[go: up one dir, main page]

JPS626634B2 - - Google Patents

Info

Publication number
JPS626634B2
JPS626634B2 JP57130272A JP13027282A JPS626634B2 JP S626634 B2 JPS626634 B2 JP S626634B2 JP 57130272 A JP57130272 A JP 57130272A JP 13027282 A JP13027282 A JP 13027282A JP S626634 B2 JPS626634 B2 JP S626634B2
Authority
JP
Japan
Prior art keywords
less
strength
grain size
steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57130272A
Other languages
Japanese (ja)
Other versions
JPS5923855A (en
Inventor
Kazuhiro Kanero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP13027282A priority Critical patent/JPS5923855A/en
Publication of JPS5923855A publication Critical patent/JPS5923855A/en
Publication of JPS626634B2 publication Critical patent/JPS626634B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は炭化物形成元素を含有する高温高強
度鋼に関し、加工性を通常のオーステナイト系ス
テンレス鋼程度に維持したまま強度を現用の耐熱
鋼に比較して大巾に増加したものである。 800℃以上の高温で使用される耐熱鋼として、
炭化物強化耐熱鋼が知られるが、、これには0.4%
といつた多量のCを含有する耐熱鋳造合金の系統
と、Ti、Nb等で強化した系統のものがある。 Cを多量に含有する耐熱鋳造合金の代表的なも
のとしてSCH―22合金が知られているが、この
耐熱鋳造合金は鋳造合金という性格上形状に制限
を伴いかつ安全性に問題を含む欠点がある。 一方、Ti、Nb等で強化したものは、これらの
炭化物形成元素により高温使用中に炭化物又は炭
窒化物を形成させて高強度を得ようとするもので
あり、本願出願人により提案された特公昭47―
30806号によるものなどが知られている。しか
し、この炭化物形成元素を含有する鋼においては
結晶粒度や溶体化処理とその添加量との関係等に
ついてはまだ十分に明らかとなつていない。また
上記提案済の鋼においては700℃以下の使用を前
提としており、より高温の要求に応え得ない欠点
があつた。 本発明は上記した従来技術の欠点に鑑みてなさ
れたもので、結晶粒度、溶体化処理と炭化物形成
元素の添加量の関係を明らかにすることにより
900℃以下における張度の向上を図つたものであ
る。 即ち、本発明においては、 C:0.06〜0.30%、Ni:9〜45%、Cr:15〜30
%、Si:1.0%以下、Mn:2.0%以下、及びNb、
Ti、Zr、Taの1種又は2種以上を下記条件を満
足するように含有し、更にP:0.04%以下、S:
0.02%以下として、残部は鉄及び不可避不純物か
ら成るオーステナイト結晶粒度がJIS3〜5である
ことを基本的な特徴とするものである。 Cr(%)0.8×Ni(%)+13 Ti%+Nb(%)+Zr(%)+Ta(%)/C
(%) :1〜13 Ti(%)/C(%):1〜10 Nb(%)/C(%):1〜10 Zr(%)/C(%):1〜10 Ta(%)/C(%):1〜10 なお、上記において%はすべて重量%である
(以下同じ)。 以下限定理由を述べる。 C:Cは0.06%未満では第1図に示すように十分
な強度を得ることはできない。また0.30%を超
えて添加すると第2図に示すように加工性を悪
化させるだけで強度増加につながらない。 Ni,Cr:Niは組織をオーステナイト単相組織と
するために9%以上を必要とし、Ni含有量が
多いほど特に700℃以上の高温域におけるオー
ステナイト相を安定化しオーステナイトを強靭
化するが、Ni含有量を増加させると後述の如
くSの含有量を厳しく制限する必要が生じてく
るのと、非常に高価になることからその上限を
45%とした。 Crは高温での耐酸性を確保するために15%
以上必要であるが、30%を超えて添加するとオ
ーステナイト単相組織が得られなくなるため、
これを上限とする。 またCrはよく知られているようにフエライ
ト形成元素でありNiはオーステナイト形成元
素であり、両者の含有量の関係を次の如く制御
しないとオーステナイト単相組織は得られな
い。 Cr(%)0.8×Ni(%)+13 …… なお上記式はAlを含むときは Cr(%)+Al(%)0.8×Ni(%)+13 …… が満足されなければならない。 Si,Mn:Si,Mnは通常のオーステナイト鋼程度
の含有量、即ちSiは1.0%以下、Mnは2.0%以下
とする。この目的は主として脱酸である。 Nb,Ti,Zr,Ta:これらは炭化物或いは炭室化
物形成元素であり、高温使用中に炭化物、炭窒
化物を形成させて強度を向上させるものであ
り、これらの中1種又は2種以上を添加する。
従来これら元素、たとえばTi、Nbの多量添加
は、鋼中CがTi及びNbで固定されるためCに
よる強化作用が得られず好ましくないとされる
例が多い。しかし溶体化処理温度を上げること
により、TiCやNbCの溶体化処理時における溶
解が進行し、後の使用時においてCr23C6として
析出するC量が増加する。したがつて高温で溶
体化処理を行なう場合(必然的に結晶粒度は粗
くなる)、Ti、Nb等の添加量は低温で熱処理す
る場合に比較して高温高強度を犠牲にすること
なく多量に添加することができる。また多量に
添加したTi、Nb等はそれ自身でも析出物とな
り強化に役立つ。 しかし、溶体化処理温度の上限は事実上1300℃
に制限されるため、 Ti%+Nb(%)+Zr(%)+Ta(%)/C
(%) (上述したようにすべて重量%) は13に制限される。また1未満では高温高強度と
する効果は少ないから、これを下限とする。また
更に高強度を得るためには2〜11とする必要があ
る。 またこれら元素は単独でTi(%)/C(%)、
Nb(%)/C(%)、Zr(%)/C(%)、Ta
(%)/C(%)比が1〜10の範囲を満足するも
のとする。 上記限定理由をNb、Tiを例として第3図に示
す。第3図は0.1%C―20%Cr―30%Ni―0.5%Al
鋼に対して種々のNb及び又はTiを添加含有させ
た鋼を1250℃で処理した材料の900℃1000hrにお
けるクリープ破断強度を示したものである(これ
らの材料の結晶粒度は結晶粒度No.3〜5の範囲内
にあるがNb及び又はTiの多いものほど細かにな
つている傾向を有する)。 第3図においては縦軸及び横軸には夫々Ti量
(%)Nb量(%)が採られており各ブロツトの〇
印内において示した数字はその位置で示される
Ti量及びNb量を含有する上記鋼によつて得られ
た900℃×1000hrのクリープラプチユア強度であ
る。 Nb又はTiの単独添加即ちX軸上ではNb又はY
軸上でTiが1.0%を即ちNb/C又はTi/Cが10を超
えると ころ(点A、D)ではそれ以下のところよりもク
リープラプチユア強度が低下してくる傾向がみら
れ又複合添加の場合においてもNb/C又はTi/Cが
