数を終了すると直ちにその計数デ
ータを平均化ユニット6へ送る。
平均化ユニット6はクロックパルス発生器(CPG2)
61、インター−y ニー ス(IF) 62.平均化
回路(AVR)63゜メモリ(M、)64から成り、前
記カウンタ(CNT)43からインターフェース(IP
)62を経て与えられる時間tl、tzの計数データの
それぞれの任意個数の移動平均値を算出する。すなわち
、カウンタ(CNT)43から新たな計数データが与え
られると、メモリ(Ml)64に記憶されているデータ
のうち、最も古いデータと置き替えて平均値を算出する
(第2図ホ、へ)。平均値は時間tl、tZそれぞれ独
立に処理され、メモリ(Ml)64に記憶される。この
平均化処理が終了すると、この平均値に基づいて次の流
量演算ユニット7で、流量演算処理が行なわれる。すな
わち、前記移動平均処理と流量演算処理は第2図トに示
されるように、新たな計数データが得られると、直ちに
平均化ユニット6で移動平均処理を行ない、この処理が
終了すると流量演算ユニット7において流量演算処理に
入り、次の新たな計数データが与えられるまでこの処理
を実行する。
61、インター−y ニー ス(IF) 62.平均化
回路(AVR)63゜メモリ(M、)64から成り、前
記カウンタ(CNT)43からインターフェース(IP
)62を経て与えられる時間tl、tzの計数データの
それぞれの任意個数の移動平均値を算出する。すなわち
、カウンタ(CNT)43から新たな計数データが与え
られると、メモリ(Ml)64に記憶されているデータ
のうち、最も古いデータと置き替えて平均値を算出する
(第2図ホ、へ)。平均値は時間tl、tZそれぞれ独
立に処理され、メモリ(Ml)64に記憶される。この
平均化処理が終了すると、この平均値に基づいて次の流
量演算ユニット7で、流量演算処理が行なわれる。すな
わち、前記移動平均処理と流量演算処理は第2図トに示
されるように、新たな計数データが得られると、直ちに
平均化ユニット6で移動平均処理を行ない、この処理が
終了すると流量演算ユニット7において流量演算処理に
入り、次の新たな計数データが与えられるまでこの処理
を実行する。
流量演算ユニット7は流量演算回路(FLW)71とメ
モリ(Mり72とから成り、流量演算回路(FLW)7
1は、前記(4)式により流量を計算する回路であり、
メモリ0+z)?2は、前記d、cos θ、およびL
などの定数および係数を記憶する。
モリ(Mり72とから成り、流量演算回路(FLW)7
1は、前記(4)式により流量を計算する回路であり、
メモリ0+z)?2は、前記d、cos θ、およびL
などの定数および係数を記憶する。
温度・圧力変換ユニット8は、流量演算ユニット7で得
られた流量を、あらかじめ定められた標準状態における
値に変換するための変換ユニットで、前記(7)式によ
る温度および圧力の変換演算が実行される。同変換ユニ
ット8は、温度変換回路(TMP)81と、前記(1/
ll + 1/12)と温度Tとの関係を数表として記
憶するメモリ(Ml)83と、圧力変換回路(PRS)
83と、圧力変換係数を設定するメモリ(M、)84と
、切替スイッチ85とから成る。切替スイッチ85は、
圧力変換動作を流量計本体内の設定された係数で自動的
に行なうか、または外部の圧力発信器(PT) 10か
らの出力により変換するかを選択するスイッチである。
られた流量を、あらかじめ定められた標準状態における
値に変換するための変換ユニットで、前記(7)式によ
る温度および圧力の変換演算が実行される。同変換ユニ
ット8は、温度変換回路(TMP)81と、前記(1/
ll + 1/12)と温度Tとの関係を数表として記
憶するメモリ(Ml)83と、圧力変換回路(PRS)
83と、圧力変換係数を設定するメモリ(M、)84と
、切替スイッチ85とから成る。切替スイッチ85は、
圧力変換動作を流量計本体内の設定された係数で自動的
に行なうか、または外部の圧力発信器(PT) 10か
らの出力により変換するかを選択するスイッチである。
圧力変動が比較的少ない測定対象に対しては、切替スイ
ッチ85は内部(メモリM4)側に選ばれ、あらかじめ
想定された圧力値(一定値)をもって圧力変換が行なわ
れる。9は出力される流量測定値を表示、積算などする
ための表示器(DIS)である。圧力発信器(PT)1
0は、前述のように測定対象の圧力を検出するための発
信器であり、この出力を利用すれば、測定状態時の圧力
により圧力変換が行なわれる。
ッチ85は内部(メモリM4)側に選ばれ、あらかじめ
想定された圧力値(一定値)をもって圧力変換が行なわ
れる。9は出力される流量測定値を表示、積算などする
ための表示器(DIS)である。圧力発信器(PT)1
0は、前述のように測定対象の圧力を検出するための発
信器であり、この出力を利用すれば、測定状態時の圧力
により圧力変換が行なわれる。
以上の流量演算および温度、圧力変換演算は第2図トの
期間のただ1回で終了するものではなく、第2図チに示
すように複数期間にわたって実行され、すなわち、流量
測定値Q7は、同図ホおよびへの(Σt、)、i。
期間のただ1回で終了するものではなく、第2図チに示
すように複数期間にわたって実行され、すなわち、流量
測定値Q7は、同図ホおよびへの(Σt、)、i。
(Σta) n−=より演算され、その流量出力が得ら
れる都度、時間t+、tgの新たな移動平均値を基に、
流量演算を実行する。
れる都度、時間t+、tgの新たな移動平均値を基に、
流量演算を実行する。
以上の説明は、超音波の順、逆方向における伝搬時間の
