[go: up one dir, main page]

JPS6285141A - Vibration reducing device for cylinder number control engine - Google Patents

Vibration reducing device for cylinder number control engine

Info

Publication number
JPS6285141A
JPS6285141A JP22537985A JP22537985A JPS6285141A JP S6285141 A JPS6285141 A JP S6285141A JP 22537985 A JP22537985 A JP 22537985A JP 22537985 A JP22537985 A JP 22537985A JP S6285141 A JPS6285141 A JP S6285141A
Authority
JP
Japan
Prior art keywords
cylinder
pressure
valve
intake
idle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22537985A
Other languages
Japanese (ja)
Inventor
Kyoichi Umemura
梅村 匡一
Takafumi Teramoto
寺本 隆文
Toshiharu Masuda
益田 俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22537985A priority Critical patent/JPS6285141A/en
Publication of JPS6285141A publication Critical patent/JPS6285141A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To reduce a shock at the time when the engine returns from a partial cylinders operation to the all cylinders operation, by opening the intake valve after reducing the pressure in the halted side cylinder by opening the opening valves of the atmospheric side opening passages except the fuel feeding passage at the halted side cylinder in such a return to the all cylinders operation. CONSTITUTION:A gas pressure leading passage 21 is furnished to link to a combustion chamber 3 of the halted side cylinder 1A with an intake and an exhaust valves 10 and 11 which are kept closed by the actions of actuators 12 and 13 respectively, in order to make it possible to introduce the gas pressure in a pressure adjusting tank 20 to the combustion chamber 3 in a partial cylinders operation. In such am composition, the gas pressure in the halted side cylinder 1A is increased and the compression pressure therein is made to approach the combustion pressure of the operating side cylinder 1B. And when the returning time from the partial to the all cylinders operation is detected, the exhaust valve (that is, the opening valves of the atmospheric side except the halted side intake passage 4a being a fuel feeding passage) is opened before the intake valve 10 is opened, to reduce the pressure in the halted side cylinder 1A.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジン低負荷運転域で一部気筒の作動を休
止させて部分気筒運転を行うようにした気筒数制御エン
ジンにおいて、その部分気筒運転時にトルク変動に起因
して発生する振動を低減するだめの振動低減装置の改良
に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a cylinder number control engine in which operation of some cylinders is stopped in a low engine load operating range to perform partial cylinder operation. The present invention relates to an improvement of a vibration reduction device for reducing vibrations generated due to torque fluctuations during operation.

(従来の技術) 一般に、エンジンを高い口筒状態で運転すると燃料′a
黄率が向上する傾向がある。このことから、多気筒エン
ジンにおいて、高負荷運転域では全気筒を作動さぜる全
気筒運転を行って高出力を確保する一方、低負荷運転域
では一部気筒の作動を休止させる部分気筒運転を行うこ
とにより、稼動側気筒の負荷を相対的に高めて、全体と
して低負荷運転域での燃費を改善するようにした気筒@
制御エンジンは公知である。
(Prior art) In general, when an engine is operated with a high orifice, the fuel 'a'
Yellow rate tends to improve. For this reason, in a multi-cylinder engine, in high-load operating ranges, all cylinders are activated to ensure high output, while in low-load operating ranges, some cylinders are stopped in partial-cylinder operation. By doing this, the load on the active cylinder is relatively increased, and the overall fuel efficiency in the low-load operating range is improved.
Control engines are known.

ところで、このような気ff、数制御エンジンにおいて
、その部分気筒運転時には、稼動側気筒の燃焼圧力と休
止側気筒の圧縮圧力との間に人きイr差が生じてトルク
変動が生じ、しかもこの差は部分気筒運転の継続に伴い
体J1−側気筒内に閉じ込められたガスがクランクケー
ス側ヘブローバイしてその圧縮圧力が徐々に減少するの
で、−膚増入し7てトルク変動が増加する。このことか
ら、全気筒運転時には問題とならない低周波の1鰻動が
増大するという問題がある。
By the way, in such a control engine, during partial cylinder operation, there is a difference in torque between the combustion pressure of the active cylinder and the compression pressure of the idle cylinder, causing torque fluctuations. This difference is caused by the continuation of partial cylinder operation, as the gas trapped in the cylinder on the body J1 side blows by to the crankcase side, and its compression pressure gradually decreases. . As a result, there is a problem in that the low-frequency one-stroke motion, which is not a problem during all-cylinder operation, increases.

このため、このようなti動を低減する技術として、従
来、実開昭58−156134号公報に開示されるよう
に、部分気筒運転に伴う休止側気筒のブローバイガスに
相当する分をエンジンのサイクル毎に休止側気筒に補給
するとともに、吸気通路を稼動側気筒と休止側気筒とに
対応して仕切って、休止側気筒の圧縮圧力が稼動側気筒
の燃焼圧力に近づくようにエンジンの負荷状態に応じて
休止側吸気通路内の圧力(つまり休止側気筒に導入する
ガス圧力)を稼動側吸気通路内の圧力に対して一定倍率
で調圧することにより、部分気筒運転時のトルク変動を
抑制するようにしたものが提案されている。
For this reason, as a technique for reducing such Ti motion, as disclosed in Japanese Utility Model Application Publication No. 156134/1982, the amount corresponding to the blow-by gas of the cylinder on the idle side due to partial cylinder operation is At the same time, the intake passage is divided into active and inactive cylinders so that the compression pressure in the inactive cylinder approaches the combustion pressure in the active cylinder, depending on the engine load condition. Accordingly, the pressure in the intake passage on the idle side (in other words, the gas pressure introduced into the cylinder on the idle side) is adjusted at a fixed ratio to the pressure in the intake passage on the active side, thereby suppressing torque fluctuations during partial cylinder operation. It has been proposed that

(発明が解決しようとする問題点) ところで、部分気筒運転から全気筒運転への復帰時には
、休止側気筒の作動の復帰をスムーズに行って、休止側
気筒での燃焼状態を速かに稼動側気筒の燃焼状態にほぼ
合致させれば、全気筒運転への復帰をトルクショックな
く行うことができ、好ましい。しかるに:、上記従来の
ものでは、休止側気筒の作動の復帰時、それまで休止側
気筒に閉込められていた高圧力のガスがその吸気弁の開
作動に伴い燃料供給通路に流出し、そのため、この高圧
ガスの流出によって休止側気筒に供給される燃料が吹返
されて空燃比はリーンになる。しかも、次のサイクルで
は、吹返された燃料が休止側気筒に吸入されて空燃比は
逆にリッチになり、その結果、全気筒運転への復帰直後
では休止側気筒と稼動側気筒との間で燃焼のバラツキが
生じ、不快なトルクショックが発生するという問題があ
る。
(Problem to be Solved by the Invention) By the way, when returning from partial cylinder operation to full cylinder operation, the operation of the cylinder on the idle side is smoothly restored, and the combustion state in the cylinder on the idle side is quickly changed to the operating side. It is preferable to make the combustion state substantially match the combustion state of the cylinders, since it is possible to return to full-cylinder operation without torque shock. However, in the conventional system described above, when the operation of the inactive cylinder is restored, the high-pressure gas that had been trapped in the inactive cylinder until then flows out into the fuel supply passage as the intake valve opens. Due to the outflow of this high-pressure gas, the fuel supplied to the cylinder on the idle side is blown back, and the air-fuel ratio becomes lean. Moreover, in the next cycle, the blown back fuel is sucked into the idle cylinder and the air-fuel ratio becomes rich, resulting in a gap between the idle cylinder and the active cylinder immediately after returning to full cylinder operation. There is a problem in that combustion variations occur and unpleasant torque shock occurs.