10を 超えるところではそれ以下のところより強度が低
い傾向がみられるのでNb又はTiは上記したよう
にそれぞれCとの比で10以下の含有量に限定す
る。 又図面上には900℃1000hrにおけるクリープラ
プチユア強度が3.0Kg/mm2以上となつているとこ
ろとそれ未満とを区分する線及び並びに同
条件下におけるクリープラプチユア強度として
3.5Kg/mm2以上が得られる区分を示す線′′及び
′′をも記載した。 即ち本発明においてはNb、Ti量を同図面上
ABCDEFでかこまれた範囲内に入るように選定
するものであり、好ましくはAB′C′DE′F′でかこ
まれる範囲に選定するものである。また更に好ま
しくは同図からTi/C:4.5以下かつNb/C:2
〜7の複合添加とするものである。 即ち、Ti+Nb/C:1〜13 (好ましくは2〜11) 〔但し Ti/C10 Nb/C10である〕 なお、Zr,TaもTi,Nbと同様炭化物形成元素
であり同じ作用効果があることが例えば第4図に
示すごとく確認されている。従つて、本発明では
上述したようにTi,Nb,Zr,Taの1種又は2種
以上を Ti+Nb+Zr+Ta/C:1〜13 (好ましくは2〜11) 但しTi/C10、Nb/C10、Zr/C10、 Ta/C10 の範囲で添加するものである。 P:Pは特に限定する必要はなく、通常のオース
テナイト鋼に許容される0.04%以下であれば問
題はない。 S:Sは高温強度、加工性のいずれをも悪化させ
るのでその含有量を0.02%以下に制限する。特
にNi量が多い場合その制限は厳しくなる。 第5図は18%Cr―10%Ni―0.1%C―0.5%
Nb鋼、23%Cr―18%Ni―0.1%C―0.5%Nb鋼
及び20%Cr―28%Ni―0.1%C―0.5%Nb鋼
(いずれも1250℃で溶体化処理した粒度番号3
の材料)のクリープ破断強度に及ぼすS量の影
響を示したものであるが、Ni量が大なる程S
量の影響が大きくS含有量を厳しく制限しなけ
ればならぬことがわかる。同図からNi含有量
が18%以上のときはSの上限を0.015%、Ni含
有量が28%以上のときはSの上限を0.010%と
することが好ましい。 粒度:オーステナイト結晶粒度は適当な溶体化処
理によりJIS番号3〜5に調整するものとす
る。 第6図に示すように、粒度番号が小さくなる
と(粗粒になると)破断強度は大きくなるが反
面破断伸びは少なくなる。したがつて用途によ
り粒度を選択する必要があるが、粒度番号3未
満としても強度上昇はあまりなく、また粒度番
号5を超えると高温強度は通常の耐熱鋼
(SUS310、インコロイ800等)と大差のないも
のとなる。したがつて結晶粒度をJIS3〜5に限
定する。 なお溶体化処理により十分な粗粒を得るため
には1180℃以上5〜30分の加熱後水冷、油冷ま
たは空冷の熱処理が必要であるが、この温度は
Ti、Nb等の添加量により異なり、添加量が多
いほど同一粒度を得るために高温が必要とな
る。 本発明鋼の基本的な限定は以上の通りである
が、更に次のような元素を添加すると効果が大き
い。 Al:Alを添加すると耐酸化性が向上する。しか
し4%を超える多量の添加は第7図に示すよう
にクリープ強度を低下させる上、更に4%を超
えるAl含有は製造上(溶解、加工)好ましく
ない。したがつて4%を上限とする。 なおAlは強力なフエライト形成元素である
ため、前述したように Cr(%)+Al(%)0.8×Ni(%)+13 を満足する必要がある。 N,B:N,Bはともに高温強度に有効である。
Nはまた加工性を低下させない元素であり、従
つて不純物として入る0.05以上を添加、特に
0.1%以上含有させることが好ましいが、0.3%
を超えて含有させることは出来ない。従つてN
は0.3%以下とする。 Bは第8図に示すように0.01%を超える添加
は加工性に有害である。したがつて0.01%以下
とする。 下掲表に本発明の実施例を示す。この表から本
発明鋼は加工性が阻害されずに強度が向上してい
ることがわかる。
This invention relates to a high-temperature, high-strength steel containing carbide-forming elements, which has significantly increased strength compared to current heat-resistant steels while maintaining workability comparable to that of ordinary austenitic stainless steel. As a heat-resistant steel used at high temperatures of 800℃ or higher,
Carbide-reinforced heat-resistant steel is known, but it contains 0.4%
There are two types of heat-resistant cast alloys that contain a large amount of C, such as those that are reinforced with Ti, Nb, etc. SCH-22 alloy is known as a typical heat-resistant cast alloy containing a large amount of C, but due to its nature as a cast alloy, this heat-resistant cast alloy has drawbacks such as limitations in shape and safety issues. be. On the other hand, those reinforced with Ti, Nb, etc. are intended to obtain high strength by forming carbides or carbonitrides during high-temperature use using these carbide-forming elements. Kosho 47-
30806 is known. However, in steels containing these carbide-forming elements, the relationship between grain size, solution treatment, and the amount added has not yet been sufficiently clarified. In addition, the above-mentioned proposed steel was designed to be used at temperatures below 700°C, and had the drawback of not being able to meet the demands for higher temperatures. The present invention was made in view of the above-mentioned drawbacks of the prior art, and was made by clarifying the relationship between crystal grain size, solution treatment, and the amount of carbide-forming elements added.
