[go: up one dir, main page]

JPS6285140A - Vibration reducing device for cylinder number control engine - Google Patents

Vibration reducing device for cylinder number control engine

Info

Publication number
JPS6285140A
JPS6285140A JP22537885A JP22537885A JPS6285140A JP S6285140 A JPS6285140 A JP S6285140A JP 22537885 A JP22537885 A JP 22537885A JP 22537885 A JP22537885 A JP 22537885A JP S6285140 A JPS6285140 A JP S6285140A
Authority
JP
Japan
Prior art keywords
pressure
cylinder
valve
gas pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22537885A
Other languages
Japanese (ja)
Inventor
Takafumi Teramoto
寺本 隆文
Kyoichi Umemura
梅村 匡一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22537885A priority Critical patent/JPS6285140A/en
Publication of JPS6285140A publication Critical patent/JPS6285140A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To control the torque variation and prevent the vibration increase at the time of converting to a partial cylinders operation, by furnishing a pressure adjusting tank to store a gas pressure led to the halted side cylinder, and keeping the gas pressure at a specific low pressure valve, in a partial cylinders operation. CONSTITUTION:A gas pressure leading passage 21 is furnished to link to a combustion chamber 3 of the halted side cylinder 1A with an intake and an exhaust valves 10 and 11 which are kept closed by the actions of actuators 12 and 13 respectively, so as to make it possible to lead the gas pressure in a pressure adjusting tank 20 to the combustion chamber 3 at the time of partial cylinders operation. To the pressure adjusting tank 20, an atmospheric pressure leading passage 24 and a negative pressure leading passage 25 are opened respectively, and at the openings of the passages 24 and 25 to the tank 20, are furnished an atmospheric pressure lead valve 26 and a negative pressure lead valve 27, to make a pressure adjusting device 30. By controlling the valves 26 and 27 through actuators 28 and 29, the atmospheric pressure or the negative pressure is introduced to the tank 20, and the gas pressure in the tank 20 is controlled to maintain at the lowest pressure in the all cylinders operating condition.

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野) 本発明は、エンジン低0荷運転域で一部気筒の作動を休
止させc部分気筒運転を行うようにした気筒故制罪土ン
ジンにおいて、その部分気筒運転時にトルク変動に起因
して発生ljる振動を低減するだめの振動低減装置の改
良に関するちのCある。 (従来のr!i、術) 一般に、1ンジンを高いΩ荷状態で運転すると燃料i1
’i費キーが向」二する傾向がある。このことから、多
気筒エンジンにおいて、高負荷運転域て゛(1全気筒を
作動させる全気筒運転を行つC高出力を〆「侃する一方
、低f;1問運転域では一部気i+1の作動を休止させ
る部分気筒運転を行うことにより、稼動側気筒の(1何
を相対的に高めて、全体として低
(Industrial Application Field) The present invention is directed to a cylinder malfunction engine in which the operation of some cylinders is suspended in the engine low zero load operating range to perform partial cylinder operation, and torque fluctuations are detected during the partial cylinder operation. The following section C relates to an improvement of a vibration reduction device for reducing vibrations generated due to lj. (Conventional r!i, technique) In general, when one engine is operated with a high Ω load, the fuel i1
There is a tendency for the i-expense key to move in the opposite direction. From this, it can be seen that in a multi-cylinder engine, in the high-load operating range (1 all cylinders are operated) high output is maintained, while in the low-f; By performing partial cylinder operation in which operation is stopped, the (1) of the active cylinder is relatively increased, and the overall