本発明は斯かる点に鑑みてなされたものであり、その目
的とするところは、全気筒運転への復帰時には、休止側
気筒の筒内圧力を減圧したのち吸気弁を開作動させるよ
うにすることにより、休止側気筒への燃料の吹返しを防
止して、休止側気筒と稼動側気筒との間の燃焼バラツキ
を小さく抑え、よって全気筒運転への復帰時での不快な
トルクショックの発生を防止することにある。
The present invention has been made in view of the above, and its purpose is to reduce the in-cylinder pressure of the cylinder on the idle side and then open the intake valve when returning to full cylinder operation. This prevents fuel from blowing back into the idle cylinder, suppressing combustion variations between the idle cylinder and the active cylinder, and thus causing unpleasant torque shock when returning to full cylinder operation. The goal is to prevent

(問題点を解決するための手段〉 上記の目的を達成するため、本発明の解決手段は、低負
荷運転域で作動を休止する休止側気筒と、常時作動する
稼動側気筒とを備え、部分気筒運転時に休止側気筒のガ
ス圧力を高めて稼動側気筒の燃焼圧力に休止側気筒の圧
縮圧力を近づけるようにした気筒数制御エンジンの振動
低減装置を前提とする。そして、部分気筒運転から全気
筒運転への復帰時を検出する復帰時検出手段と、該復帰
時検出手段の出力を受け、休止側気筒における燃料供給
通路を除く大気側へ開放する通路の開放弁を吸気弁より
も先に開作動させる筒内減圧手段とを備える構成とした
ものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a dormant cylinder that stops operating in a low-load operating range and an active cylinder that constantly operates. This assumes a cylinder number control engine vibration reduction device that increases the gas pressure in the idle cylinder during cylinder operation to bring the compression pressure of the idle cylinder closer to the combustion pressure of the active cylinder. a return time detection means for detecting the time of return to cylinder operation, and a release valve of a passage opened to the atmosphere other than the fuel supply passage in the cylinder on the idle side, which receives the output of the return time detection means, before the intake valve. The structure includes an in-cylinder pressure reducing means that operates to open the cylinder.

(作用) 上記の構成により、本発明では、部分気筒運転から全気
筒運転への復帰時には、休止側気筒の燃料供給通路を除
く大気側への開放弁が吸気弁に先立って開作動して、先
ず休止側気筒の筒内圧力が減圧される。このことにより
、その後に休止側気筒の吸気弁が開作動しても、休止側
気筒から燃料供給通路へのガス流れは生じずに燃料は該
休止側気筒にスムーズに吸入されて、休止側気筒と稼動
側気筒との間の燃焼状態をほぼ合致させることができ、
よって全気筒運転への復帰時での不快なトルクショック
の発生が防止されて、重両の乗心地性能の向上が図られ
ることになる。
(Function) With the above configuration, in the present invention, when returning from partial cylinder operation to full cylinder operation, the open valve to the atmosphere side excluding the fuel supply passage of the cylinder on the idle side opens prior to the intake valve. First, the in-cylinder pressure of the cylinder on the idle side is reduced. As a result, even if the intake valve of the deactivated cylinder is subsequently opened, the gas flow from the deactivated cylinder to the fuel supply passage does not occur, and the fuel is smoothly sucked into the deactivated cylinder. The combustion conditions between the cylinder and the active cylinder can be almost matched,
Therefore, unpleasant torque shock is prevented from occurring when returning to full-cylinder operation, and the ride comfort of heavy vehicles is improved.

〈実施例〉 以下、本発明の実施例を図面に基づいて詳細に説明する
<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の実施例に係る振動低減装置を備えた気
筒数制御エンジンの全体概略構成を示し、4サイクル4
気筒エンジンで点火順序が1→3→4→2の気筒類に行
われるものについて例示する。
FIG. 1 shows the overall schematic configuration of a cylinder number control engine equipped with a vibration reduction device according to an embodiment of the present invention, and shows a 4-cycle 4-cycle
An example will be given of a cylinder engine in which the ignition order is 1 → 3 → 4 → 2 for cylinders.

同図おいて、1Aは低負荷運転域で作動を休止する第1
および第4気筒に相当する休止側気筒、1Bは低負荷お
よび高負荷の全運転域で常時作動する第2および第3気
筒に相当する稼動側気筒であって、各気筒1△、1Bは
ピストン2の往復動により容積可変となる燃焼室3を有
している。4は、上流端がエアクリーナ5を介して大気
に開口して各気筒IA、1Bに吸気を供給するための主
吸気通路であって、該主吸気通路4の途中には吸入空気
量を制御するス[コツドル弁6が配設されており、主吸
気通路4の下流側は上記各気筒1A、IBに対応して休
止側吸気通路4aと稼動側吸気通路4bとに分岐されて
いて、それぞれ対応する気筒1△、IBの燃焼室3に連
通されている。また、7aおよび71)はそれぞれ体1
ヒ測および稼動側気筒1A、1Bの燃焼室3からの排気
ガスを排出するための休止側および稼動側排気通路、8
は各吸気通路4a、4.1)に配設され燃料を噴射供給
する燃料噴射弁、9は主吸気通路4のスロットル弁6上
流に配設され吸入空気mを検出するエアフローメータで
ある。
In the same figure, 1A is the first valve that stops operating in the low load operating range.
1B is a cylinder on the idle side corresponding to the 4th cylinder, 1B is a cylinder on the active side corresponding to the 2nd and 3rd cylinders that are constantly operated in all operating ranges of low load and high load, and each cylinder 1△, 1B is a piston. It has a combustion chamber 3 whose volume can be varied by the reciprocating movement of the combustion chamber 2. 4 is a main intake passage whose upstream end opens to the atmosphere via an air cleaner 5 to supply intake air to each cylinder IA, 1B, and a main intake passage 4 has a section in the middle that controls the amount of intake air. A valve 6 is disposed, and the downstream side of the main intake passage 4 is branched into a rest-side intake passage 4a and an active-side intake passage 4b corresponding to each of the cylinders 1A and IB. The combustion chamber 3 of the cylinder 1Δ and IB communicates with each other. Also, 7a and 71) are respectively body 1
Inactive and active side exhaust passages for discharging exhaust gas from the combustion chambers 3 of the cylinders 1A and 1B on the active side; 8
Reference numeral 9 indicates a fuel injection valve disposed in each intake passage 4a, 4.1) for injecting and supplying fuel, and numeral 9 indicates an air flow meter disposed upstream of the throttle valve 6 in the main intake passage 4 for detecting intake air m.

また、10は各吸気通路4a、4bの燃焼室3への間口
部に配設された吸気弁、11は各排気通路7a、7bの
燃焼室3への間口部に配設された排気弁である。そして
、上記各吸気弁10および各排気弁11は、図示しない
動弁機構により所定のタイミングで開開作動して全気筒
1△、1Bが作動する全気筒運転を行う一方、休止側気
筒1Aの吸気弁10および排気弁11にはそれぞれ、上
記動弁機構の駆動力の合弁10.11への伝達を遮断し
て合弁10.11の開閉作動を停止させ合弁10.11
を閉弁状態に維持する吸気弁停止用アクチュエータ12
および排気弁停止用アクヂーユ工−タ13が連係されて
いて、該各アクチュエータ12.13の作動により休止
側気筒1Aの作動を休止させて、稼動側気筒1Bのみが
作動する部分気筒運転を行うように構成されている。
Further, 10 is an intake valve arranged at the frontage of each intake passage 4a, 4b to the combustion chamber 3, and 11 is an exhaust valve arranged at the frontage of each exhaust passage 7a, 7b to the combustion chamber 3. be. Each of the intake valves 10 and each exhaust valve 11 is opened and opened at predetermined timing by a valve mechanism (not shown) to perform an all-cylinder operation in which all cylinders 1Δ and 1B are activated, while the cylinder 1A on the idle side is operated. The intake valve 10 and the exhaust valve 11 are each configured to cut off the transmission of the driving force of the valve mechanism to the joint valve 10.11 and stop the opening/closing operation of the joint valve 10.11.
An intake valve stop actuator 12 that maintains the valve in a closed state.
and an exhaust valve stop actuator 13 are linked to each other, and by the operation of each actuator 12.13, the operation of the inactive cylinder 1A is stopped, and a partial cylinder operation is performed in which only the active cylinder 1B is operated. It is composed of