This is intended to improve tension at temperatures below 900°C. That is, in the present invention, C: 0.06-0.30%, Ni: 9-45%, Cr: 15-30
%, Si: 1.0% or less, Mn: 2.0% or less, and Nb,
Contains one or more of Ti, Zr, and Ta so as to satisfy the following conditions, furthermore, P: 0.04% or less, S:
The basic feature is that the austenite crystal grain size is JIS 3 to 5, with the content being 0.02% or less, and the remainder being iron and unavoidable impurities. Cr (%) 0.8×Ni (%) + 13 Ti% + Nb (%) + Zr (%) + Ta (%)/C
(%): 1-13 Ti (%)/C (%): 1-10 Nb (%)/C (%): 1-10 Zr (%)/C (%): 1-10 Ta (%) /C (%): 1 to 10 In the above, all percentages are by weight (the same applies below). The reasons for this limitation are explained below. C: If C is less than 0.06%, sufficient strength cannot be obtained as shown in FIG. Moreover, if it is added in an amount exceeding 0.30%, as shown in FIG. 2, it will only deteriorate workability and will not lead to an increase in strength. Ni, Cr: Ni needs to be at least 9% to form an austenite single-phase structure, and the higher the Ni content, the more it stabilizes the austenite phase and toughens the austenite, especially in the high temperature range of 700°C or higher. If the content is increased, it becomes necessary to strictly limit the S content as described below, and it becomes very expensive, so it is difficult to set the upper limit.
It was set at 45%. Cr is 15% to ensure acid resistance at high temperatures
However, if it exceeds 30%, it will not be possible to obtain an austenite single phase structure.
This is the upper limit. Further, as is well known, Cr is a ferrite-forming element and Ni is an austenite-forming element, and an austenite single-phase structure cannot be obtained unless the relationship between their contents is controlled as follows. Cr (%) 0.8 x Ni (%) + 13 ... In the above formula, when Al is included, Cr (%) + Al (%) 0.8 x Ni (%) + 13 ... must be satisfied. Si, Mn: The content of Si and Mn is similar to that of ordinary austenitic steel, that is, Si is 1.0% or less and Mn is 2.0% or less. The purpose is primarily deoxidation. Nb, Ti, Zr, Ta: These are carbide or carbonitride-forming elements that improve strength by forming carbides and carbonitrides during high-temperature use, and one or more of these elements Add.
Conventionally, the addition of large amounts of these elements, such as Ti and Nb, is often considered undesirable because the C in the steel is fixed by Ti and Nb, and the reinforcing effect of C cannot be obtained. However, by raising the solution treatment temperature, the dissolution of TiC and NbC during the solution treatment progresses, and the amount of C that precipitates as Cr 23 C 6 during subsequent use increases. Therefore, when solution treatment is performed at high temperatures (inevitably, the grain size becomes coarse), the amount of Ti, Nb, etc. added can be increased compared to when heat treatment is performed at low temperatures without sacrificing high-temperature high strength. Can be added. Furthermore, Ti, Nb, etc. added in large amounts become precipitates by themselves and are useful for strengthening. However, the upper limit of solution treatment temperature is actually 1300℃
Ti%+Nb(%)+Zr(%)+Ta(%)/C
