WO2017119415A1 - Austenitic heat-resistant alloy and method for manufacturing same - Google Patents
Austenitic heat-resistant alloy and method for manufacturing same Download PDFInfo
- Publication number
- WO2017119415A1 WO2017119415A1 PCT/JP2017/000056 JP2017000056W WO2017119415A1 WO 2017119415 A1 WO2017119415 A1 WO 2017119415A1 JP 2017000056 W JP2017000056 W JP 2017000056W WO 2017119415 A1 WO2017119415 A1 WO 2017119415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- resistant alloy
- content
- heat
- austenitic heat
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
Definitions
- the present invention relates to a heat resistant alloy and a method for producing the same, and more particularly to an austenitic heat resistant alloy and a method for producing the same.
- 18-8 stainless steel is used as heat resistant steel in equipment such as boilers and chemical plants used in high temperature environments.
- 18-8 stainless steel is an austenitic stainless steel containing about 18% Cr and about 8% Ni, and examples thereof include SUS304H, SUS316H, SUS321H, and SUS347H in the JIS standard.
- Heat resistant materials with improved corrosion resistance have been proposed in, for example, Japanese Patent Application Laid-Open No. 02-115348 (Patent Document 1) and Japanese Patent Application Laid-Open No. 07-316751 (Patent Document 2). Since these Al alloys have a high Al content, an Al 2 O 3 film is formed on the surface at high temperatures during use. This coating provides high corrosion resistance.
- the heat resistant alloys disclosed in Patent Documents 1 and 2 described above may have a low creep strength in a high temperature environment of 700 ° C. or higher.
- heat-resistant material having high creep strength in a high temperature environment of 700 ° C. or higher
- a heat-resistant alloy containing Ni and Co and a ⁇ ′ phase (Ni 3 Al) as a strengthening phase has been developed.
- Such heat-resistant alloys are, for example, Ni-base alloys such as Alloys 617, 263, and 740.
- the alloy raw materials for these heat-resistant alloys are expensive. Furthermore, since the processability is low, the manufacturing cost is also increased.
- Patent Document 3 Japanese Patent Laid-Open No. 2014-43621
- Patent Document 4 Japanese Patent Laid-Open No. 2013-227644
- Patent Document 3 describes that the austenitic heat-resistant alloy has excellent high-temperature strength and toughness due to precipitation strengthening of Laves phase and ⁇ ′ phase.
- the f3 represented has a chemical composition of 0.5 to 5.0.
- Patent Document 4 describes that the austenitic heat-resistant alloy has excellent high-
- An object of the present invention is to provide an austenitic heat resistant alloy having high creep strength and high toughness even in a high temperature environment.
- the austenitic heat-resistant alloy according to the present embodiment is, in mass%, C: 0.03 to less than 0.25%, Si: 0.01 to 2.0%, Mn: 2.0% or less, Cr: 10 to 30 %, Ni: more than 25 to 45%, Al: more than 2.5 to less than 4.5%, Nb: 0.2 to 3.5%, N: 0.025% or less, Ti: 0 to 0.2 %: W: 0-6%, Mo: 0-4%, Zr: 0-0.1%, B: 0-0.01%, Cu: 0-5%, Rare earth elements: 0-0.1 %, Ca: 0 to 0.05%, and Mg: 0 to 0.05%, the balance is made of Fe and impurities, and P and S in the impurities are each P: 0.04% or less, And S: having a chemical composition of 0.01% or less.
- the total volume ratio of precipitates having an equivalent circle diameter of 6 ⁇ m or more is 5% or less.
- the precipitate is, for example, carbide, nit
- the austenitic heat-resistant alloy according to the present embodiment has long-term high-temperature strength and excellent toughness even in a high-temperature environment.
- the present inventors investigated and examined the creep strength and toughness of the austenitic heat resistant alloy in a high temperature environment of 700 ° C. or higher (hereinafter simply referred to as a high temperature environment), and obtained the following knowledge.
- a heat-resistant alloy containing a Laves phase or a ⁇ ′ phase such as Ni 3 Al has a high creep strength in a high-temperature environment.
- these precipitated phases become coarse when used for a long time in a high temperature environment, the creep strength and toughness of the heat-resistant alloy are lowered.
- a precipitate such as carbide, nitride, NiAl, ⁇ -Cr, etc. can be finely dispersed while using a heat-resistant alloy in a high-temperature environment, high creep strength and high toughness can be maintained even after long-term use.
- These precipitates increase the grain boundary strength by covering the crystal grain boundaries. Furthermore, if these precipitates precipitate in the grains, the deformation resistance of the heat-resistant alloy increases and the creep strength increases.