ここで、上記吸気弁停止用および排気弁停止用アクチュ
エータ12.13の具体的構造の一例について第2図お
よび第3図により詳述するに、両アクチュエータ12.
13は共に同じ構成の弁停止機構に組込まれており、第
2図j5よび第3図には吸気弁10用の弁停止機構50
を示す。すなわら、吸気弁10に対応してカム51を有
するカムシャフト52に並行にロッカーシャフト53が
配設され、該ロッカーシャフト53にロッカーアーム5
4が支承されていて、該ロッカーアーム54は、上記カ
ム51に当接するカム側アーム55と、吸気弁10に当
接するバルブ側アーム56とに分割されている。この両
アーム55.56は、ロッカーシャフト53回りに相対
運動可能に支承されているとともに、プランジャ57お
よびレバ一部材58等で構成されたセレクタ59により
接続状態と非接続状態とに切換可能に構成されており、
該セレクタ59にはセレクタ5つを切換作動させるアク
チュエータ12が連結されている。しかして、アクチュ
エータ12の非作動時には、セレクタ59によりカム側
アーム55とバルブ側アーム56とが接続状態となり、
カム51の回転に伴うカム側アーム55の揺動がバルブ
側アーム56に伝達されて吸気弁10が開閉作動する一
方、アクチュエータ12の作動時には、セレクタ5つに
より両アームが非接続状態となり、カム51の回転に伴
うカム側アーム55の揺動がバルブ側アーム56に伝達
されず、吸気弁10の開閉作動が停止されて吸気弁10
がバルブスプリング60により閉弁状態に保持されるよ
うになっている。尚、排気弁11用の弁停止機構も同様
の構成である。
Here, an example of a specific structure of the intake valve stop actuator and exhaust valve stop actuator 12.13 will be described in detail with reference to FIGS. 2 and 3.
13 are both incorporated in a valve stop mechanism having the same configuration, and FIG. 2 j5 and FIG. 3 show a valve stop mechanism 50 for the intake valve 10.
shows. That is, a rocker shaft 53 is disposed parallel to a camshaft 52 having a cam 51 corresponding to the intake valve 10, and a rocker arm 5 is attached to the rocker shaft 53.
4 is supported, and the rocker arm 54 is divided into a cam-side arm 55 that abuts the cam 51 and a valve-side arm 56 that abuts the intake valve 10. Both arms 55 and 56 are supported so as to be movable relative to each other around the rocker shaft 53, and can be switched between a connected state and a non-connected state by a selector 59 composed of a plunger 57, a lever member 58, etc. has been
The selector 59 is connected to an actuator 12 that switches between the five selectors. Therefore, when the actuator 12 is not in operation, the cam side arm 55 and the valve side arm 56 are brought into a connected state by the selector 59.
The swing of the cam-side arm 55 accompanying the rotation of the cam 51 is transmitted to the valve-side arm 56 to open and close the intake valve 10. On the other hand, when the actuator 12 is operated, both arms are disconnected by the five selectors, and the cam 51 is not transmitted to the valve side arm 56, and the opening/closing operation of the intake valve 10 is stopped.
is held in a closed state by a valve spring 60. Note that the valve stop mechanism for the exhaust valve 11 has a similar configuration.

このような気筒数制御エンジンにおいて、20は部分気
筒運転時に休止開気rPlIAに導入するガス圧力を貯
える調圧タンクであって、該調圧タンク20は、休出側
吸気通路4aとは別に独立して設けられていて、ガス圧
導入通路21を介して休止側気筒1Aの燃焼室3に連通
されている。該ガス圧導入通路21の燃焼室3への開]
コ部にはガス圧導入通路21を開閉するガス圧導入弁2
2が配設されており、該ガス圧導入弁22には、部分気
筒運転時にガス圧導入弁22を吸気行程俊明に開弁させ
るガス圧導入弁用アクチュエータ23が連結されていて
、部分気筒運転時、ガス圧導入弁用アクチュエータ23
の作動によるガス圧導入弁22の開弁により調圧タンク
20内のガス圧力を休止側気筒1Aの燃焼室3に導入す
るように構成されている。こごで、上記ガス圧導入弁2
2の開弁周期は、4サイクル4気筒エンジンで点火順序
が1→3→4→2の気筒類の場合、第111t5よび第
4気筒の各休止側気筒1Aのガス圧導入弁22を360
°毎に開弁するように設定されていて、後述の如く各休
止側気筒1△の最大圧縮圧力を合算したトータルとして
の最高圧縮圧力が各稼動側気筒1Bの最高燃焼圧力に等
しくなるようにしている。
In such a cylinder number controlled engine, reference numeral 20 denotes a pressure regulating tank that stores the gas pressure introduced into the pause open air rPlIA during partial cylinder operation, and the pressure regulating tank 20 is independent from the pause opening side intake passage 4a. The combustion chamber 3 is connected to the combustion chamber 3 of the deactivated cylinder 1A via a gas pressure introduction passage 21. Opening of the gas pressure introduction passage 21 to the combustion chamber 3]
A gas pressure introduction valve 2 that opens and closes the gas pressure introduction passage 21 is provided at this part.
2 is provided, and the gas pressure introduction valve 22 is connected to a gas pressure introduction valve actuator 23 that opens the gas pressure introduction valve 22 quickly during the intake stroke during partial cylinder operation. At the time, the actuator 23 for the gas pressure introduction valve
The gas pressure in the pressure regulating tank 20 is introduced into the combustion chamber 3 of the idle cylinder 1A by opening the gas pressure introduction valve 22 due to the operation of the cylinder 1A. At this point, connect the gas pressure introduction valve 2.
In the case of a 4-cycle 4-cylinder engine with cylinders in which the ignition order is 1→3→4→2, the valve opening period of No. 2 is 360 degrees.
The valve is set to open every 1°, and as described later, the maximum compression pressure as a sum of the maximum compression pressures of each inactive cylinder 1△ is set to be equal to the maximum combustion pressure of each operating cylinder 1B. ing.

また、24は、一端が主吸気通路4のスロットル弁6上
流に開口し他端が調圧タンク20に開口して調圧タンク
20に大気圧を導入する大気圧導入通路、25は、一端
が主吸気通路4のスロットル弁6下流に開口し他端が調
圧タンク20に開口して調圧タンク20に吸気負圧を導
入する口圧導入通路であって、上記大気圧導入通路24
の調圧タンク20への開口部には大気圧導入通路24を
開閉する大気圧導入弁26が配設されているとともに、
上記負圧導入通路25の調圧タンク20への開口部には
負圧導入通路25を間開する負圧導入弁27が配設され
ている。さらに、両導入弁26.27にはそれぞれ各導
入弁26.27を開閉作動させるアクチュエータ28.
29が連結されていて、該各アクチュエータ28.29
の作動により各導入弁26.27を開閉させて、調圧タ
ンク20への大気圧又は(1圧の導入をfli!I 1
mし、調圧タンク20のガス圧力つまり部分気筒運転時
に休止側気筒1Aに導入するガス圧力を調圧するように
した調圧手段30を構成している。
Reference numeral 24 denotes an atmospheric pressure introduction passage whose one end opens upstream of the throttle valve 6 of the main intake passage 4 and whose other end opens into the pressure regulating tank 20 to introduce atmospheric pressure into the pressure regulating tank 20; The atmospheric pressure introduction passage 24 is a mouth pressure introduction passage which opens downstream of the throttle valve 6 of the main intake passage 4 and whose other end opens into the pressure regulation tank 20 to introduce negative intake pressure into the pressure regulation tank 20.
An atmospheric pressure introduction valve 26 for opening and closing the atmospheric pressure introduction passage 24 is disposed at the opening to the pressure regulating tank 20, and
A negative pressure introduction valve 27 for opening the negative pressure introduction passage 25 is disposed at the opening of the negative pressure introduction passage 25 to the pressure regulating tank 20 . Further, each of the introduction valves 26.27 is provided with an actuator 28.28 for opening and closing each introduction valve 26.27.
29 are connected, each actuator 28.29
The introduction valves 26 and 27 are opened and closed by the operation of the pressure regulating tank 20 to introduce atmospheric pressure or (1 pressure)
A pressure regulating means 30 is configured to regulate the gas pressure in the pressure regulating tank 20, that is, the gas pressure introduced into the idle cylinder 1A during partial cylinder operation.

また、31はスロットル弁6の開度を制御するスロット
ル開度制御アクチュエータであって、該スロットル開度
制御アクチュエータ31は、休止側気筒1Aが停止状態
から作動を開始する9部分気筒運転から全気筒運転への
復帰時に、作動気筒数が2気筒から4気筒に増大するの
に伴い吸入空気量が急に増大変化することがないよう、
アクセルペダルとは独立してスロットル弁6の開度を減
少制御するためのものである。
Further, 31 is a throttle opening control actuator that controls the opening of the throttle valve 6, and the throttle opening control actuator 31 operates from a 9 partial cylinder operation in which the inactive cylinder 1A starts operating from a stopped state to a full cylinder operation. When returning to operation, the intake air amount does not suddenly increase or change due to the increase in the number of operating cylinders from 2 to 4 cylinders.
This is for controlling the opening degree of the throttle valve 6 to decrease independently of the accelerator pedal.