(%) (all weight % as mentioned above) is limited to 13. Further, if it is less than 1, there is little effect of achieving high temperature and high strength, so this is set as the lower limit. Furthermore, in order to obtain even higher strength, it is necessary to set the number to 2 to 11. In addition, these elements alone are Ti (%) / C (%),
Nb (%)/C (%), Zr (%)/C (%), Ta
(%)/C (%) ratio shall satisfy the range of 1 to 10. The reason for the above limitation is shown in FIG. 3 using Nb and Ti as examples. Figure 3 shows 0.1%C-20%Cr-30%Ni-0.5%Al
The graph shows the creep rupture strength at 900℃ for 1000 hours of steel treated at 1250℃ with various Nb and/or Ti added (the crystal grain size of these materials is grain size No. 3). 5, but the higher the Nb and/or Ti content, the finer the grain size). In Figure 3, the vertical and horizontal axes show the amount of Ti (%) and the amount of Nb (%), respectively, and the numbers shown within the circles in each blot are shown at that position.
This is the creep rapture strength at 900°C x 1000 hr obtained by the steel containing Ti and Nb. Single addition of Nb or Ti, that is, Nb or Y on the X axis
On the axis, where Ti exceeds 1.0%, that is, where Nb/C or Ti/C exceeds 10 (points A and D), the creep rapture strength tends to be lower than that at points below. Even in the case of Nb/C or Ti/C
Since strength tends to be lower where the value exceeds 10 than where it is less than 10, the content of Nb or Ti is limited to a ratio of 10 or less with respect to C, respectively, as described above. In addition, there is a line on the drawing that separates areas where the creep rapture strength at 900°C for 1000 hours is 3.0 Kg/mm 2 or more from those below it, and a line that indicates the creep rapture strength under the same conditions.
Lines ``'' and '' indicating the division where 3.5 Kg/mm 2 or more can be obtained are also shown. That is, in the present invention, the amounts of Nb and Ti are
It is selected so that it falls within the range enclosed by ABCDEF, preferably within the range enclosed by AB'C'DE'F'. More preferably, from the same figure, Ti/C: 4.5 or less and Nb/C: 2
-7 combined additions. That is, Ti+Nb/C: 1 to 13 (preferably 2 to 11) [However, Ti/C10 Nb/C10] Note that Zr and Ta are also carbide-forming elements like Ti and Nb and may have the same effects. For example, it has been confirmed as shown in FIG. Therefore, in the present invention, as described above, one or more of Ti, Nb, Zr, and Ta are used as follows: Ti+Nb+Zr+Ta/C: 1 to 13 (preferably 2 to 11); however, Ti/C10, Nb/C10, Zr/ It is added within the range of C10 and Ta/C10. P: P does not need to be particularly limited, and there is no problem as long as it is 0.04% or less, which is allowed for ordinary austenitic steel. S: Since S deteriorates both high temperature strength and workability, its content is limited to 0.02% or less. Especially when the amount of Ni is large, the restriction becomes severe. Figure 5 shows 18%Cr-10%Ni-0.1%C-0.5%
Nb steel, 23%Cr-18%Ni-0.1%C-0.5%Nb steel and 20%Cr-28%Ni-0.1%C-0.5%Nb steel (both grain size number 3 solution treated at 1250℃)
This figure shows the effect of the amount of S on the creep rupture strength of the