【1的運転域での燃費
を改善するようにした気筒数制御エンジンは公知である
。 ところで、このような気筒数制御エンジンにおいて、そ
の部分気筒運転時には、稼動側気筒の燃焼圧力と休止側
気筒の11縮圧力との間に大きな子が生じてトルク変動
が生じ、しかしこの(は部分気筒運転の継続に伴い休止
側気筒内に閉じ込められたガスがクランクケース側ヘブ
ローバヂしでその圧縮圧力が徐々に減少するので、−苦
増人して[−ルク変ε)が増加する。このことから、全
気筒運転時には問題とならない低周波の振動が増大する
という問題がある。 このため、このような振動を低減する技術として、従来
、実開昭59−107942号公報に開示されるように
、休止側気筒の吸気弁の動弁系構造をバルブタイミング
の変更可能なもので構成し、部分気筒運転時には各休止
側気筒の吸気弁をそれぞれエンジン1回転当り1回ピス
トン下死点付近で同時に問いて、複数の休止側気筒で筒
内を同時に圧縮しI;時の総合圧縮圧力が稼動側気筒の
燃焼圧力に近づくよう休止側気筒の圧縮始めの圧力くつ
まり休止側気筒に導入するガス圧力)を稼動側吸気通路
内の圧ノ〕に等しく調圧することにより、部分気筒運転
時のトルク変動を抑制するようにしたものが提案されて
いる。 (発明が解決しようとする問題点) ところで、全気筒運転から部分気筒運転への切換時にお
いて、特にエンジン運転状態の変化が急−CあっCアイ
ドル状態等の極低負向域に移11する場合には、稼動側
気筒の燃焼L1−力が大きく低Fりるの−(・、そ1′
Lにl′つで体IV側気筒の圧縮11力つまり休止側気
筒に導入するガス圧力1う大きく低下させることが1ヘ
ルク変動を抑制する上C必東℃゛ある。 しかるに、上記従来のものでは、この過渡時における休
止側気筒のガス圧力の低下を応答性良く行い1!7ない
ため、トルク変動が十分に抑制できずに振動が増大する
という問題があった。 本発明は所かる点に鑑みてなされ/こもので、その目的
とするところは、部分気筒運転時に休止側気筒に導入す
るガス圧力を貯える調圧タンクを設けておき、この調圧
タンク内の圧1)を予め部分気筒運転に切換わる前の段
階の全気筒運転時において極めて低い圧力値に保持制衝
1しておくこと(、、:lより、その後の部分気筒運転
への切換時には、極低負荷域に向って急変化する過渡時
においても、稼動側気筒の燃焼圧力の急な低下に対応し
て休止側気筒のガス圧力を応答性良く低下させて、この
過渡時のトルク変動を十分に抑制して]辰勤増人を防止
することにある。 (問題点を解決するための手段) ト記の目的を達成するため、本発明の解決手段は、低負
荷運転lI!!で作動を休止する休止側気筒と、常時作
動する稼動側気筒とを備え、部分気筒運転+15に休止
側気筒に導入するガス圧力を制御nn シて稼動側気筒
の燃焼圧力に休止側気筒の圧縮圧1−)を近づけるよう
にした気筒教訓!2a エンジンの撮動低減装置を前1
9とす゛る。そして、部分気筒運転時に休止側気筒に導
入するガス圧力を貯える調圧タンクを設けるとともに、
該調圧タンクのガス圧力を調圧する調圧手段を設(Jる
。さらに、全気筒運転時において上記調圧タンク内のガ
ス1f力を最も低い圧ツノ値に保持するよう上記調圧手
段を制御(−る制御手段を備える構成どしたものである
。 (作用) 上記の構成により、本発明では、部分気筒運転に移行で
−る前の段階の全気筒運転時には、1;め制御手段によ
り調圧手段が制御されて、調圧タンク内の圧力は、部分
気筒運転での島も低い(1荷時における休止側気筒への
導入ガス圧力に相当する圧力Ilt’[に保持されてい
るので、その(りの部分気筒運転への切換時、エンジン
運転状態が極低負荷状態に向って急変化りる過渡におい
ても、調圧タンク内の低いガス圧力が休止側気筒に導入
されC休止側気筒のガス圧力が直ちに大ぎく低゛卜する
ことになる。その結果、極低Q荷状態への急変化等に伴
う稼動側気筒の燃焼圧力の低下に対し【−休出側気筒の
圧縮1f力の低■がci5答性良く行われて、双方の圧
力を精度良くほぼ一致させることがて゛き、よ−)て極
低負荷状態への急変化時においてもその1ヘルク変初が
十分に抑制されて、そのときの振動増大を防止できるこ
とになる。 (実施例) 以下、本発明の実施例を図面に基づいで詳■!に説明す
る。 第1図は本発明の実施例に係る]k勤低減′Ajejを
(イ^えた気筒数11q御エンジンの全体戦略描成を示
し、4リ−イクル4気筒−■、ンジンで烈火順序が1→
3→4→2の気筒類に行われるものについで例示する。 同図おいて、1Ai、を低0荷運転域て゛作1Jを体1
にする第1および第4気筒に相当する休止側気筒、1B
は低Qviおよび高口荷の全運転域で常時作Oノする第
2および第3気筒に相当する稼動側気筒であって、各−
気筒1Δ、1Bはピストン2の往復動により容積可変と
なる燃焼室3を有している。4は、上流端がエアクリー
ナ5を介して大気に開口して各気筒1A、1Bに吸気を
供給でるだめの主吸気通路であって、該主吸気通路4の
途中には吸入空気量を制御するスロットル弁6が配設さ
れており、主吸気通路4の下流側は上記各気筒IAIB
に対応して休止側吸気通路4aと稼動側吸気通路4bと
に分岐されていて、それぞれ対応する気筒1Δ、1Bの
燃焼室3に連通されている。また、7aおよび7bはそ
れぞれ休止側および稼動側気筒1△、1Bの燃焼室3か
らの排気ガスを排出するための休止側および稼動側吸気
通路、8は各吸気通路4a、4bに配設され燃料を噴射
供給する燃料噴射弁、9は主吸気通路4のスロットル弁
6上流に配設され吸入空気量を検出するエア70−メ−
タである。 また、10は各吸気通路4a 、4bの燃焼室こ3への
間し】部に配設された吸気弁、11は各リド気通路7a
、7bの燃焼室3への間口部に配設された排気ブ↑であ
る。そして、−に記各県気井10 J5よび各排気弁1
1は、図示しない動弁機構により所定のタイミングで開
閉作動し又全気筒IA、1Bが作動づる全気筒運転を行
う一方、休止側気筒1Aの吸気弁10および排気弁11
にはそれぞれ、十記初弁機構の駆動力の台片10,11
への伝達を遮断して台片10.11の開閉作動を停止さ
ぜ台片10.11を閉弁状態に維持づ゛る吸気弁停止l
−用アクチュエータ12および排気弁停止用アクチュエ
ータ13が連係されていて、該各アクチコ−1−タ12
,13の作動により休止側気筒1△の作動を休止させて
、稼動側気筒1Bのみが作動7Jる部分気筒運転を行う
ように構成されている。 ここで、上記吸気弁停止用および排気弁停止用アクチュ
エータ12.13の具体的構造の一例について第2図4
3よび第3図により詳述するに、両アクチュエータ12
.13は共に同じ構成の弁停止機構に組込まれており、
第2図J3よび第3図には吸気弁10用の弁停止機構5
0を承伏。すなわち、吸気弁10に対応してカム51を
有するカムシて?フト52に並行に1コツカーシヤフト
53が配設され、該ロッカーシャフト53にロッカーア
ーム54が支承されていて、該ロッカーアーム54は、
上記カム51に当接するカム側アーム55と、吸気弁1
0に当接するバルブ側アーム56とに分割されている。 この両アーム55.56は、ロッカーシャフト53回り
に相対運動可能に支承されているとともに、プランジャ
57およびレバ一部材58等で構成されたセレクタ59
により接続状態と非接続状態とに切換可能に構成されて
おり、該セレクタ59にはセレクタ59を切換作動させ
るアクヂュ玉−夕12が連結されている。しかして、ア
クチュエータ12の非作動時fJXは、セレクタ59に
よりカム側アーム55とバルブ側アーム56とが接続状
態どなり、カム51の回転に伴うカム側アーム55の揺
動がバルブ側アーム56に伝達されて吸気弁10が開閉
作動する一方、アクチュエータ12の作動時には、セレ
クタ5つにより両アームが非接続状態となり、カム51
の回転に伴うカム但すアーム55の揺動がバルブ1則7
7−ノ\56に伝達されず、吸気弁10の開閉作動がP
P +にされて吸気弁10がバルブスプリング60によ
り閉弁状態に保持されるように1.; 、ている14尚
、I[気性11用の弁停止機構も同様の構成である。 このような気筒数制御エンジンにJ5い(,20は部分
気筒運転時に休止剛気12)1△に導入するガス圧力を
貯える調圧タンクであって、該、jl’l圧−ノンク2
0は、休止側吸気通路=’4 aどは別に独立し・て設
けられていて、ガス圧導入通路21を介しく一体止側気
筒1△の燃焼室3に連通され−Cいる。該ガス圧導入通
路21の燃焼室3への間1−]部(5(よりス圧導入通
路21を開閉ケるガス圧導入h 22が配設されてJ5
つ、該ガス圧導入ブ?22には、部分気筒運転時にガス
圧導入弁22を吸気fi P71殺明(・二間弁さけろ
ガス圧導入弁用アクチl、王−夕23が連結さねCいて
、部分気筒運転11.5、ifスHrR入イ?用アクチ
ュエータ23の作動によるガス圧導入弁22の開弁によ
り調圧タンク20内のガス圧力を休止側気筒1△の燃焼
室3に導入するように構成されている。ここで、上記ガ
ス圧導入弁22の間弁周明は、4サイクル4気筒エンジ
ンで点火順序が1→3→4→2の気筒類の場合、第1お
よび第4気筒の各休止側気筒1△のガス圧導入弁22を
360″毎に開弁するように設定されていて、侵述の如
く各休止側気筒1Aの最大圧縮圧力を合算したトータル
としての最高圧縮圧力が各稼動側気筒1Bの最高燃焼圧
力に等しくなるようにしている。 また、24は、一端が主吸気通路4のスロットル弁6−
ヒ流に間口し他端が調圧タンク201.:開口して調圧
タンク20に大気圧を導入する大気圧導入通路、25は
、一端がエンジン等により駆動されるバキュームポンプ
31に接続され他端が調圧タンク20に〃110して調
圧タンク20にバキュームポンプ31の負圧を導入する
負圧導入通路であって、上記大気圧導入通路24の調圧
タンク20への間口部には大気圧導入通路24を開閉す
る常閉の大気圧導入片2Gが配設されているとともに、
ト記角圧導入通路25の調1[タンク20への間し]部
には負圧導入通路25を開閉づる9圧導入弁27が配設
されている。さらに、両導入弁26.27にはそれぞれ
各導入弁26.27を開閉作動させるアクチュエータ2
8.29が連結されでいて、該各アクf−1エータ28
.29の作動により各〕導入弁26.27を開閉させて
、調圧タンク20への大気圧又は負圧の導入をηill
 III L、調圧タンク20のガス圧力つまり部分気
筒運転時に休止側気筒1Aに導入するガス圧力を調圧す
るようにした調圧手段30を構成している。 一方、40はイブニラシコンコイル14からの点火口故
によりエンジン回転数NEを検出する回転数センサ、4
1は稼動側吸気通路4bに配設されて稼動側気筒1Bの
吸気圧力PAを検出する吸気圧センサであって、この両
センサ40,41により、エンジン回転数NEと稼動側
気筒1Bの吸気圧力PAとに塁づいて稼動側気筒1Bの
最高燃焼圧力を把IJIするようにしている。また、4
2は調圧タンク20のガス圧ノ)PBを検出するガス圧
センサである。そして、これら各センサ40〜42の出
力は、上記吸気弁停止用、排気弁停止用、ガス圧導入弁
用、大気圧導入弁用および負圧導入弁用の各アクチュエ
ータ12.13.23,28゜29を作動制御する制御
手段としてのCP U等よりなるコントロールユニット
45に入力可能になっている。 次に、上記コントロールユニット45の作動を第4図の
フローチャートにより説明するに、スター1−シて、先
ずステップS1において回転数センサ40からのエンジ
ン回転数N口および吸気圧センサ41からの稼動側気筒
1Bの吸気圧力PAの信号を入力するとともに、部分気
筒運転中のフラグ1の信号およびエンジン冷却水WTw
(エンジン温痘)の信号などを入力したのら、ステップ
S2でこれらの信号から部分気筒運転条件が成立してい
るか否かを判別する。この判別がNOであるとぎには、
ステップS3で全気筒運転中であるか否かを判別し、全
気筒運転中でないNoのときには部分気筒運転から全気
筒運転への切換時であると判断して、ステップS4で休
止側気筒1△の吸気弁10J3よび排気弁11を開閉作
動させるよう吸気弁停止用および排気弁停止用アクチュ
エータ12.13に復帰信号を出力するとともに、ガス
圧導入弁22を閉弁状態に維持するようガス圧導入弁用
アクデー1エータ23に停止」二信号を出力し、さらに
ステップS5で調圧タンク20の0圧導入弁27を11
(1作動させるよう負圧導入if用アクf−コ工−タ2
9に量弁信号を出力しで、調圧タンク20内にバキュー
ムポンプ31からので1圧を導入して、終了する。一方
、全気筒)工転中であるYESの場合にはそのまま終了
する。 これに対し、上記ステップS2の判別が部分気筒運転時
nの成で1しているYESの場合には、次のステップS
6で部分気筒運転中が占かを判別し、部分気筒運転中″
c<’;いNoのときに(,1全気筒運転から部分気筒
運転への切換時ひあると判断して、ステップS7て゛体
1L開気筒′1△の吸気弁10J3よび排気弁11の間
開1ヤ勤を停止させるよう吸気弁停止用および排気弁停
止用アクチュエータ12゜13に停止信号を出力すると
ともに、ガス圧導入弁22を一定周明毎(4気筒の場合
360″出〉に開弁作動ざUるようガス圧導入弁用アク
チ1エータ23に作動信号を出力し、さらにステップS
8で調圧タンク20の負圧導入弁27を一旦閉作動させ
るよう負圧導入弁用アクチュエータ29に閉弁信号を出
ツノして、調圧タンク20内への9圧の導入を一旦停止
し、その後、上記ステップS6の判別が部分気筒運転中
であるYESの場合と共に次のステップS9に進む。 次いで、ステップS!1において、調圧タンク20の調
圧すべき目標ガス圧力値Peoを計鋒する。 この目標ガス圧力fi(IPeaは、稼CJ側気筒1B
の吸気圧力PAとエンジン回転tjlNEとに基づいて
休止側気筒1Aの圧縮行程終了時点における休止側気筒
1Δ全体としての最高圧縮圧力く第1気筒と第4気筒と
の最高圧縮圧力を合悼した圧力)が各稼動側気筒IB(
第2又は第3気筒)の最高燃焼圧力と等しくなるように
Peo=f(P^、NE)より口出されるしので、1−
)の休止側気筒J゛最高圧縮圧力を賄うものに比べて1
 /’ 2の低い[目標(直′C済み、このことから、
1アボンプ等が不要で、大気圧と吸気負圧との導入の調
整によって十分に目標ガス圧力値Peoを賄い1!yる
利点がある。 そして、上記で算出した目標ガスn[力1偵Pl:IO
に堆づいて調圧タンク20のガス圧力Peが目標(直P
BQになるように以下フィードバック制御用される。ず
なわら、ステップS +6でガス圧ヒンサ42からの調
圧タンク20のガス圧力P 13の(を月を入力したの
ら、ステップ3oで目標ガス圧力(1αP80と実際の
ガス圧力PBとのff1PI3o−Pe1が、i′F容
調整誤差Δρ内にあるか否かを判別する。 この判別がl Peo−P81≦ΔPのYESのときに
は、許容調整誤差ΔP内の微小差であり、かつリージン
グの発生を防止する見地から直らに制御を終了する。一
方、上記判別がl Ps o −Pa1〉ΔPのNoの
場合には、さらにステップS +2で目431直Pso
と実測ガス圧力Peとの大小を比較判別し、Ps o 
>PBのYESのときにはステップS 13で大気圧導
入弁26を微小期間開くよう大気圧導入弁用アクチュエ
ータ28に開弁信号を出力する一方、PBo≦PsのN
oのときにはステップ314で9圧導入弁27を微小期
間開くよう4;)圧導入弁用アクチュエータ2つに開弁
信号を出力して、それぞれステップS Ll+に房るこ
とを繰返し、調圧タンク20のガス圧力Psの目標値P
aOとの差が許容5f整:f4差ΔP内に収まるように
する。 以上のフローにおいて、ステップS5により、全気筒運
転に復帰した直後からは調圧タンク20内にバキューム
ポンプ31の負圧を導入し続けて、該調圧タンク20内
のガス圧力を部分気筒運転での最も低い負荷時における
体止側気筒1Aの導入ガス圧力に相当する低い負圧値(
圧力値)に保持するように調圧手段30を制御するよう
にした制御手段46を構成している。 したがって、上記実施例においては、部分気筒運転時に
は、コントロールユニット45により調圧手段30がi
l+’J 御されて、調圧タンク20のガス圧力P8が
、エンジン回転@NEと稼fjJ側気筒1Bの吸気圧力
P八とに棋づいて稼動側気筒1Bの最高燃焼圧力を把握
すべく口出された目標!ia P gOになるように調
圧される。このことにより、各休止側気筒1Δ(第1気
筒と第4気筒)の360°毎の圧縮行程終了時点におけ
るJ13高圧縮圧勾が第5図(a )及び(d >に示
η−如く稼動側気筒1B(第2気筒および第3気筒)の
最高煤煙1ノ二力(同図(b)及び(C)参照)の略゛
1・2の圧力値となって、これら各休止側気筒1△の最
高圧縮圧力を合粋し1360°tυの全体の最高[1]
縮圧力が同図(e)に示す如く稼動剛気f?ilBのI
t’!高燃焼圧力に等しくなるように児込み1ill 
13IIされることになる。その結果、上記の如く調圧
された調圧タンク20のガス圧力が休止側気筒1△にS
入されると、同図(f)に示ず如く各す、イクルでの稼
動側気筒1Bと休止側気筒1Aとの最高圧力が略一致す
ることになり、トルク変動を抑制して低周波の振動の低
減化を図ることが−ひきる。 しかす、h記の如き部分気筒運転にり換わるOftの段
階の全気筒運転時には、予めJ」す(社)手段46によ
り調圧手段30が制捻りされて、調圧タンク20には負
圧導入弁27の開作動によりパー1=ニームポンプ31
の負圧が導入されて、調圧タンク20のガス圧力は部分
気筒運転での最も低い負荷時における休止側気筒1Aへ
の導入ガス圧力に相当する低い負圧圃(圧力値〉に保持
されている。このことにより、その侵に全気筒運転から
部分気筒運転に切換ねった時において、エンジン運転状
態がアイドル運転状態等の極低負荷状態に急変化する過
渡時の場合にも、調圧タンク20のガス圧力Paは極低
値の目標(直Peoに対して極めて短時間でもって調圧
されて、休止側気筒1Aでのガス圧力の低下が素早く行
われることになる。その結果、極低負荷状態への急変化
に伴い稼動側気筒1Bの燃焼圧力が大ぎく低下するのに
応じて、上記ガス圧力Psが導入される休止側気筒1A
の圧縮圧力も応答性良く低下して、稼動側気筒1Bの最
高燃焼圧力と休止側気筒1A全体としての最高圧縮圧力
とが略一致して、この極低負荷状態への急変化a”t’
rの1〜ルク変vJも十分に抑制され−(撤動増人を防
止づることが(゛き、振動の低減化を図ることができる
。 また、部分気筒運転時に休止側気筒1△に導入されるガ
ス圧力1つBの調圧は、エンジン回転数INEと稼動側
気筒1Bの吸気圧力ρAとに基づいて稼動側気筒1Bの
/i3高燃焼圧力を把握し、この把握した最高燃焼圧力
に休止側気筒1△全体としての最高圧縮圧力が等しくな
るように行われるので、燃焼圧力を決定するエンジンt
)荷、点火時期、空燃比、EGR率などの要因に影響さ
れることがなく、かつガス洩れや着火性などの経年変化
する要因に影響されることがなく、最高燃焼y1力に填
づく調圧制御により稼動側気筒1Bと休止側気筒1Aと
の最高圧力の一致制御を精醍良く行)ことができ 1〜
ルク変動をより一層抑制できて振動の低減化を一層図る
ことができる。 また、上記実施例ぐは、第1気筒と第4気筒との各休止
側気筒1Aの360°毎のR高圧縮圧力を合口した全体
としての最高圧縮圧力が稼動側気筒1Bの最高燃焼圧力
に等しくなるようにしたので、1つの休止側気筒1△で
720°fυに賄う場合に比べて調圧タンク20で調圧
するガス圧力がほぼ1/2の低い圧力値′?′済み、そ
の結果、エンジンに生成する吸気口圧と大気圧との導入
調整にJ:って調圧でき、エアポンプが不及であるなど
、構造を簡略なものとすることができる。 〈変形例) 本発明は上記の如き実施例の(宝かに、以下のような変
形例をも包含するしのである。 ■ 上記実施例では、全気筒運転時において調圧タンク
20のガス圧力を予め極く低値の0圧値に制Ut+ ?
するのにバキュームポンプ31を用いたが、その他、主
吸気通路4のスロットル弁6下流に一方向弁を介して連
通り−るバキュームタンクを設(プ、該バキュームタン
ク内に部分気筒運転時に発生するスロットル弁6下流の
吸気負圧を導入して貯えてJ3き、この負圧を全気筒運
転時に調圧タンク20に導入するようにしてもよい。こ
の場合、バギコー・ムボンプ31の不要な分だけ、エン
ジンの4CI失仕事が低減できる効果がある。 ■ 休止側気筒1Aにおいて調圧のためのガス圧導入弁
22の開弁周期を4気筒の場合720°1υに設定して
、休止側気筒1A全体としてではなく各々の最高圧縮圧
力が稼ジノ側気筒1Bの最高燃焼圧力と等しくなるよう