一方、40はイグニッションコイル14からの点火回数
によりエンジン回転数NEを検出する回転数センサ、4
1は稼動側吸気通路4bに配設されて稼動側気筒1Bの
吸気圧力PAを検出する吸気圧センサであって、この両
センサ40.41により、エンジン回転数N巳と稼動側
気筒1Bの吸気圧力PAとに基づいて稼動側気筒1Bの
最高燃焼圧力を把握するようにしている。また、42は
調圧タンク20のガス圧力P8を検出するガス圧センサ
、43は吸気弁停止用アクチュエータ12の動作状態に
より休止側気筒1Aの吸気弁10の作動の復帰を確認す
る吸気弁復帰確認用スイッチ、44は同様に排気弁停止
用アクチュエータ13の動作状態により休止側気筒1A
の排気弁11の作動の復帰を確認する排気弁復帰確認ス
イッチである。そして、これら各センサおよび各スイッ
チ40〜44の出力は、上記吸気弁停止用、排気弁停止
用、ガス圧導入弁用、大気圧導入弁用、負圧々入弁用お
よびスロットル弁用の各アクチュエータ12.13,2
3.28.29.31を作動制御するυj御手段として
のCPU等よりなるコントロールユニツ(−45に入力
可能になっている。
On the other hand, 40 is a rotational speed sensor that detects the engine rotational speed NE based on the number of ignitions from the ignition coil 14;
Reference numeral 1 denotes an intake pressure sensor 40 and 41, which is disposed in the working side intake passage 4b and detects the intake pressure PA of the working cylinder 1B. The maximum combustion pressure of the operating cylinder 1B is determined based on the pressure PA. Further, 42 is a gas pressure sensor that detects the gas pressure P8 in the pressure regulating tank 20, and 43 is an intake valve return confirmation that confirms the return of operation of the intake valve 10 of the idle cylinder 1A based on the operating state of the intake valve stop actuator 12. Similarly, the switch 44 for shutting down the cylinder 1A on the idle side depends on the operating state of the actuator 13 for stopping the exhaust valve.
This is an exhaust valve return confirmation switch that confirms that the operation of the exhaust valve 11 has returned to normal. The outputs of these sensors and switches 40 to 44 are for the intake valve stop, the exhaust valve stop, the gas pressure introduction valve, the atmospheric pressure introduction valve, the negative pressure entry valve, and the throttle valve. Actuator 12.13,2
3.28.29.A control unit (-45) consisting of a CPU and the like serves as a υj control means for controlling the operation of 3.28.29.31.

次に、上記コントロールユニット45の作動を第4図の
フローチャートにより説明するに、スタートして、先ず
ステップS1において回転数センサ4oからのエンジン
回転数NEおよび吸気圧せンサ41からの稼動側気筒1
Bの吸気圧力PAの信号を入力するとともに、部分気筒
運転中のフラグiの信号およびエンジン冷却水mTw(
エンジン温麿)の信号などを入力したのら、ステップS
2でこれらの信号から部分気筒運転条件が成立している
か否かを判別する。この判別が部分気筒運転条件の成立
しているYESの場合には、次のステップS3で部分気
筒運転中か否かを判別し、部分気筒運転中でないNoの
ときには全気筒運転から部分気筒運転への切換時である
と判断して、ステップS4で休止側気筒1Aの吸気弁1
0および排気弁11の開閉作動を停止トさせるよう吸気
弁停止用および排気弁停止用アクチュエータ12.13
に停止(8号を出)〕するとともに、ガス圧導入弁22
を一定周期毎(4気筒の場合360″毎)に開弁作動さ
せるようガス圧導入弁用アクチコエータ23に作動信号
を出力したのら、上記ステップS3の判別が部分気筒運
転中であるYESの場合と共に次のステップS5に進む
Next, the operation of the control unit 45 will be explained with reference to the flowchart of FIG.
In addition to inputting the signal of the intake pressure PA of B, the signal of the flag i during partial cylinder operation and the engine cooling water mTw (
After inputting the engine temperature signal etc., step S
At step 2, it is determined from these signals whether the partial cylinder operating condition is satisfied. If this determination is YES, indicating that the partial cylinder operation condition is satisfied, it is determined in the next step S3 whether the partial cylinder operation is in progress, and if it is No, the partial cylinder operation is changed from the full cylinder operation to the partial cylinder operation. It is determined that it is time to switch the intake valve 1 of the cylinder 1A on the idle side in step S4.
intake valve stop actuator and exhaust valve stop actuator 12.13 to stop the opening/closing operation of 0 and exhaust valve 11;
(No. 8 exits)] and the gas pressure introduction valve 22
After outputting an activation signal to the gas pressure introduction valve acticoator 23 to open the valve at regular intervals (every 360'' in the case of 4 cylinders), if the determination in step S3 is YES indicating that partial cylinder operation is in progress. At the same time, the process proceeds to the next step S5.

次いで、ステップ$5において、調圧タンク20の調圧
すべき目標ガス圧力値Peoを計棹する。
Next, in step $5, a target gas pressure value Peo to be regulated in the pressure regulating tank 20 is determined.

この目標ガス圧力値Peoは、稼動側気筒1Bの吸気圧
力PAとエンジン回転数NEとに駐づいて休止側気筒1
Aの圧縮行程終了時点における休止側気筒1A全体とし
ての最高圧縮圧力(第1気筒と第4気筒との最高圧縮圧
力を合算した圧力)が各稼動側気筒1B(第2又は第3
気筒)の最高燃焼圧力と等しくなるようにPeo −f
  (PA、Nε)より算出されるもので、1つの休止
側気筒で最高圧縮圧ツノを賄うものに比べて1/2の低
い目標値で済み、このことから、エアポンプ等が不要で
、大気圧と吸気負圧との導入の調整によって十分に目標
ガス圧力値PEl0を賄い(qる利点がある。
This target gas pressure value Peo is determined based on the intake pressure PA of the operating cylinder 1B and the engine speed NE.
The maximum compression pressure of the entire inactive cylinder 1A (the sum of the maximum compression pressures of the first cylinder and the fourth cylinder) at the end of the compression stroke of A is the same as that of each active cylinder 1B (second or third cylinder).
Peo −f to be equal to the maximum combustion pressure of the cylinder)
(PA, Nε), and the target value is 1/2 lower than that of a system in which the maximum compression pressure horn is covered by one cylinder on the idle side. Therefore, there is no need for an air pump, etc., and the atmospheric pressure There is an advantage that the target gas pressure value PE10 can be sufficiently covered by adjusting the introduction of the intake pressure and the intake negative pressure.

そして、上記で算出した目標ガス圧力値Ps。And the target gas pressure value Ps calculated above.

に基づいて調圧タンク20のガス圧力Paが目標(直P
soになるように以下フィードバック制御される。すな
わち、ステップS6でガス圧センサ42からの調圧タン
ク2oのガス圧力Paの信号を入力したのち、ステップ
S7で目標ガス圧力mp80と実際のガス圧力Peとの
差I Ps 0−Pa1が許容調整誤差Δρ内にあるか
否かを判別する。
Based on the target gas pressure Pa of the pressure regulating tank 20 (direct P
Feedback control is then performed so that so. That is, after inputting the signal of the gas pressure Pa in the pressure regulating tank 2o from the gas pressure sensor 42 in step S6, in step S7 the difference between the target gas pressure mp80 and the actual gas pressure Pe is determined to be the allowable adjustment. It is determined whether the error is within the error Δρ.

この判別が1Pso−Pal≦ΔPのYESのときには
、許容調整誤差Δρ内の微小差であり、かつサージング
の発生を防止する見地から自らに制御を終了する。一方
、上記判別が1Peo−P81〉ΔPのNOの場合には
、さらにステップS8で目標1mPsoと実測ガス圧力
Psどの大小を比較判別し、Peo>PaのYESのと
きにはステップ$9で大気圧導入弁26を微小期間開く
よう大気圧導入弁用アクチュエータ28に開弁信号を出
力する一方、PBO≦PGのNoのときにはステップS
 L6で負圧導入弁27を微小期間開くよう負圧導入弁
用アクチュエータ29に開弁信号を出力して、それぞれ
ステップS6に戻ることを繰返し、調圧タンク20のガ
ス圧力P8の目標1ifJ P sOとの差が許容調整
誤差ΔP内に収まるようにする。
If this determination is YES that 1Pso-Pal≦ΔP, it is a minute difference within the allowable adjustment error Δρ, and the control is automatically terminated from the viewpoint of preventing the occurrence of surging. On the other hand, if the above determination is NO of 1Peo-P81>ΔP, the target 1mPso and the actual gas pressure Ps are further compared and determined in step S8, and when Peo>Pa is YES, the atmospheric pressure inlet valve is opened in step S9. A valve opening signal is output to the atmospheric pressure introduction valve actuator 28 to open the valve 26 for a minute period, and when PBO≦PG (No), step S is performed.
At L6, a valve opening signal is output to the negative pressure introduction valve actuator 29 to open the negative pressure introduction valve 27 for a minute period, and the process of returning to step S6 is repeated to obtain the target 1ifJ P sO of the gas pressure P8 in the pressure regulating tank 20. so that the difference between them falls within the allowable adjustment error ΔP.