It can be seen that the S content has a large influence on the S content and that the S content must be strictly limited. From the figure, it is preferable to set the upper limit of S to 0.015% when the Ni content is 18% or more, and to set the upper limit of S to 0.010% when the Ni content is 28% or more. Grain size: The austenite crystal grain size shall be adjusted to JIS No. 3 to 5 by appropriate solution treatment. As shown in FIG. 6, as the particle size number decreases (as the particles become coarser), the breaking strength increases, but on the other hand, the breaking elongation decreases. Therefore, it is necessary to select the grain size depending on the application, but if the grain size is less than 3, the strength will not increase much, and if the grain size is more than 5, the high temperature strength will be much different from that of ordinary heat-resistant steel (SUS310, Incoloy 800, etc.). It becomes something that does not exist. Therefore, the crystal grain size is limited to JIS 3 to 5. In order to obtain sufficient coarse grains through solution treatment, it is necessary to heat at 1180°C or above for 5 to 30 minutes, followed by water cooling, oil cooling, or air cooling.
It varies depending on the amount of Ti, Nb, etc. added, and the larger the amount added, the higher the temperature required to obtain the same particle size. The basic limitations of the steel of the present invention are as described above, but the effect is greater when the following elements are further added. Al: Adding Al improves oxidation resistance. However, addition of a large amount exceeding 4% lowers the creep strength as shown in FIG. 7, and furthermore, an Al content exceeding 4% is unfavorable in terms of manufacturing (melting and processing). Therefore, the upper limit is set at 4%. Note that since Al is a strong ferrite-forming element, it is necessary to satisfy Cr (%) + Al (%) 0.8 x Ni (%) + 13 as described above. N, B: Both N and B are effective for high temperature strength.
N is also an element that does not reduce workability, and therefore it is necessary to add 0.05 or more of it as an impurity.
It is preferable to contain 0.1% or more, but 0.3%
It is not possible to contain more than Therefore N
shall be 0.3% or less. As shown in FIG. 8, addition of B in excess of 0.01% is harmful to processability. Therefore, it should be 0.01% or less. Examples of the present invention are shown in the table below. This table shows that the steel of the present invention has improved strength without hindering workability.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクリープ破断強度とC%との関係を示
すグラフ、第2図は熱間加工性とC%の関係を示
すグラフ、第3図はクリープ破断強度とTi及び
Nb%との関係を示すグラフ、第4図はNb添加材
に対するZr,Taの影響を示すグラフ、第5図は
クリープ破断強度とS%との関係を示すグラフ、
第6図はクリープ破断強度及び伸びと結晶粒度と
の関係を示すグラフ、第7図はクリープ破断強度
及び耐酸化性とAl%との関係を示すグラフ、第
8図はクリープ破断強度とB%の関係を示すグラ
フである。
Figure 1 is a graph showing the relationship between creep rupture strength and C%, Figure 2 is a graph showing the relationship between hot workability and C%, and Figure 3 is a graph showing the relationship between creep rupture strength and Ti and C%.
Graph showing the relationship with Nb%, Figure 4 is a graph showing the influence of Zr and Ta on Nb additives, Figure 5 is a graph showing the relationship between creep rupture strength and S%,
Figure 6 is a graph showing the relationship between creep rupture strength and elongation and grain size, Figure 7 is a graph showing the relationship between creep rupture strength and oxidation resistance, and Al%, and Figure 8 is a graph showing the relationship between creep rupture strength and B%. It is a graph showing the relationship between.