逆数x/l+、 t/lzを基に流速、音速を算出する
例を示したが、伝搬時間LI+5の差および和、あるい
はt+、tzを、それぞれに比例した周波数に変換し、
それらの差および和から流速、音速を算出することも可
能である。また、前記の演算は、マイクロコンピュータ
で実行することも可能である。
逆数x/l+、 t/lzを基に流速、音速を算出する
例を示したが、伝搬時間LI+5の差および和、あるい
はt+、tzを、それぞれに比例した周波数に変換し、
それらの差および和から流速、音速を算出することも可
能である。また、前記の演算は、マイクロコンピュータ
で実行することも可能である。
なお、本発明の技術は前記実施例における技術に限定さ
れるものではなく、同様な機能を果す他の態様の手段に
よってもよく、また本発明の技術は前記構成の範囲内に
おいて種々の変更、付加が可能である。
れるものではなく、同様な機能を果す他の態様の手段に
よってもよく、また本発明の技術は前記構成の範囲内に
おいて種々の変更、付加が可能である。
g1発明の効果
以上の説明から明らかなように本発明によれば、気体の
流量測定に際し、気体の流れに対し順、逆方向に超音波
を伝搬させて、それぞれの伝搬時間若しくはそれぞれの
逆数の和を求め、これとあらかじめ定められた気体温度
の関係から測定状態における温度を導出して、これを基
に標準温度における流量を演算して求めるものであるか
ら、別個に温度発信器を設ける必要がなく、かつ、流速
測定位置における温度を推定することができるので、精
度よく気体の流量を測定することができる。
流量測定に際し、気体の流れに対し順、逆方向に超音波
を伝搬させて、それぞれの伝搬時間若しくはそれぞれの
逆数の和を求め、これとあらかじめ定められた気体温度
の関係から測定状態における温度を導出して、これを基
に標準温度における流量を演算して求めるものであるか
ら、別個に温度発信器を設ける必要がなく、かつ、流速
測定位置における温度を推定することができるので、精
度よく気体の流量を測定することができる。
第1図は本発明の一実施例を示す超音波気体流量計のブ
ロック図、第2図は同流量計の各部における動作を説明
するタイムチャートである。 1・・・流管、 3・・・送受信ユニット
、4・・・計数ユニット、 5・・・タイミングユ
ニット、6・・・平均化ユニット、 7・・・流量演算
ユニット、8・・・温度・圧力変換ユニット、 10・・・圧力発信器(PT)、 2L22・・・送受
波器、71・・・流量演算回路(FLW)、 72・・・メモリ(M2)、 81・・・温度変換
回路(TMP)、82・・・メモリ(Mff)、
83・・・圧力変換回路(PRS)、84・・・メモリ
(M4)、 85・・・切替スイッチ。
ロック図、第2図は同流量計の各部における動作を説明
するタイムチャートである。 1・・・流管、 3・・・送受信ユニット
、4・・・計数ユニット、 5・・・タイミングユ
ニット、6・・・平均化ユニット、 7・・・流量演算
ユニット、8・・・温度・圧力変換ユニット、 10・・・圧力発信器(PT)、 2L22・・・送受
波器、71・・・流量演算回路(FLW)、 72・・・メモリ(M2)、 81・・・温度変換
回路(TMP)、82・・・メモリ(Mff)、
83・・・圧力変換回路(PRS)、84・・・メモリ
(M4)、 85・・・切替スイッチ。
Claims (1)
- 気体の流通路の壁面に、該流通路の長軸方向に対して斜
め方向に、または斜め方向から超音波を対向して送受す
る一対の超音波送受波器を配設し、気体の流れに順方向
および逆方向に超音波を伝搬させて、流通路内を伝搬す
る超音波の順、逆両方向におけるそれぞれの伝搬時間若
しくはそれぞれの逆数の差に基づいて気体の流量を測定
する流量計において、超音波の前記順、逆方向における
それぞれの伝搬時間若しくはそれぞれの逆数の和と測定
状態における前記気体の温度との関係を記憶させた記憶
手段と、前記それぞれの伝搬時間若しくはそれぞれの逆
数の和により前記記憶手段から出力される前記気体の温
度とあらかじめ定めた基準温度との比に基づく係数を前
記により測定した流量測定値に演算させて、基準温度に
おける流量測定値に変換する温度変換演算手段とを備え
たことを特徴とする超音波気体流量計。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61277308A JPS63131027A (ja) | 1986-11-19 | 1986-11-19 | 超音波気体流量計 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61277308A JPS63131027A (ja) | 1986-11-19 | 1986-11-19 | 超音波気体流量計 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63131027A true JPS63131027A (ja) | 1988-06-03 |
JPH0561571B2 JPH0561571B2 (ja) | 1993-09-06 |
Family