これに対し、上記ステップS2での判別が全気筒運転条
件の成立しているNOの場合には、ステップS oで全
気筒運転中か否かを判別し、全気筒運転中でないNoの
ときには部分気筒運転がら全気筒運転への切換時である
と判断して、先ずステップS 12でガス圧導入弁22
を開弁状態に維持するようガス圧導入弁用アクチュエー
タ23に停止信号を出力するとともに、ステップS 1
3で休止側気筒1Aの排気弁11を開閉作動させるよう
排気弁停止用アクチュエータ13に復帰信号を出力する
。しかる後、ステップS 14で排気弁復帰確認用スイ
ッチ44からの信号の有無に応じた排気弁復帰フラグJ
t[出して、ステップS +sでこの排気弁復帰フラグ
Jに基づき排気弁11の作動が復帰を終了したか否かを
判別し、この判別がNoの場合には上記ステップS 1
4に戻って排気弁11の作動の復帰の終了を待つ。そし
て、排気弁11の作動の復帰が終了したYESの時点で
ステップS +sに進み、該ステップS 16で初めて
休止側気筒1Aの吸気弁10を開閉作動させるよう吸気
弁停止用アクチュエ゛−夕12に復帰信号を出力したの
ら、ステップS yで吸気弁復帰確認用スイッチ43か
らの信号の有無に応じた吸気弁復帰フラグkを読出し、
ステップS +sでこの吸気弁復帰フランジkに基づき
吸気弁10の作動の復帰が終了づるのを侍って、ステッ
プS +sで吸入空気向の唐突な増大を防止すべくス1
コツドル弁6を若干量じるようスロットル開度制御アク
チュエータ31にスロットル開度あり御信号を出力して
、終了する。一方、上記ステップS nでの判別が全気
筒運転中であるYESの場合にはそのまま終了する。
On the other hand, if the determination in step S2 is NO, indicating that the all cylinder operating condition is met, it is determined in step S o whether or not all cylinders are in operation, and if NO, in which all cylinders are not in operation, the partial It is determined that it is time to switch from cylinder operation to all cylinder operation, and first, in step S12, the gas pressure introduction valve 22 is turned on.
A stop signal is output to the gas pressure introduction valve actuator 23 to maintain the valve in the open state, and step S1
At step 3, a return signal is output to the exhaust valve stop actuator 13 to open and close the exhaust valve 11 of the idle cylinder 1A. After that, in step S14, the exhaust valve return flag J is set depending on the presence or absence of a signal from the exhaust valve return confirmation switch 44.
t[, and in step S+s, it is determined whether or not the operation of the exhaust valve 11 has finished returning based on this exhaust valve return flag J, and if this determination is No, the step S1 is performed.
4 and waits for the exhaust valve 11 to return to operation. When the return of the operation of the exhaust valve 11 is completed (YES), the process proceeds to step S+s, and in step S16, the intake valve stop actuator 12 is operated to open and close the intake valve 10 of the inactive cylinder 1A for the first time. After outputting the return signal to , the intake valve return flag k corresponding to the presence or absence of the signal from the intake valve return confirmation switch 43 is read out in step Sy.
At step S+s, the return of the operation of the intake valve 10 is completed based on the intake valve return flange k, and at step S+s, the intake valve 10 is stopped in order to prevent a sudden increase in the direction of intake air.
A throttle opening control signal is output to the throttle opening control actuator 31 so as to slightly adjust the throttle valve 6, and the process ends. On the other hand, if the determination in step S n is YES, indicating that all cylinders are in operation, the process ends immediately.

以上のフローに、15いて、ステップ82.Sllによ
り、部分気筒運転から全気筒運転への復帰時を検出する
復帰時検出手段46を構成している。また、ステップS
 13〜S +sににす、上記復帰時検出手段46の出
力を受け、休止側気筒1△の排気弁11(つまり燃料供
給通路としての休止側吸気通路4aを除く大気側への開
放弁〉を吸気弁10よりも先に開作動させる筒内減圧手
段47を構成している。
In the above flow, step 15 and step 82. The Sll constitutes a return time detection means 46 that detects the time of return from partial cylinder operation to full cylinder operation. Also, step S
13~S+s, in response to the output of the return detecting means 46, the exhaust valve 11 of the idle cylinder 1△ (that is, the valve that opens to the atmosphere excluding the idle air intake passage 4a as a fuel supply passage) is activated. It constitutes an in-cylinder pressure reducing means 47 that is opened before the intake valve 10 is opened.

したがって、上記実施例においては、部分気筒運転時に
は、コントロールユニット45により調圧手段30が制
御されて、調圧タンク20のガス圧力PBが、エンジン
回転数NEと稼動側気筒1Bの吸気圧力PAとに基づい
て稼動側気筒1Bの最高燃焼圧力を把握すべく算出され
た目標値PBOになるように調圧される。このことによ
り、各休止側気筒1A(第1気筒と第4気筒)の360
°毎の圧縮行程終了時点における@高圧縮圧力が第5図
(a )及び(d )に示す如く稼動側気筒1B(第2
気筒および第3気筒)の最高燃焼圧力(同図(b)及び
(c)参照)の略1/2の圧力値となって、これら各休
止側気筒1Aの最高圧縮圧力を合算した360°毎の全
体のRi!%i圧縮圧力が同図(e )に示す如く稼動
調気11Bの最高燃焼圧力に等しくなるように見込み制
御されることになる。その結果、上記の如く調圧された
調圧タンク20のガス圧力が休止側気筒1Aに導入され
ると、同図(f)に示す如く各サイクルでの稼動側気筒
1Bと休止側気筒1Aとの最高圧力が略一致することに
なり、トルク変動を抑制して低周波の撮動の低減化を図
ることができる。
Therefore, in the above embodiment, during partial cylinder operation, the pressure regulating means 30 is controlled by the control unit 45, and the gas pressure PB in the pressure regulating tank 20 is adjusted to match the engine speed NE and the intake pressure PA of the operating cylinder 1B. The pressure is regulated to the target value PBO, which is calculated based on the maximum combustion pressure of the operating cylinder 1B. As a result, 360
As shown in Figure 5 (a) and (d), the @high compression pressure at the end of the compression stroke for each
The pressure value is approximately 1/2 of the maximum combustion pressure (see (b) and (c) in the same figure) of the cylinders 1A and 3rd cylinder), and the maximum compression pressure of each cylinder 1A on the idle side is added up every 360 degrees. The entire Ri! The %i compression pressure is prospectively controlled so as to be equal to the maximum combustion pressure of the operating air conditioner 11B, as shown in FIG. 2(e). As a result, when the gas pressure of the pressure regulating tank 20 regulated as described above is introduced into the idle cylinder 1A, the operating cylinder 1B and the idle cylinder 1A in each cycle are separated as shown in FIG. The maximum pressures of the two are substantially the same, and it is possible to suppress torque fluctuations and reduce low-frequency imaging.

そして、このような部分気筒運転から全気筒運転への復
帰時には、筒内減圧手段47により休止側気筒1Aの排
気弁11が吸気弁10よりもんに間作動制御されるので
、休止側気筒1Δに閉込められたガス圧力は休止側排気
通路7aを経て大気に開放されて、休止側気筒1△内が
減圧される。
When returning from such partial cylinder operation to full cylinder operation, the in-cylinder pressure reducing means 47 controls the operation of the exhaust valve 11 of the idle cylinder 1A more than the intake valve 10. The trapped gas pressure is released to the atmosphere through the idle-side exhaust passage 7a, and the pressure inside the idle-side cylinder 1Δ is reduced.