に見込み制御により調圧してもよい。この場合、調圧タ
ンク20の調圧丈べぎガス圧力が上記実施例と比べて約
2f8に高くなるので、大気圧導入通路24の途中にエ
アポンプを介設して、該人気圧ン呻入通路24から大気
圧よりも高い圧力を調圧タンク20に導くことにより、
調圧の応答性等を高めるようにすることが好ましい。 Q) 休止側気筒1△にJ5けるガス目:乃入弁22を
不要にしてその吸気弁101?兼用さぜるようにしても
よい。この場合、一端が調圧タンク20にjIE通する
ガス圧導入通路の他端を、1ホ1に側吸気通路4aに連
通接続し、この接続部−1,流の(A正側吸気通路48
に第1切険弁を、ガス0:導人通路に第2切換弁をそれ
ぞれ設け、全気筒運転時には第1切換弁を閉作動させる
とともに第2切換弁を閉作動さヒで、通常どおり休止側
吸気通路4aから吸気を供給する一方、部分気筒運転時
には第1切換弁を閉作動させるとともに第2FJJjI
A弁を閉作動させて、調圧タンク20のガス圧力をガス
圧導入通路および休止側吸気通路4aの一部を利用して
、休止側気筒1Aに導入する。さらに、休止側気筒1A
の吸気弁1゜を、そのアクチュエータにより、全気筒運
転時には吸気行程にて開弁作動し、部分気筒運転時には
吸気行程後期のみにて調圧のために開弁作動するように
可変制御するようにすればよい。 ■ 上記実施例では稼動側気筒1Bの吸気圧力PAとエ
ンジン回転数NEとに基づいて稼動側気筒1Bの最高燃
焼圧力を把握して調圧タンク20のガス圧力の調圧を見
込み制御したが、これに代え、クランク角とその角速r
jt変動とにより休止側および稼動側の各気筒の角速度
変動つまりトルク変動を検出し、両者が一致するように
調圧タンク20のガス圧力のフィードバック制御を行う
ようにしてもよい。すなわら、稼動側気筒1Bの燃焼圧
力および休止側気筒1Aの圧縮圧力はそれぞれクランク
軸にモーメントとして作用し、これによりクランク軸に
角速度変動を惹起するとともに、稼動側気筒1Bと体J
J:側気開気筒とがそれぞれ角速度変動を大きく生じる
時期つまり最高圧力発生時期は経時的なズレがあり、4
気筒の場合クランク角で180゜毎に交互となる。この
ことから、クランク角を検出するクランク角センサと、
クランク軸の角速度変動を検出する角速度センサとを設
け、これら各センサの出力信号をコントロールユニット
45に入力して、稼動調気11Bの最高燃焼圧力に相当
するクランク軸の角速度変動(トルク変動)と休止側気
筒1A全体としての最高圧縮圧力に相当するクランク軸
の角速度変動(トルク変動)を求め、この両角速麿斐動
が等しくなるように調圧タンク20の調圧をフィードバ
ック制御するものである。また、上記クランク角センサ
および角速度センサの代わりに、稼動側気筒1Bの燃焼
圧力および休止調気!1llAの圧縮圧力をそれぞれ直
接検出する圧力センサを設けて、これらから稼動側気筒
1Bの最高燃焼圧力および休止側気筒1A全体としての
最高圧縮圧力を算出し、両者が一致するようフィードバ
ック制御により調圧を行うようにしてもよい。 ■ 部分気筒運転時、稼動側気筒1Bの最高燃焼圧力に
休止側気筒1A全体としての!&高圧柚圧力を一致さぼ
るようにしたが、単に稼動側気筒1Bの燃焼圧力に休止
側気筒1Aの圧縮圧力を近付けるようにしてもよい。 ■ 上記実施例では4気筒エンジンの場合について述べ
たが、その他の多気筒エンジンにも同様に適用可nとで
ある。また、吸・排気弁の数も上述の2バルブタイプの
他、4バルブタイプ等、公知の各種タイプのものにも適
用可能であり、吸気°系、排気系の構造は特に限定され
ない。 (発明の効果) 以上説明し7た未うに、本発明の気筒数制御エンジンの
振動低減装置によれば、部分気筒運転時に休止側気筒に
導入するガス圧力を貯える調圧タンクを設け、該調圧タ
ンクのガス圧力を予め全気筒運転時において部分気筒運
転での最も低い負荷時における休止調気MIAへの導入
ガス圧力に相当するような低い圧力値に保持するように
したので、全気筒運転から部分気筒運転への切換時、極
低負荷状態への急変化時にも調圧タンクでの調圧の応答
性が良くなり、その時のトルク変動をも十分に抑制して
振動増大を防止することができ、振動の低減化を図るこ
とができる。
[An engine with a controlled number of cylinders that improves fuel efficiency in a single operating range is known. By the way, in such a cylinder number controlled engine, during partial cylinder operation, a large difference occurs between the combustion pressure of the active cylinder and the compression pressure of the idle cylinder, resulting in torque fluctuation. As the cylinder continues to operate, the gas trapped in the cylinder on the idle side moves toward the crankcase side, and its compression pressure gradually decreases, so that the -rook change ε) increases. As a result, there is a problem in that low frequency vibrations, which are not a problem during all-cylinder operation, increase. Therefore, as a technique for reducing such vibrations, as disclosed in Japanese Utility Model Application Publication No. 59-107942, the valve train structure of the intake valve of the cylinder on the idle side has been developed so that the valve timing can be changed. During partial cylinder operation, the intake valves of each cylinder on the idle side are checked at the same time near the piston bottom dead center once per engine revolution, and the cylinder interior is simultaneously compressed in multiple cylinders on the idle side, resulting in total compression of I; Partial cylinder operation is achieved by regulating the pressure at the start of compression in the idle cylinder (in other words, the gas pressure introduced into the idle cylinder) to be equal to the pressure in the active intake passage so that the pressure approaches the combustion pressure of the active cylinder. A system has been proposed that suppresses torque fluctuations at different times. (Problems to be Solved by the Invention) By the way, when switching from full-cylinder operation to partial-cylinder operation, the engine operating state changes suddenly and shifts to an extremely low negative range such as a -C-C idle state11. In this case, the combustion L1 force in the active cylinder is large and low F-(・, so1'
It is essential to suppress the Herc fluctuation by significantly reducing the compression force of the IV side cylinder, that is, the gas pressure introduced into the idle cylinder by increasing L to l'. However, in the conventional system described above, the gas pressure in the cylinder on the idle side is not reduced with good responsiveness during this transition, so there is a problem in that torque fluctuations cannot be sufficiently suppressed and vibrations increase. The present invention has been made in view of certain points, and its purpose is to provide a pressure regulating tank for storing the gas pressure introduced into the cylinder on the idle side during partial cylinder operation, and to reduce the pressure in the pressure regulating tank. 1) must be maintained at an extremely low pressure value during all-cylinder operation before switching to partial-cylinder operation. Even during a transient period where there is a sudden change towards the low load range, the gas pressure in the idle cylinder is responsively reduced in response to the sudden drop in combustion pressure in the operating cylinder, and torque fluctuations during this transient period are sufficiently suppressed. (Means for solving the problem) In order to achieve the purpose mentioned above, the solution of the present invention is to prevent an increase in labor force by suppressing the increase in labor. It has a cylinder on the idle side that is inactive, and an active cylinder that is always in operation, and during partial cylinder operation +15, the gas pressure introduced into the cylinder on the idle side is controlled so that the compression pressure of the idle cylinder is equal to the combustion pressure of the active cylinder. −) Cylinder lessons learned by moving them closer together! 2a Engine image reduction device in front 1
It's 9. In addition to providing a pressure regulating tank to store the gas pressure introduced into the cylinder on the idle side during partial cylinder operation,
A pressure regulating means is provided for regulating the gas pressure in the pressure regulating tank.Furthermore, the pressure regulating means is provided to maintain the gas 1f force in the pressure regulating tank at the lowest pressure peak value during all-cylinder operation. (Operation) With the above configuration, in the present invention, during full cylinder operation at the stage before transitioning to partial cylinder operation, the first control means The pressure regulating means is controlled, and the pressure in the pressure regulating tank is maintained at a low pressure Ilt' [corresponding to the pressure of the gas introduced into the idle cylinder at the time of one load] even during partial cylinder operation. , When switching to partial cylinder operation, the low gas pressure in the pressure regulating tank is introduced into the cylinder on the idle side even in a transient state where the engine operating state suddenly changes toward an extremely low load condition, causing the cylinder on the idle side to The gas pressure in the cylinder immediately drops to a large extent.As a result, when the combustion pressure in the working cylinder decreases due to a sudden change to an extremely low Q load state, The low force is applied with good CI5 response, allowing both pressures to almost match with high accuracy, and even when there is a sudden change to an extremely low load state, the 1-herk change is sufficiently suppressed. (Embodiment) Hereinafter, an embodiment of the present invention will be explained in detail based on the drawings. Fig. 1 relates to an embodiment of the present invention]k Indicates the overall strategy of the engine with 11q cylinders, 4 cylinders and 4 cylinders, and the engine has a flaming order of 1→
An example of what is done for cylinders 3→4→2 will be explained below. In the same figure, 1Ai is produced in the low 0 load operating range, and 1J is produced in the low 0 load operating range.
The cylinder on the idle side corresponding to the first and fourth cylinders, 1B
are active cylinders corresponding to the second and third cylinders, which are always in operation in the entire operating range of low Qvi and high load;
The cylinders 1Δ and 1B each have a combustion chamber 3 whose volume can be varied by the reciprocating movement of the piston 2. Reference numeral 4 denotes a main intake passage whose upstream end opens to the atmosphere via an air cleaner 5 and supplies intake air to each cylinder 1A, 1B, and a main intake passage 4 has a section in the middle that controls the amount of intake air. A throttle valve 6 is provided, and the downstream side of the main intake passage 4 is connected to each cylinder IAIB.
It is branched into a rest-side intake passage 4a and an active-side intake passage 4b correspondingly to each other, and communicates with the combustion chambers 3 of the corresponding cylinders 1Δ and 1B, respectively. Furthermore, 7a and 7b are intake passages on the idle side and the active side for discharging exhaust gas from the combustion chambers 3 of the cylinders 1Δ and 1B on the idle side and the active side, respectively, and 8 is disposed in each of the intake passages 4a and 4b. A fuel injection valve 9 for injecting fuel is arranged upstream of the throttle valve 6 in the main intake passage 4 and is an air valve 70 for detecting the amount of intake air.