Claims (1)

【特許請求の範囲】 1 C:0.06〜0.30%、Ni:9〜45%、Cr:15〜
30%、Si:1.0%以下、Mn:2.0%以下、及び
Nb、Ti、Zr、Taの1種又は2種以上を下記条件
を満足するように含有し、更にP:0.04%以下、
S:0.02%以下として、残部は鉄及び不可避不純
物から成るオーステナイト結晶粒度がJIS3〜5で
ある炭化物形成元素を含有する高温高強度鋼。 Cr(%)0.8×Ni(%)+13 Ti%+Nb(%)+Zr(%)+Ta(%)/C
(%) :1〜13 Ti(%)/C(%):1〜10 Nb(%)/C(%):1〜10 Zr(%)/C(%):1〜10 Ta(%)/C(%):1〜10 2 C:0.06〜0.30%、Ni:9〜45%、Cr:15〜
30%、Si:1.0%以下、Mn:2.0%以下、及び
Nb、Ti、Zr、Taの1種又は2種以上、且つP:
0.04%以下、S:0.02%以下とし、更にAl:4%
以下、N:0.3%以下、B:0.01%以下の1種又
は2種以上を下記条件を満足するように含有し、
残部は鉄及び不可避不純物からなるオーステナイ
ト結晶粒度がJIS3〜5である炭化物形成元素を含
有する高温高強度鋼。 Cr(%)+Al(%)0.8×Ni(%)+13 Ti(%)+Nb(%)+Zr(%)+Ta(%)/C
(%) :1〜13 Ti(%)/C(%):1〜10 Nb(%)/C(%):1〜10 Zr(%)/C(%):1〜10 Ta(%)/C(%):1〜10
[Claims] 1 C: 0.06 to 0.30%, Ni: 9 to 45%, Cr: 15 to
30%, Si: 1.0% or less, Mn: 2.0% or less, and
Contains one or more of Nb, Ti, Zr, and Ta so as to satisfy the following conditions, and further includes P: 0.04% or less,
S: A high-temperature, high-strength steel containing carbide-forming elements with an austenite crystal grain size of JIS 3 to 5, with S: 0.02% or less, the remainder consisting of iron and unavoidable impurities. Cr (%) 0.8×Ni (%) + 13 Ti% + Nb (%) + Zr (%) + Ta (%)/C
(%): 1-13 Ti (%)/C (%): 1-10 Nb (%)/C (%): 1-10 Zr (%)/C (%): 1-10 Ta (%) /C (%): 1~102C: 0.06~0.30%, Ni: 9~45%, Cr: 15~
30%, Si: 1.0% or less, Mn: 2.0% or less, and
One or more of Nb, Ti, Zr, Ta, and P:
0.04% or less, S: 0.02% or less, and Al: 4%
The following contains one or more of N: 0.3% or less and B: 0.01% or less so as to satisfy the following conditions,
A high-temperature, high-strength steel containing carbide-forming elements with an austenite crystal grain size of JIS 3 to 5, the remainder being iron and unavoidable impurities. Cr (%) + Al (%) 0.8 × Ni (%) + 13 Ti (%) + Nb (%) + Zr (%) + Ta (%) / C
(%): 1-13 Ti (%)/C (%): 1-10 Nb (%)/C (%): 1-10 Zr (%)/C (%): 1-10 Ta (%) /C (%): 1-10
JP13027282A 1982-07-28 1982-07-28 Steel having high strength at high temperature containing carbide forming element Granted JPS5923855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13027282A JPS5923855A (en) 1982-07-28 1982-07-28 Steel having high strength at high temperature containing carbide forming element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13027282A JPS5923855A (en) 1982-07-28 1982-07-28 Steel having high strength at high temperature containing carbide forming element