このことにより、モの後に休止側気筒1Δの吸気10が
開作動しても、燃焼室3から休止側吸気通路4aへのガ
ス流れは生じず、燃料噴射弁8からの燃料は休止調気I
R1Aにスムーズに導入されて。
As a result, even if the intake air 10 of the cylinder 1Δ on the idle side is operated to open after the cylinder 1Δ on the idle side, gas flow from the combustion chamber 3 to the intake passage 4a on the idle side does not occur, and the fuel from the fuel injection valve 8 is transferred to the idle air conditioner I
It was smoothly introduced into R1A.

休止側気筒1Aでの空燃比がほぼ所期通りに確保される
ことになる。その結果、休止側気筒1Aと稼動側気筒1
Bとの間の燃焼バラツキが小さく抑えられるので、部分
気筒運転から全気筒運転への復帰を不快なトルクショッ
クなくスムーズに行うことができ、車両の乗心地性の向
上を図ることができる。
The air-fuel ratio in the deactivated cylinder 1A is maintained almost as expected. As a result, the idle cylinder 1A and the active cylinder 1
Since the combustion variation with respect to B is suppressed to a small level, the return from partial cylinder operation to full cylinder operation can be performed smoothly without unpleasant torque shock, and the ride comfort of the vehicle can be improved.

また、上記実施例では、調圧タンク20は休止側吸気通
路4aとは別に独立して設けられていて、上述の如く調
圧されたガス圧力Peが貯えられているので、全気筒運
転から部分気筒運転への切換直後においても、調圧タン
ク20の調圧されたガス圧力PBを休止側気筒1Δに直
ちに応答性良く導入することができて、休止側気筒1A
と稼動側気筒1Bとの最高圧力を一致させることができ
、よって部分気筒運転全域に亘って上記トルク変動の抑
制を有効に行うことができる。
Further, in the above embodiment, the pressure regulating tank 20 is provided independently from the idle side intake passage 4a and stores the gas pressure Pe regulated as described above, so that the pressure regulating tank 20 is Even immediately after switching to cylinder operation, the regulated gas pressure PB of the pressure regulating tank 20 can be immediately introduced into the idle cylinder 1Δ with good responsiveness, and the idle cylinder 1A
The maximum pressures of the cylinder 1B and the operating cylinder 1B can be made equal to each other, so that the torque fluctuation can be effectively suppressed over the entire partial cylinder operation.

さらに、部分気筒運転時に休止側気筒1Aに導入される
ガス圧力PBの調圧は、エンジン回転数Nεと稼動側気
筒1Bの吸気圧力PAとに基づいて稼動側気筒1Bの最
高燃焼圧力を把握し、この把握した最高燃焼圧力に休止
側気筒1A全体としての最高圧縮圧力が等しくなるよう
に行われるので、燃焼圧力を決定するエンジン負荷、点
火時期、空燃比、EGR′$などの要因に影響されるこ
とがなく、かつガス洩れや着火性などの経年変化する要
因に影響されることがなく、最高燃焼圧力に基づく調圧
制御により稼動側気筒1Bと休止側気筒1Aとの最高圧
力の一致制御を精喰良く行うことができ、トルク変動を
より一層抑制できて振OJの低減化を一層図ることがで
きる。
Furthermore, the pressure regulation of the gas pressure PB introduced into the idle cylinder 1A during partial cylinder operation is determined by determining the maximum combustion pressure of the active cylinder 1B based on the engine rotation speed Nε and the intake pressure PA of the active cylinder 1B. Since the maximum compression pressure of the entire idle cylinder 1A is made equal to the maximum combustion pressure determined, the combustion pressure is not affected by factors such as engine load, ignition timing, air-fuel ratio, and EGR'$. The maximum pressure of the active cylinder 1B and the idle cylinder 1A can be controlled to match by pressure regulation control based on the maximum combustion pressure, and is not affected by factors that change over time such as gas leakage or ignitability. It is possible to perform this with high precision, to further suppress torque fluctuations, and to further reduce vibration OJ.

また、上記実施例では、第1気筒と第4気筒との各休止
側気筒1Aの360’mの最高圧縮圧力を合算した全体
としての最高圧縮圧力が稼動側気筒1Bの最高燃焼圧力
に等しくなるようにしたので、1つの休止側気筒1Aで
720°毎に賄う場合に比べて調圧タンク20で調圧す
るガス圧力がほぼ1/2の低い圧力値で済み、その結果
、エンジンに生成する吸気負圧と大気圧との導入調整に
よって調圧でき、エアポンプが不要であるなど、構造を
簡略なものとすることができる。
Further, in the above embodiment, the total maximum compression pressure obtained by adding up the maximum compression pressure of 360'm of each of the idle cylinders 1A of the first cylinder and the fourth cylinder is equal to the maximum combustion pressure of the active cylinder 1B. As a result, the gas pressure regulated in the pressure regulating tank 20 is approximately 1/2 lower than that in the case where one cylinder 1A on the idle side is used to cover every 720°, and as a result, the intake air generated in the engine is reduced. The pressure can be regulated by adjusting the introduction of negative pressure and atmospheric pressure, and the structure can be simplified, such as eliminating the need for an air pump.

(変形例) 本発明は上記の如き実施例のほかに、以下のような変形
例をも包含するものである。
(Modifications) In addition to the embodiments described above, the present invention also includes the following modifications.

■ 上記実施例では、部分気筒運転から全気筒運転への
復帰時には休止調気@1Aの排気弁11を吸気弁10よ
りも先に開作動させて、休止開気1d1A内のガス圧力
を大気に開放して減圧したが、その他、ガス圧導入弁2
2および大気圧導入弁26の双方を吸気弁10よりし先
に開作動させることにより、休止側気筒1A内のガス圧
力を大気に開放して減圧してもよい。要は、休止側気筒
1Δ内に閉じ込められたガス圧力により該休止側気筒1
△への燃料が吹返されないよう、休止側気筒1Aの燃料
供給通路(休止側吸気通路4a)を除く大気側への開放
弁を吸気弁10よりも先に開作動させればよい。
■ In the above embodiment, when returning from partial cylinder operation to full cylinder operation, the exhaust valve 11 of the pause air adjustment @1A is opened before the intake valve 10, and the gas pressure in the pause air adjustment 1d1A is brought to the atmosphere. Although the pressure was reduced by opening, the gas pressure introduction valve 2
The gas pressure in the idle cylinder 1A may be released to the atmosphere and reduced by opening both the intake valve 2 and the atmospheric pressure introduction valve 26 before the intake valve 10. In short, due to the gas pressure trapped in the inactive cylinder 1Δ, the inactive cylinder 1
In order to prevent the fuel from being blown back to Δ, the valves that open to the atmosphere, except for the fuel supply passage of the cylinder 1A on the idle side (the intake passage 4a on the idle side), may be opened before the intake valve 10 is opened.

■ 休止側気筒1Aにおいて調圧のためのガス圧導入弁
22の開弁周期を4気筒の場合720°毎に設定して、
休止側気筒1A全体としてではなく各々のR高圧縮圧力
が稼動側気筒1Bの最高燃焼圧力と等しくなるように児
込み制御により調圧してもよい。この場合、調圧タンク
20の調圧すべきガス圧力が上記実施例と比べて約2倍
に高くなるので、大気圧導入通路24の途中にエアポン
プを介設して、該大気圧導入通路24から大気圧よりも
高い圧力を調圧タンク20に導くことにより、調圧の応
答性等を高めるようにすることが好ましい。
■ In the case of 4 cylinders, the opening period of the gas pressure introduction valve 22 for pressure regulation in the idle cylinder 1A is set to every 720°,
The pressure may be regulated by child control so that the R high compression pressure of each of the cylinders 1A on the idle side becomes equal to the maximum combustion pressure of the cylinder 1B on the active side, not for the entire cylinder 1A on the idle side. In this case, since the gas pressure to be regulated in the pressure regulating tank 20 is about twice as high as in the above embodiment, an air pump is interposed in the middle of the atmospheric pressure introduction passage 24 to It is preferable to introduce pressure higher than atmospheric pressure to the pressure regulation tank 20 to improve the responsiveness of pressure regulation.