It is ta. Reference numeral 10 denotes an intake valve disposed between each intake passage 4a, 4b and the combustion chamber 3, and 11 indicates each intake passage 7a.
, 7b is an exhaust valve ↑ disposed at the frontage to the combustion chamber 3. And, - listed in each prefecture 10 J5 and each exhaust valve 1
1 is opened and closed at predetermined timing by a valve mechanism (not shown), and performs all-cylinder operation in which all cylinders IA and 1B are activated, while the intake valve 10 and exhaust valve 11 of the cylinder 1A on the idle side are operated.
10 and 11 are respectively the driving force base pieces 10 and 11 of the tenth valve mechanism.
Intake valve stop l which interrupts the transmission to and stops the opening/closing operation of the table piece 10.11 and maintains the table piece 10.11 in the closed state.
- actuator 12 and exhaust valve stop actuator 13 are linked, and each actuator 12
, 13, the operation of the inactive cylinder 1Δ is suspended, and a partial cylinder operation is performed in which only the active cylinder 1B is activated 7J. Here, an example of the specific structure of the intake valve stop actuator 12.13 and the exhaust valve stop actuator 12.13 is shown in FIG.
3 and FIG. 3, both actuators 12
.. 13 are both incorporated into the valve stop mechanism with the same configuration,
FIG. 2 J3 and FIG. 3 show the valve stop mechanism 5 for the intake valve 10.
I accept 0. That is, a camshaft having a cam 51 corresponding to the intake valve 10? A single car shaft 53 is disposed in parallel with the foot 52, and a rocker arm 54 is supported on the rocker shaft 53.
The cam-side arm 55 that comes into contact with the cam 51 and the intake valve 1
0, and a valve side arm 56 that abuts on the valve side arm 56. Both arms 55 and 56 are supported so as to be able to move relative to each other around the rocker shaft 53, and a selector 59 that includes a plunger 57, a lever member 58, etc.
The selector 59 is configured to be switchable between a connected state and a non-connected state, and an actuator ball 12 for switching the selector 59 is connected to the selector 59. Therefore, when the actuator 12 is not activated, the selector 59 causes the cam side arm 55 and the valve side arm 56 to be in a connected state, and the swinging of the cam side arm 55 due to the rotation of the cam 51 is transmitted to the valve side arm 56. On the other hand, when the actuator 12 is operated, both arms are disconnected by the five selectors, and the cam 51 is opened and closed.
However, the swinging of the arm 55 due to the rotation of the valve 1 rule 7
The opening/closing operation of the intake valve 10 is not transmitted to P.
1. P + so that the intake valve 10 is held in the closed state by the valve spring 60; The valve stop mechanism for the I[temperature 11] has a similar configuration. This is a pressure regulating tank that stores the gas pressure introduced into J5 (, 20 is the rest stiffness 12 during partial cylinder operation) 1△ in such a cylinder number control engine, and the jl'l pressure - nonk 2
0, the intake passage on the stop side='4a, etc. are provided separately and independently, and are communicated with the combustion chamber 3 of the cylinder 1Δ on the stop side via the gas pressure introduction passage 21. Between the gas pressure introduction passage 21 and the combustion chamber 3, a gas pressure introduction passage 22 for opening and closing the gas pressure introduction passage 21 is provided.
The gas pressure introduction valve? 22 has an actuator 23 for connecting the gas pressure introduction valve 22 to the intake fi P71 during partial cylinder operation. 5. It is configured so that the gas pressure in the pressure regulating tank 20 is introduced into the combustion chamber 3 of the idle cylinder 1△ by opening the gas pressure introduction valve 22 due to the operation of the actuator 23 for if HrR input. Here, in the case of a 4-stroke, 4-cylinder engine with cylinders in which the ignition order is 1→3→4→2, the valve circumference between the gas pressure introduction valves 22 is set to 1 for each cylinder on the idle side of the 1st and 4th cylinders. The gas pressure introduction valve 22 of △ is set to open every 360'', and as mentioned above, the total maximum compression pressure that is the sum of the maximum compression pressures of each idle cylinder 1A is the maximum compression pressure of each active cylinder 1B. 24 has one end connected to the throttle valve 6- in the main intake passage 4.
The other end is the pressure regulating tank 201. :The atmospheric pressure introduction passage 25 opens to introduce atmospheric pressure into the pressure regulating tank 20, and one end thereof is connected to a vacuum pump 31 driven by an engine or the like, and the other end is connected to the pressure regulating tank 20 (110) to regulate the pressure. A negative pressure introduction passage that introduces the negative pressure of the vacuum pump 31 into the tank 20, and a normally closed atmospheric pressure passage that opens and closes the atmospheric pressure introduction passage 24 at the frontage of the atmospheric pressure introduction passage 24 to the pressure regulating tank 20. Introductory piece 2G is arranged, and
A 9-pressure introduction valve 27 that opens and closes the negative pressure introduction passage 25 is disposed in the first part of the angular pressure introduction passage 25 (interval to the tank 20). Furthermore, each of the introduction valves 26.27 has an actuator 2 that opens and closes each introduction valve 26.27.
8.29 are connected, and each actuator f-1 eta 28
.. 29 opens and closes each of the introduction valves 26 and 27 to introduce atmospheric pressure or negative pressure into the pressure regulating tank 20.
IIIL constitutes a pressure regulating means 30 which regulates the gas pressure in the pressure regulating tank 20, that is, the gas pressure introduced into the idle cylinder 1A during partial cylinder operation. On the other hand, 40 is a rotational speed sensor that detects the engine rotational speed NE due to the ignition port from the even radiator coil 14;
Reference numeral 1 denotes an intake pressure sensor that is disposed in the working side intake passage 4b and detects the intake pressure PA of the working cylinder 1B. Both sensors 40 and 41 detect the engine speed NE and the intake pressure of the working cylinder 1B. Based on PA, the maximum combustion pressure of the operating cylinder 1B is determined. Also, 4
Reference numeral 2 denotes a gas pressure sensor that detects the gas pressure (PB) in the pressure regulating tank 20. The outputs of these sensors 40 to 42 are transmitted to the actuators 12, 13, 23, 28 for the intake valve stop, exhaust valve stop, gas pressure introduction valve, atmospheric pressure introduction valve, and negative pressure introduction valve. It is possible to input the information to a control unit 45 comprising a CPU or the like as a control means for controlling the operation of the 29. Next, the operation of the control unit 45 will be explained with reference to the flowchart of FIG. In addition to inputting the signal of the intake pressure PA of cylinder 1B, the signal of flag 1 during partial cylinder operation and the engine cooling water WTw are input.
After inputting signals such as (engine warm pox), it is determined from these signals whether or not partial cylinder operating conditions are satisfied in step S2. If this judgment is NO, then
In step S3, it is determined whether or not all cylinders are in operation, and when the answer is No that all cylinders are not in operation, it is determined that it is time to switch from partial cylinder operation to all cylinder operation, and in step S4, the idle cylinder 1△ A return signal is output to the intake valve stop and exhaust valve stop actuators 12.13 to open and close the intake valve 10J3 and exhaust valve 11, and the gas pressure is introduced to maintain the gas pressure introduction valve 22 in the closed state. A "stop" signal is output to the valve actuator 1 and 23, and further, in step S5, the 0 pressure introduction valve 27 of the pressure regulating tank 20 is set to 11.
(1) Actuator f-coder 2 for introducing negative pressure to activate
A quantity valve signal is output to 9, and 1 pressure from the vacuum pump 31 is introduced into the pressure regulating tank 20, and the process ends. On the other hand, in the case of YES (all cylinders) are in progress, the process ends immediately. On the other hand, if the determination in step S2 is YES, which is 1 due to the formation of n during partial cylinder operation, the next step S