Publications (2)

Publication Number Publication Date
JPS5923855A JPS5923855A (en) 1984-02-07
JPS626634B2 true JPS626634B2 (en) 1987-02-12

Family

ID=15030327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13027282A Granted JPS5923855A (en) 1982-07-28 1982-07-28 Steel having high strength at high temperature containing carbide forming element

Country Status (1)

Country Link
JP (1) JPS5923855A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980757A (en) * 1982-11-01 1984-05-10 Hitachi Ltd High strength austenitic steel
CA1263041A (en) * 1984-11-13 1989-11-21 William Lawrence Mankins Nickel-chromium-molybdenum alloy
JPS6277444A (en) * 1985-10-01 1987-04-09 Ube Ind Ltd Corrosion resistant alloy
JPS62243736A (en) * 1986-04-15 1987-10-24 Kubota Ltd Heat resistant alloy
JPS63317642A (en) * 1988-05-06 1988-12-26 Kubota Ltd Heat resistant cast steel having excellent room temperature elongation characteristic
JP2760004B2 (en) * 1989-01-30 1998-05-28 住友金属工業株式会社 High-strength heat-resistant steel with excellent workability
JPH072981B2 (en) * 1989-04-05 1995-01-18 株式会社クボタ Heat resistant alloy
JP4424471B2 (en) 2003-01-29 2010-03-03 住友金属工業株式会社 Austenitic stainless steel and method for producing the same
US7118636B2 (en) * 2003-04-14 2006-10-10 General Electric Company Precipitation-strengthened nickel-iron-chromium alloy
KR20150060942A (en) 2012-10-30 2015-06-03 가부시키가이샤 고베 세이코쇼 Austenitic stainless steel
WO2017119415A1 (en) * 2016-01-05 2017-07-13 新日鐵住金株式会社 Austenitic heat-resistant alloy and method for manufacturing same
CA3028610A1 (en) * 2016-06-29 2018-01-04 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723050A (en) * 1980-07-18 1982-02-06 Sumitomo Metal Ind Ltd Heat resistant steel with excellent high temp. strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723050A (en) * 1980-07-18 1982-02-06 Sumitomo Metal Ind Ltd Heat resistant steel with excellent high temp. strength

Also Published As

Publication number Publication date
JPS5923855A (en) 1984-02-07

Similar Documents

Publication Publication Date Title
EP0381121B1 (en) High-strength heat-resistant steel with improved workability
JPS626634B2 (en)
JP3543366B2 (en) Austenitic heat-resistant steel with good high-temperature strength
JPH11256283A (en) Austenitic stainless steel with excellent hot workability
JP2734525B2 (en) Heat resistant steel with excellent toughness
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPS5935424B2 (en) heat resistant cast steel
JPS6121304B2 (en)
JP2976777B2 (en) Austenitic heat-resistant cast steel
JP3396372B2 (en) Low Cr ferritic steel with excellent high temperature strength and weldability
KR100268708B1 (en) Method of manufacturing high cr ferritic heat resisting steel for high temperature,high pressure parts
JP4271311B2 (en) Ferritic heat resistant steel
JPH05230601A (en) Heat resistant cast steel high in creep rupture strength
JP3596473B2 (en) Low yield ratio high temperature refractory steel for buildings
JP3576328B2 (en) Low alloy heat resistant steel and steam turbine rotor
KR102067033B1 (en) Lean duplex stainless steel with excellent pitting corrosion resistance
JP3581458B2 (en) High temperature steam turbine rotor material
JPS5935425B2 (en) heat resistant cast steel
JP3639155B2 (en) Heat-resistant cast steel and heat-resistant cast steel parts produced using the same
JP4271310B2 (en) Ferritic heat resistant steel
JPH05195154A (en) Retaining ring material
KR20240106711A (en) Hot-rolled steel and method of manufacturing the same
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
JPH07197208A (en) High strength high chromium cast steel for high temperature pressure vessel
CN112575245A (en) Iron-chromium-aluminum alloy and preparation method thereof