ID=17581729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61277308A Granted JPS63131027A (ja) | 1986-11-19 | 1986-11-19 | 超音波気体流量計 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63131027A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002077576A1 (fr) * | 1999-10-07 | 2002-10-03 | Otkrytoe Aktsionernoe Obschestvo 'stroitransgaz' | Debitmetre-compteur ultrasonore pour mesurer la consommation de gaz |
JP2007017157A (ja) * | 2005-07-05 | 2007-01-25 | Aichi Tokei Denki Co Ltd | 超音波流量計 |
JP2007051913A (ja) * | 2005-08-17 | 2007-03-01 | Tokyo Keiso Co Ltd | 超音波流量計の補正方法 |
JP2010256075A (ja) * | 2009-04-22 | 2010-11-11 | Aichi Tokei Denki Co Ltd | 流量計及び流量計測方法 |
JP2017111140A (ja) * | 2015-12-15 | 2017-06-22 | 株式会社堀場製作所 | 流量測定装置、燃費測定装置、流量測定装置用プログラム、及び流量測定方法 |
-
1986
- 1986-11-19 JP JP61277308A patent/JPS63131027A/ja active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002077576A1 (fr) * | 1999-10-07 | 2002-10-03 | Otkrytoe Aktsionernoe Obschestvo 'stroitransgaz' | Debitmetre-compteur ultrasonore pour mesurer la consommation de gaz |
JP2007017157A (ja) * | 2005-07-05 | 2007-01-25 | Aichi Tokei Denki Co Ltd | 超音波流量計 |
JP2007051913A (ja) * | 2005-08-17 | 2007-03-01 | Tokyo Keiso Co Ltd | 超音波流量計の補正方法 |
JP2010256075A (ja) * | 2009-04-22 | 2010-11-11 | Aichi Tokei Denki Co Ltd | 流量計及び流量計測方法 |
JP2017111140A (ja) * | 2015-12-15 | 2017-06-22 | 株式会社堀場製作所 | 流量測定装置、燃費測定装置、流量測定装置用プログラム、及び流量測定方法 |
Also Published As
Publication number | Publication date |
---|---|
JPH0561571B2 (ja) | 1993-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4308754A (en) | Ultrasonic flowmeter | |
JP4954210B2 (ja) | 低電力超音波流量計測 | |
WO2005083370A1 (ja) | 超音波流量計および超音波流量測定方法 | |
WO2012081195A1 (ja) | 流量計測装置 | |
US4011753A (en) | Method and device for measuring the flow velocity of media by means of ultrasound | |
CN111157065A (zh) | 气体超声流量计超声波信号传输回路中声延时测量方法 | |
US6595070B1 (en) | Acoustic flow meters | |
US4391150A (en) | Electro-acoustic flowmeter | |
JPS63131027A (ja) | 超音波気体流量計 | |
US4611496A (en) | Ultrasonic flow meter | |
JPH0447770B2 (ja) | ||
JPH1048009A (ja) | 超音波温度流速計 | |
CA2557099A1 (en) | Doppler type ultrasonic flow meter | |
JPH11351928A (ja) | 流量計および流量計測方法 | |
EP4153950A1 (en) | Ultrasonic flow measurement | |
JPH03277987A (ja) | 超音波距離計 | |
JPH063384B2 (ja) | 超音波流量計 | |
JPH088417Y2 (ja) | 超音波流量計校正装置 | |
Jackson et al. | A three-path ultrasonic flowmeter for small-diameter pipelines | |
JPH02116745A (ja) | 超音波溶液濃度測定装置 | |
JPH0791996A (ja) | 超音波流量計 | |
JP4485641B2 (ja) | 超音波流量計 | |
JPS6040916A (ja) | 超音波流速・流量計の温度変化誤差の補正法 | |
JPS63173920A (ja) | 超音波気体流速計 | |
JPS642905B2 (ja) |