6 determines whether partial cylinder operation is in progress and indicates that partial cylinder operation is in progress.
c<'; When No, (1) It is determined that there is a time to switch from full cylinder operation to partial cylinder operation, and in step S7, between the intake valve 10J3 and the exhaust valve 11 of the 1L open cylinder '1△ A stop signal is output to the intake valve stop actuator and exhaust valve stop actuator 12 to 13 to stop the opening, and the gas pressure introduction valve 22 is opened every certain period of time (360" in the case of a 4-cylinder engine). An actuation signal is output to the actuator 23 for the gas pressure introduction valve so as not to actuate, and further step S
At 8, a valve closing signal is sent to the negative pressure introduction valve actuator 29 to temporarily close the negative pressure introduction valve 27 of the pressure regulation tank 20, and the introduction of 9 pressure into the pressure regulation tank 20 is temporarily stopped. Thereafter, if the determination in step S6 is YES indicating that the partial cylinder operation is in progress, the process proceeds to the next step S9. Next, step S! 1, the target gas pressure value Peo to be regulated in the pressure regulating tank 20 is determined. This target gas pressure fi (IPea is the operating CJ side cylinder 1B
Based on the intake pressure PA and engine speed tjlNE, the maximum compression pressure of the entire deactivated cylinder 1Δ at the end of the compression stroke of the deactivated cylinder 1A is the combined maximum compression pressure of the 1st cylinder and the 4th cylinder. ) is each operating cylinder IB (
Peo = f (P^, NE) so that it is equal to the maximum combustion pressure of the second or third cylinder), so 1-
) of the idle side cylinder J゛1 compared to the one that covers the maximum compression pressure.
/' 2 low [goal (direct 'C completed, from this,
1 ABOMP etc. are not required, and the target gas pressure value Peo is sufficiently covered by adjusting the introduction of atmospheric pressure and intake negative pressure. There are advantages to doing so. Then, the target gas n [force 1 rectification Pl: IO
According to the target gas pressure Pe of the pressure regulating tank 20 (direct P
Feedback control is used below to achieve BQ. After inputting the month of the gas pressure P13 in the pressure regulating tank 20 from the gas pressure sensor 42 in step S+6, in step 3o, the target gas pressure (1αP80 and the actual gas pressure PB ff1PI3o It is determined whether or not -Pe1 is within the i'F adjustment error Δρ. If this determination is YES, lPeo-P81≦ΔP, it is a minute difference within the allowable adjustment error ΔP, and reasing has occurred. On the other hand, if the above determination is No for lPs o −Pa1>ΔP, then in step S+2, the control is immediately terminated.
Compare and determine the magnitude of the measured gas pressure Pe and Ps o
> When PB is YES, a valve opening signal is output to the atmospheric pressure introduction valve actuator 28 to open the atmospheric pressure introduction valve 26 for a minute period in step S13, while N of PBo≦Ps
o, in step 314, a valve opening signal is output to the two pressure introduction valve actuators to open the 9 pressure introduction valve 27 for a minute period, and the process is repeated to each step S Ll+ to open the pressure regulation tank 20. Target value P of gas pressure Ps of
The difference with aO is made to fall within the allowable 5f adjustment: f4 difference ΔP. In the above flow, immediately after returning to full cylinder operation in step S5, the negative pressure of the vacuum pump 31 is continued to be introduced into the pressure regulating tank 20, and the gas pressure in the pressure regulating tank 20 is controlled by partial cylinder operation. A low negative pressure value (corresponding to the introduced gas pressure of the stop side cylinder 1A at the lowest load of
A control means 46 is configured to control the pressure regulating means 30 so as to maintain the pressure at a certain pressure value. Therefore, in the above embodiment, during partial cylinder operation, the control unit 45 controls the pressure regulating means 30 to i.
l+'J is controlled, the gas pressure P8 in the pressure regulating tank 20 is adjusted to determine the maximum combustion pressure in the working cylinder 1B based on the engine rotation @NE and the intake pressure P8 in the working cylinder 1B on the J side. The goal set! The pressure is adjusted to ia P gO. As a result, the J13 high compression pressure gradient at the end of the compression stroke for each 360° of each idle cylinder 1Δ (1st cylinder and 4th cylinder) is as shown in Fig. 5 (a) and (d). The pressure value of the maximum soot of the side cylinder 1B (second cylinder and third cylinder) is approximately 1.2 (see (b) and (C) in the same figure), and each of these idle side cylinders 1 Combining the maximum compression pressure of △, the overall maximum of 1360°tυ [1]
As shown in the figure (e), the compression force is the operating stiffness f? ilB's I
T'! 1ill to be equal to high combustion pressure
13II. As a result, the gas pressure in the pressure regulating tank 20, which has been regulated as described above, is transferred to the idle cylinder 1△.
When the engine is turned on, the maximum pressures of the active cylinder 1B and the idle cylinder 1A at each cycle are approximately the same, as shown in FIG. It is possible to reduce vibration. However, during the full cylinder operation in the Off stage, which replaces the partial cylinder operation as shown in section h, the pressure regulating means 30 is controlled in advance by means 46 of J's Co., Ltd., and negative pressure is created in the pressure regulating tank 20. By opening the introduction valve 27, the par 1 = neem pump 31
, the gas pressure in the pressure regulating tank 20 is maintained at a low negative pressure field (pressure value) corresponding to the gas pressure introduced into the idle cylinder 1A at the lowest load in partial cylinder operation. As a result, when switching from full-cylinder operation to partial-cylinder operation, the pressure regulating tank can The gas pressure Pa of 20 is regulated in a very short time with respect to the extremely low target (direct Peo), and the gas pressure in the idle cylinder 1A is quickly reduced. The gas pressure Ps is introduced into the idle cylinder 1A as the combustion pressure of the active cylinder 1B drops significantly due to a sudden change in the load state.
The compression pressure of the cylinder 1B on the active side also decreases in a responsive manner, and the maximum combustion pressure of the cylinder 1B on the active side and the maximum compression pressure of the entire cylinder 1A on the idle side almost match, resulting in a sudden change to this extremely low load state a''t'
The 1 to 1 torque change VJ of r is also sufficiently suppressed, which prevents an increase in withdrawals and reduces vibration. Also, during partial cylinder operation, the engine is introduced into the idle cylinder 1 To regulate the gas pressure 1B, the /i3 high combustion pressure of the working cylinder 1B is determined based on the engine speed INE and the intake pressure ρA of the working cylinder 1B, and the determined maximum combustion pressure is adjusted. The engine t which determines the combustion pressure is
) It is not affected by factors such as load, ignition timing, air-fuel ratio, EGR rate, etc., and is not affected by factors that change over time such as gas leakage or ignitability. By pressure control, the maximum pressures of the active cylinder 1B and the idle cylinder 1A can be controlled to match with great precision.
The torque fluctuation can be further suppressed, and vibration can be further reduced. In addition, in the above embodiment, the maximum compression pressure as a whole obtained by combining the R high compression pressures of the first cylinder and the fourth cylinder at every 360° of each deactivated cylinder 1A is equal to the maximum combustion pressure of the active cylinder 1B. Since it is made to be equal, the gas pressure regulated in the pressure regulating tank 20 is approximately 1/2 the lower pressure value '? compared to the case where 720°fυ is supplied by one cylinder 1△ on the inactive side. As a result, it is possible to adjust the intake port pressure generated in the engine and the atmospheric pressure by J:, and the structure can be simplified, such as by eliminating the need for an air pump. <Modifications> The present invention also includes the following modifications of the embodiments described above. ■ In the embodiments described above, the gas pressure in the pressure regulating tank 20 is Control Ut+ to an extremely low 0 pressure value in advance?