■ 休止側気筒1Aにおけるガス圧導入弁22を不要に
してその吸気弁10で兼用させるようにしてもよい。こ
の場合、 gが調圧タンク20に連通ずるガス圧導入通
路の他端を、休止側吸気通路4aに連通接続し、この接
続部上流の休止側吸気通路4aに第1切換弁を、ガス圧
導入通路に第2切換弁をそれぞれ設け、全気筒運転時に
は第1切換弁を開作動させるとともに第2切換弁を閉作
動させて、通常どおり休止側吸気通路4aから吸気を供
給する一方、部分気筒運転時には第1切換弁を閉作動さ
せるとともに第2切換弁を開作動させて、調圧タンク2
0のガス圧力をガス圧導入通路および休止側吸気通路4
aの一部を利用して、休止側気筒1Aに導入する。さら
に、休止側気筒1Aの吸気弁10を、そのアクチユエー
タにより、全気筒運転時には吸気行程にて開弁作動し、
部分気筒運転時には吸気行程後期のみにて調圧のために
開弁作動するように可変制御するようにすればよい。
(2) The gas pressure introduction valve 22 in the idle cylinder 1A may be omitted and its intake valve 10 may be used for the same purpose. In this case, the other end of the gas pressure introduction passage that communicates with the pressure regulating tank 20 is connected to the idle side intake passage 4a, and the first switching valve is connected to the idle side intake passage 4a upstream of this connection part to control the gas pressure. A second switching valve is provided in each of the introduction passages, and when all cylinders are in operation, the first switching valve is opened and the second switching valve is closed, and intake air is supplied from the idle side intake passage 4a as usual. During operation, the first switching valve is closed and the second switching valve is opened to open the pressure regulating tank 2.
0 gas pressure to the gas pressure introduction passage and the idle side intake passage 4
A part of the air is introduced into the idle cylinder 1A. Furthermore, the actuator opens the intake valve 10 of the idle cylinder 1A during the intake stroke when all cylinders are in operation,
During partial cylinder operation, variable control may be performed to open the valve for pressure regulation only in the latter half of the intake stroke.

■ 上記実施例では稼動側気筒1Bの吸気圧力PAとエ
ンジン回転数Nεとに基づいて稼動側気筒1Bの最高燃
焼圧力を把握して調圧タンク20のガス圧力の調圧を児
込み制御したが、これに代え、クランク角とその角速度
変動とにより休止側および稼動側の各気筒の角速度変動
つまりトルク変動を検出し、両者が一致するように調圧
タンク20のガス圧力のフィードバック制御を行うよう
にしてもよい。すなわち、稼動側気筒1Bの燃焼圧力お
よび休止側気筒1Aの圧縮圧力はそれぞれクランク軸に
モーメントとして作用し、これによりクランク軸に角速
度変動を惹起するとともに、稼動開気@1Bと休止側気
筒1Aとがそれぞれ角速度変動を大きく生じる時期つま
り最高圧力発生時期は経時的なズレがあり、4気筒の場
合クランク角で180゛毎に交互とイする。このこと力
日ら、クランク角を検出するクランク角センサと、クラ
ンク軸の角速度変動を検出する角速度センサとを設け、
これら各センサの出力信号をコントロールユニット45
に入力して、稼動側気筒1Bの最高燃焼圧力に相当する
クランク軸の角速度変動(トルク変動)と休止側気筒1
A全体としての最高圧縮圧力に相当するクランク軸の角
速度変動(トルク変動)を求め、この両角達文変動が等
しくなるように調圧タンク20の調圧をフィードバック
制御lするものである。また、上記クランク角センサお
よび角速麻センサの代わりに、稼動側気筒1Bの燃焼圧
力および休止側気筒1Aの圧縮圧力をそれぞれ直接検出
する圧力センサを設けて、これらから稼動側気筒1Bの
最高燃焼圧力および休止側気筒1A全体としての最高圧
縮圧力を痺出し、両者が一致するようフィードバック制
御により調印を行うようにしてもよい。
■ In the above embodiment, the maximum combustion pressure of the working cylinder 1B is determined based on the intake pressure PA of the working cylinder 1B and the engine speed Nε, and the pressure regulation of the gas pressure in the pressure regulating tank 20 is controlled. Instead of this, the angular velocity fluctuations, that is, the torque fluctuations, of each cylinder on the idle side and the operating side are detected based on the crank angle and its angular velocity fluctuations, and feedback control of the gas pressure in the pressure regulating tank 20 is performed so that the two coincide. You can also do this. That is, the combustion pressure of the active cylinder 1B and the compression pressure of the idle cylinder 1A each act on the crankshaft as a moment, thereby causing angular velocity fluctuations on the crankshaft, and the difference between the operating open air @ 1B and the idle cylinder 1A. The timing at which large angular velocity fluctuations occur, that is, the timing at which the maximum pressure is generated, varies over time, and in the case of a four-cylinder engine, the timing alternates every 180 degrees of crank angle. For this reason, Rikihi et al. installed a crank angle sensor that detects the crank angle and an angular velocity sensor that detects the angular velocity fluctuation of the crankshaft.
The output signals of these sensors are sent to the control unit 45.
The angular velocity fluctuation (torque fluctuation) of the crankshaft corresponding to the maximum combustion pressure of the active cylinder 1B and the idle cylinder 1
The angular velocity fluctuation (torque fluctuation) of the crankshaft corresponding to the maximum compression pressure as a whole is determined, and the pressure regulation in the pressure regulating tank 20 is feedback-controlled so that both angular velocity fluctuations are equal. In addition, instead of the above crank angle sensor and angular velocity hemp sensor, pressure sensors are provided that directly detect the combustion pressure of the active cylinder 1B and the compression pressure of the idle cylinder 1A, and from these, the maximum combustion pressure of the active cylinder 1B is determined. The pressure and the maximum compression pressure of the entire deactivated cylinder 1A may be determined, and the signature may be executed by feedback control so that the two match.

■ 上記実施例では、調圧タンク20を休止側吸気通路
4aとは別個に独立して設けたが、上述の従来技術の如
く、該休止側吸気通路4aを、部分気筒運転時に休止側
気筒1Δに導入するガス圧力を調圧するための調圧室と
して用いるようにしてもよい。
(2) In the above embodiment, the pressure regulating tank 20 is provided separately and independently from the idle side intake passage 4a, but as in the prior art described above, the idle side intake passage 4a is connected to the idle side cylinder 1Δ during partial cylinder operation. It may also be used as a pressure regulating chamber for regulating the gas pressure introduced into the chamber.

■ 部分気筒運転時、稼動側気筒1Bの最高燃焼圧力に
休止側気筒1A全体としての最高圧縮圧力を一致させる
ようにしたが、単に稼動側気筒1Bの燃焼圧力に休止側
気筒1Aの圧縮圧力を近付けるようにしてもよい。
■ During partial cylinder operation, the highest compression pressure of the idle cylinder 1A as a whole was made to match the maximum combustion pressure of the active cylinder 1B, but the compression pressure of the idle cylinder 1A was simply set to the combustion pressure of the active cylinder 1B. You may try to bring it closer.

■ 上記実施例では4気筒エンジンの場合について述べ
たが、その他の多気筒エンジンにも同様に適用可能であ
る。また、吸・排気弁の数も上述の2バルブタイプの他
、4パルプタイプ等、公知の各種タイプのものにも適用
可能であり、吸気系、排気系の構造は特に限定されない
(2) In the above embodiment, the case of a four-cylinder engine was described, but the present invention can be similarly applied to other multi-cylinder engines. Moreover, the number of intake and exhaust valves can be applied to various known types such as the 4-pulp type in addition to the above-mentioned 2-valve type, and the structures of the intake system and exhaust system are not particularly limited.

(発明の効果) 以上説明したように、本発明の気筒数制御エンジンの振
動低減装置によれば、部分気筒運転から全気筒運転への
復1帰時には、休止側気筒の燃料供給通路を除く大気側
開放通路の開放弁の開作動により休止側気筒内を減圧し
たのち吸気弁を開作動させて、休止側気筒での燃料の吹
返しを防止するようにしたので、休止側気筒での空燃比
をほぼ所期通りに確保して気筒内の燃焼バラツキを抑え
ることができ、全気筒運転への復帰を不快なトルクショ
ックなくスムーズに行うことができ、よって乗心地性能
の向上を図ることができる。
(Effects of the Invention) As explained above, according to the vibration reduction device for an engine with cylinder number control of the present invention, when returning from partial cylinder operation to full cylinder operation, the atmosphere excluding the fuel supply passage of the cylinder on the idle side The air-fuel ratio in the idle cylinder is reduced by opening the open valve in the side open passage to reduce the pressure in the cylinder on the idle side, and then opening the intake valve to prevent fuel blowback in the cylinder on the idle side. It is possible to ensure that the engine speed is almost as expected, suppressing combustion variations within the cylinders, and allowing a smooth return to all-cylinder operation without unpleasant torque shock, thereby improving ride comfort. .