In addition, a vacuum tank was installed downstream of the throttle valve 6 in the main intake passage 4, which communicated with the main intake passage 4 via a one-way valve. The intake negative pressure downstream of the throttle valve 6 may be introduced and stored, and this negative pressure may be introduced into the pressure regulating tank 20 during all-cylinder operation. ■ The opening period of the gas pressure introduction valve 22 for pressure regulation in the cylinder 1A on the idle side is set to 720°1υ in the case of 4 cylinders, and The pressure may be regulated by predictive control so that the maximum compression pressure of each cylinder 1A, not the entire 1A, is equal to the maximum combustion pressure of the working side cylinder 1B.In this case, the gas pressure of the pressure regulation tank 20 is Since the pressure is about 2f8 higher than in the above embodiment, an air pump is interposed in the atmospheric pressure introduction passage 24 to guide a pressure higher than atmospheric pressure from the atmospheric pressure introduction passage 24 to the pressure regulating tank 20. By this,
It is preferable to improve the responsiveness of pressure regulation. Q) Gas number J5 in the cylinder 1△ on the idle side: No need for the intake valve 22 and its intake valve 101? It may also be used for stirring. In this case, the other end of the gas pressure introduction passage, one end of which communicates with the pressure regulating tank 20, is connected to the side intake passage 4a, and this connection part-1 is connected to the (A positive side intake passage 48) of the flow.
A first switching valve is installed in the gas 0:conductor passage, and a second switching valve is installed in the gas 0:conductor passage.When operating on all cylinders, the first switching valve is closed and the second switching valve is closed. While supplying intake air from the side intake passage 4a, during partial cylinder operation, the first switching valve is closed and the second FJJjI
Valve A is closed, and the gas pressure in the pressure regulating tank 20 is introduced into the idle cylinder 1A using the gas pressure introduction passage and a portion of the idle air intake passage 4a. Furthermore, the idle side cylinder 1A
The intake valve 1° of the engine is variably controlled by its actuator so that it opens during the intake stroke during full cylinder operation, and opens only in the latter half of the intake stroke for pressure regulation during partial cylinder operation. do it. ■ In the above embodiment, the maximum combustion pressure of the working cylinder 1B is determined based on the intake pressure PA of the working cylinder 1B and the engine speed NE, and the gas pressure in the pressure regulating tank 20 is prospectively controlled. Instead of this, the crank angle and its angular speed r
The angular velocity fluctuation, that is, the torque fluctuation, of each cylinder on the idle side and the operating side may be detected based on the jt fluctuation, and feedback control of the gas pressure in the pressure regulating tank 20 may be performed so that the two coincide. In other words, the combustion pressure of the active cylinder 1B and the compression pressure of the idle cylinder 1A each act on the crankshaft as a moment, which causes angular velocity fluctuations in the crankshaft, and also causes the movement of the active cylinder 1B and the body J.
J: There is a time difference in the timing at which the side air open cylinder and the angular velocity fluctuation occur greatly, that is, the timing at which the maximum pressure is generated.
In the case of cylinders, it alternates every 180 degrees of crank angle. From this, a crank angle sensor that detects the crank angle,
An angular velocity sensor that detects the angular velocity fluctuation of the crankshaft is provided, and the output signals of these sensors are inputted to the control unit 45, and the angular velocity fluctuation (torque fluctuation) of the crankshaft corresponding to the maximum combustion pressure of the operating air conditioner 11B is detected. The angular velocity fluctuation (torque fluctuation) of the crankshaft corresponding to the maximum compression pressure of the entire inactive cylinder 1A is determined, and the pressure regulation in the pressure regulating tank 20 is feedback-controlled so that both angular velocity fluctuations are equal. . In addition, instead of the above-mentioned crank angle sensor and angular velocity sensor, the combustion pressure of the active cylinder 1B and the idle air adjustment! A pressure sensor is provided that directly detects the compression pressure of 11A, and from these, the maximum combustion pressure of the active cylinder 1B and the maximum compression pressure of the entire idle cylinder 1A are calculated, and the pressure is adjusted by feedback control so that the two agree. You may also do this. ■ During partial cylinder operation, the maximum combustion pressure of the operating cylinder 1B is equal to that of the entire idle cylinder 1A! Although the high pressure and the high pressure are set to be equal to each other, the compression pressure of the idle cylinder 1A may be simply brought closer to the combustion pressure of the active cylinder 1B. (2) In the above embodiment, the case of a four-cylinder engine was described, but it can be similarly applied to other multi-cylinder engines. In addition, the number of intake and exhaust valves can be applied to various known types such as a four-valve type in addition to the two-valve type described above, and the structures of the intake system and exhaust system are not particularly limited. (Effects of the Invention) As explained above, according to the vibration reduction device for a cylinder number controlled engine of the present invention, a pressure regulating tank is provided to store the gas pressure introduced into the cylinder on the idle side during partial cylinder operation, and the pressure is adjusted. The gas pressure in the pressure tank is maintained in advance at a low pressure value that corresponds to the gas pressure introduced into the idle air adjustment MIA at the lowest load in partial cylinder operation during all cylinder operation. To improve the responsiveness of pressure regulation in the pressure regulating tank even when switching from to partial cylinder operation or when there is a sudden change to an extremely low load state, and to sufficiently suppress torque fluctuations at that time to prevent an increase in vibration. This makes it possible to reduce vibration.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を例示するもので、第1図はその
全体概略構成図、第2図は弁停止機構の平面図、第3図
は第2図の■−■轢断面図、第4図はコントロールユニ
ットの作動を説明するフローチャート図、第5図(a 
)〜(f)はそれぞれ第1〜第4気筒、休止側気筒全体
J′3よび全気筒の圧力変化を示づ説明図である。 1A・・・休止側気筒、1B・・・稼動側気筒、4a・
・・休止側吸気通路、4b・・・稼動側吸気通路、6・
・・スロットル弁、10・・・吸気弁、11・・・排気
弁、20・・・調圧タンク、21・・・ガス圧導入通路
、22・・・ガス圧導入弁、27・・・負圧導入弁、3
0・−・調圧手段、31・・・バキュームポンプ、45
・・・コント]コールユニット、46・・・制御手段。 一五二一・j 第3図 第2図 ■− 手続補正内(方式) 昭和61年2月24日 1、事件の表示 昭和60年 特 許 願 第225378号2、発明の
名称 気筒数fjlれUエンジンの1辰肋低減装置3、補正を
する者 事件との関係  特許出願人 住  所  広島県安芸郡府中町祈地3fT1号名  
称  (313)  マツダ株式会社代表者  山 本
 健 − 4、代理人 〒550電06 (4,45) 2128
住  所 大阪市西区靭本町1丁目4番8号 太平ビル
氏  名 弁理士(7793)前  1)   弘5 
補正命令の日付 7、補正の内容 明細書の第26頁第17行目〜同頁第19行目の「第5
図(a )〜(f)はそれぞれ・・・(中略)・・・を
示す説明図ぐある。 Jとあるのを、[第5図は気筒の圧力変化を示す説明間
ぐある。」に補正する。 以上
The drawings illustrate an embodiment of the present invention, and FIG. 1 is a schematic diagram of the overall configuration, FIG. 2 is a plan view of the valve stop mechanism, and FIG. 3 is a cross-sectional view taken along Figure 4 is a flowchart explaining the operation of the control unit, and Figure 5 (a)
) to (f) are explanatory diagrams showing pressure changes in the first to fourth cylinders, the entire deactivated cylinder J'3, and all cylinders, respectively. 1A...Cylinder on the idle side, 1B...Cylinder on the operating side, 4a.
...Intake passage on the idle side, 4b...Intake passage on the operating side, 6.
... Throttle valve, 10... Intake valve, 11... Exhaust valve, 20... Pressure adjustment tank, 21... Gas pressure introduction passage, 22... Gas pressure introduction valve, 27... Negative Pressure introduction valve, 3
0... Pressure regulating means, 31... Vacuum pump, 45
... control] call unit, 46... control means. 1521.j Figure 3 Figure 2 - Procedural amendment (method) February 24, 1985 1. Display of the case 1985 Patent Application No. 225378 2. Name of the invention Number of cylinders fjl U-engine 1st rib reduction device 3, relationship with the case of the person making the correction Patent applicant address: 3f T1, Ichichi, Fuchu-cho, Aki-gun, Hiroshima Prefecture
Name (313) Mazda Motor Corporation Representative Ken Yamamoto - 4, Agent 550 Den 06 (4,45) 2128
Address: Taihei Building, 1-4-8 Utsubohonmachi, Nishi-ku, Osaka Name: Patent Attorney (7793) 1) Ko 5
Date 7 of the amendment order, page 26, line 17 to line 19 of the statement of contents of the amendment,
Figures (a) to (f) are explanatory diagrams showing (omitted), respectively. J is replaced by [Figure 5 is an explanation of the pressure changes in the cylinders]. ”. that's all

Claims (1)

【特許請求の範囲】[Claims] (1)低負荷運転域で作動を休止する休止側気筒と、常
時作動する稼動側気筒とを備え、部分気筒運転時に休止
側気筒に導入するガス圧力を制御して稼動側気筒の燃焼
圧力に休止側気筒の圧縮圧力を近づけるようにした気筒
数制御エンジンの振動低減装置において、部分気筒運転
時に休止側気筒に導入するガス圧力を貯える調圧タンク
と、該調圧タンクのガス圧力を調圧する調圧手段と、全
気筒運転時において上記調圧タンク内のガス圧力を最も
低い圧力値に保持するよう上記調圧手段を制御する制御
手段とを備えたことを特徴とする気筒数制御エンジンの
振動低減装置。
(1) Equipped with a deactivated cylinder that stops operating in the low-load operating range and an active cylinder that is constantly activated, and controls the gas pressure introduced into the deactivated cylinder during partial cylinder operation to adjust the combustion pressure of the active cylinder. A vibration reduction device for an engine that controls the number of cylinders so that the compression pressures of cylinders on the idle side are brought close to each other, includes a pressure regulating tank that stores gas pressure introduced into the cylinder on the idle side during partial cylinder operation, and a pressure regulating tank that regulates the gas pressure in the pressure regulating tank. A number-of-cylinders control engine characterized by comprising a pressure regulating means and a control means for controlling the pressure regulating means so as to maintain the gas pressure in the pressure regulating tank at the lowest pressure value during all cylinder operation. Vibration reduction device.
JP22537885A 1985-10-09 1985-10-09 Vibration reducing device for cylinder number control engine Pending JPS6285140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22537885A JPS6285140A (en) 1985-10-09 1985-10-09 Vibration reducing device for cylinder number control engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22537885A JPS6285140A (en) 1985-10-09 1985-10-09 Vibration reducing device for cylinder number control engine