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を例示するもので、第1図はその
全体類18構成図、第2図は弁停止機hMの平面図、第
3図は第2図のIII−III線断面図、第4図はコン
トロールユニットの作動を説明するフローチャート図、
第5図(a )〜(f)はそれぞれ第1〜第4気筒、休
止側気筒全体および金気筒の圧力変化を示す説明図であ
る。 1A・・・休止側気筒、1B・・・稼動側気筒、71.
 a・・・休止側吸気通路、4b・・・稼動側吸気通路
、6・・・スロットル弁、10・・・吸気弁、11・・
・排気弁、20・・・調圧タンク、21・・・ガス圧導
入通路、22・・・ガス圧導入弁、27・・・負圧導入
弁、30・・・調圧手段、31・・・スロットル弁開度
制御アクヂュエータ、44・・・排気弁捜帰確認用スイ
ッチ、45・・・コントロールユニツ1−146・・・
復帰時検出手段、47・・・筒内減圧手段。 特許出願人    マツダ株式会社 代  理  人     弁理士  前  1)  弘
第3図 第2図 ・ ]Q ■二 手続補正歯〈方式) 昭和61年2月24日 1、事件の表示 昭和60年 特 許 顎 第225379号2、発明の
名称 気筒数制御エンジンの撮動低減装置 3、補正をする者 事件との関係  特許出願人 住  所  広島県安芸郡府中町新地3番1号名  称
  (313)  マツダ株式会社代表者  山 本 
健 − 4、代理人 〒550電06 (445) 2128住
  所 大阪市西区靭本町1丁目4番8号 太平ビル氏
  名 弁理士(7793)前  1)   弘5 補
正命令の日付 昭和61年1月8日(発送日61.1.28>7、補正
の内容 明SOtの第28頁第6行目〜同頁第8行目の[第5図
(a )〜(f)はそれぞれ・・・(中略)・・・を示
す説明図である。」とあるのを、[第5図は気筒の圧力
変化を示7j′説明図である。]に補正する。 以上
The drawings illustrate an embodiment of the present invention, and FIG. 1 is a general configuration diagram of the 18, FIG. 2 is a plan view of the valve stopper hM, and FIG. 3 is a cross-sectional view taken along the line III--III in FIG. 2. , FIG. 4 is a flow chart diagram explaining the operation of the control unit,
FIGS. 5(a) to 5(f) are explanatory diagrams showing pressure changes in the first to fourth cylinders, all cylinders on the idle side, and the gold cylinder, respectively. 1A...Cylinder on the idle side, 1B...Cylinder on the operating side, 71.
a... Inactive side intake passage, 4b... Operating side intake passage, 6... Throttle valve, 10... Intake valve, 11...
- Exhaust valve, 20... Pressure regulation tank, 21... Gas pressure introduction passage, 22... Gas pressure introduction valve, 27... Negative pressure introduction valve, 30... Pressure regulation means, 31...・Throttle valve opening control actuator, 44...Exhaust valve return confirmation switch, 45...Control unit 1-146...
Return detection means, 47... Cylinder pressure reduction means. Patent Applicant Mazda Motor Corporation Representative Patent Attorney Former 1) Hiroshi Figure 3 Figure 2 / ] Q ■ Two-procedure correction tooth (method) February 24, 1985 1, Display of the case 1985 Patent jaw No. 225379 2, Name of the invention Image reduction device for cylinder number control engine 3, Relationship to the case of the person making the correction Patent applicant address 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Name (313) Mazda Stock Company representative Yamamoto
Ken-4, Agent: 550 Den 06 (445) 2128 Address: Taihei Building, 1-4-8 Utsubohonmachi, Nishi-ku, Osaka Name: Patent Attorney (7793) 1) Ko 5 Date of amendment order: January 1985 8th (shipment date 61.1.28 > 7, contents of amendment SOt, page 28, line 6 to line 8 of the same page [Figures 5 (a) to (f) are respectively... (omitted)...'' has been corrected to ``Figure 5 is an explanatory diagram showing pressure changes in the cylinder 7j'.''.

Claims (1)

【特許請求の範囲】[Claims] (1)低負荷運転域で作動を休止する休止側気筒と、常
時作動する稼動側気筒とを備え、部分気筒運転時に休止
側気筒のガス圧力を高めて稼動側気筒の燃焼圧力に休止
側気筒の圧縮圧力を近づけるようにした気筒数制御エン
ジンの振動低減装置において、部分気筒運転から全気筒
運転への復帰時を検出する復帰時検出手段と、該復帰時
検出手段の出力を受け、休止側気筒における燃料供給通
路を除く大気側へ開放する通路の開放弁を吸気弁よりも
先に開作動させる筒内減圧手段とを備えたことを特徴と
する気筒数制御エンジンの振動低減装置。
(1) Equipped with a deactivated cylinder that stops operating in a low-load operating range and an active cylinder that is constantly activated, and during partial cylinder operation, the gas pressure of the deactivated cylinder is increased to match the combustion pressure of the active cylinder to the deactivated cylinder. In a vibration reduction device for an engine that controls the number of cylinders so as to bring compression pressures closer to each other, the apparatus includes a return detection means for detecting the time of return from partial cylinder operation to full cylinder operation, and a return detection means that receives the output of the return detection means and detects when the engine is at rest. A vibration reduction device for an engine with a controlled number of cylinders, characterized in that it is equipped with an in-cylinder pressure reducing means that opens a release valve of a passage opened to the atmosphere side other than a fuel supply passage in a cylinder before an intake valve.
JP22537985A 1985-10-09 1985-10-09 Vibration reducing device for cylinder number control engine Pending JPS6285141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22537985A JPS6285141A (en) 1985-10-09 1985-10-09 Vibration reducing device for cylinder number control engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22537985A JPS6285141A (en) 1985-10-09 1985-10-09 Vibration reducing device for cylinder number control engine

Publications (1)

Publication Number Publication Date
JPS6285141A true JPS6285141A (en) 1987-04-18

Family

ID=16828427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22537985A Pending JPS6285141A (en) 1985-10-09 1985-10-09 Vibration reducing device for cylinder number control engine

Country Status (1)

Country Link
JP (1) JPS6285141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174857A (en) * 2009-02-02 2010-08-12 Toyota Motor Corp Device for controlling internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174857A (en) * 2009-02-02 2010-08-12 Toyota Motor Corp Device for controlling internal combustion engine

Similar Documents

Publication Publication Date Title
US6523504B2 (en) Control system for controlling variable valve type internal combustion engine
EP1054150B1 (en) Diesel engine control on engine-stop
JP2009513875A (en) Exhaust gas recirculation system
US20030164148A1 (en) Method of operating a multi-cylinder internal combustion engine
JPH01294936A (en) Method and device for controlling injection of fuel
JPS6285141A (en) Vibration reducing device for cylinder number control engine
EP0769613B1 (en) A system for controlling the fuel/air supply of a reciprocating internal combustion engine
JP2008303744A (en) Control device for internal combustion engine
JPS6285142A (en) Vibration reducing device for cylinder number control engine
JPS6287628A (en) Vibration damping device for cylinder number controlling engine
JPS6285144A (en) Vibration reducing device for cylinder number control engine
JPS6285143A (en) Vibration reducing device for cylinder number control engine
JPS6299642A (en) Vibration damping device for cylinder number control engine
JP3974331B2 (en) Engine control device
JPS6285140A (en) Vibration reducing device for cylinder number control engine
JPH04101031A (en) Fuel feeder of internal combustion engine
JPS6244122Y2 (en)
JP2010229911A (en) Control device for variable valve mechanism
JP2605721Y2 (en) Engine with turbocharger
JP4432759B2 (en) Control device for internal combustion engine for vehicle
JPS6270631A (en) Vibration reducing device for number of operating cylinder control engine
JPS5862371A (en) Ignition device of engine equipped with supercharger
JPS58158336A (en) Cylinder number controllable engine
JPS595846A (en) Four-cylinder internal combustion engine
JPS6053631A (en) Control device for number of operating cylinder controlled engine