Publications (1)

Publication Number Publication Date
JPS6285140A true JPS6285140A (en) 1987-04-18

Family

ID=16828413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22537885A Pending JPS6285140A (en) 1985-10-09 1985-10-09 Vibration reducing device for cylinder number control engine

Country Status (1)

Country Link
JP (1) JPS6285140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302727A (en) * 1990-12-12 1992-10-26 Hutchinson Sa Hydraulic vibration isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302727A (en) * 1990-12-12 1992-10-26 Hutchinson Sa Hydraulic vibration isolator

Similar Documents

Publication Publication Date Title
US5183011A (en) Method of controlling the supply of fuel in hydrogen-fueled engine
US5090202A (en) Intake system for an internal combustion engine with supercharger
US4461151A (en) Internal combustion engine
US7100547B2 (en) Intake-air control system for engine
US7051687B2 (en) Valve operation controller
JPH0436053A (en) Control device for intake air of internal combustion engine
CN1189878A (en) Variable volume meter
JPS6285140A (en) Vibration reducing device for cylinder number control engine
JP6252006B2 (en) Engine control device
JP3165214B2 (en) Fuel supply system for gaseous fuel engine
JPS6299642A (en) Vibration damping device for cylinder number control engine
JPS6285142A (en) Vibration reducing device for cylinder number control engine
JPS6285144A (en) Vibration reducing device for cylinder number control engine
JPS6285141A (en) Vibration reducing device for cylinder number control engine
JPS6287628A (en) Vibration damping device for cylinder number controlling engine
JP2002276395A (en) Intake device for internal combustion engine
JPS5910360Y2 (en) internal combustion engine
JPH059610B2 (en)
JPS6285143A (en) Vibration reducing device for cylinder number control engine
JPS58158336A (en) Cylinder number controllable engine
JP3011974B2 (en) Engine control device
JP2634466B2 (en) 4-cycle internal combustion engine
JPH04101031A (en) Fuel feeder of internal combustion engine
JPS6244122Y2 (en)
JP2734898B2 (en) Automotive engine