- the structure of the heat-resistant alloy before use is controlled as follows.
- the total volume ratio of coarse precipitates in the heat-resistant alloy is preferably as low as possible.
- the total volume fraction of precipitates having an equivalent circle diameter of 6 ⁇ m or more (hereinafter referred to as coarse precipitates) is 5% or less in the structure of the heat-resistant alloy, a sufficient amount can be obtained while using the heat-resistant alloy in a high-temperature environment. Fine precipitates can be deposited, and high creep strength and toughness can be obtained.
- the C content in the heat-resistant alloy is set to less than 0.25%. Furthermore, the cross-section reduction rate during hot forging is set to 30% or more. In this case, coarse precipitates are uniformly dispersed by hot forging. Therefore, the precipitate can be dissolved in the solution treatment in the subsequent step, and the total volume ratio of the coarse precipitate becomes 5% or less.
- the austenitic heat-resistant alloy according to the present embodiment completed based on the above knowledge is mass%, C: 0.03 to less than 0.25%, Si: 0.01 to 2.0%, Mn: 2.0. %: Cr: 10 to less than 30%, Ni: more than 25 to 45%, Al: more than 2.5 to less than 4.5%, Nb: 0.2 to 3.5%, N: 0.025% or less Ti: 0 to less than 0.2%, W: 0 to 6%, Mo: 0 to 4%, Zr: 0 to 0.1%, B: 0 to 0.01%, Cu: 0 to 5%, Rare earth elements: 0 to 0.1%, Ca: 0 to 0.05%, and Mg: 0 to 0.05%, the balance is composed of Fe and impurities, and P and S in the impurities are respectively It has a chemical composition of P: 0.04% or less and S: 0.01% or less. In the structure, the total volume ratio of precipitates having an equivalent circle diameter of 6 ⁇ m or more is 5% or less.
- the chemical composition is, by mass, Ti: 0.005 to less than 0.2%, W: 0.005 to 6%, Mo: 0.005 to 4%, Zr: 0.0005 to 0.1%, And B: One or more selected from the group consisting of 0.0005 to 0.01% may be contained.
- the chemical composition may contain one or more selected from the group consisting of Cu: 0.05 to 5% and rare earth elements: 0.0005 to 0.1% by mass.
- the chemical composition may contain at least one selected from the group consisting of Ca: 0.0005 to 0.05% and Mg: 0.0005 to 0.05% by mass.
- the method for producing the austenitic heat-resistant alloy includes a step of performing hot forging at a cross-section reduction rate of 30% or more on a cast material having the above-described chemical composition, and heating the material after hot forging.
- the austenitic heat-resistant alloy according to the present embodiment is, for example, an alloy tube.
- the chemical composition of the austenitic heat-resistant alloy contains the following elements.
- Carbon (C) forms a carbide and increases the creep strength. Specifically, during use in a high temperature environment, C combines with an alloy element within a grain boundary and within the grains to form fine carbides. Fine carbides increase deformation resistance and increase creep strength. If the C content is too low, this effect cannot be obtained. On the other hand, if the C content is too high, many coarse eutectic carbides are formed in the solidified structure after casting of the heat-resistant alloy. Since the eutectic carbide remains coarse in the structure even after the solution treatment, the toughness of the heat-resistant alloy is lowered.
- the C content is 0.03 to less than 0.25%.
- the minimum with preferable C content is 0.05%, More preferably, it is 0.08%.
- the upper limit with preferable C content is 0.23%, More preferably, it is 0.20%.
- Si 0.01 to 2.0% Silicon (Si) deoxidizes the heat-resistant alloy. Si further enhances the corrosion resistance (oxidation resistance and steam oxidation resistance) of the heat-resistant alloy. Si is an element inevitably contained, but the content of Si may be as small as possible when deoxidation can be sufficiently performed with other elements. On the other hand, if the Si content is too high, the hot workability decreases. Therefore, the Si content is 0.01 to 2.0%. The minimum with preferable Si content is 0.02%, More preferably, it is 0.03%. The upper limit with preferable Si content is 1.0%.
- Mn 2.0% or less Manganese (Mn) is unavoidably contained. Mn combines with S contained in the heat-resistant alloy to form MnS and enhances the hot workability of the heat-resistant alloy. However, if the Mn content is too high, the heat-resistant alloy becomes too hard and the hot workability and weldability deteriorate. Therefore, the Mn content is 2.0% or less. The minimum with preferable Mn content is 0.1%, More preferably, it is 0.2%. The upper limit with preferable Mn content is 1.2%.
- Chromium (Cr) improves the corrosion resistance (oxidation resistance, steam oxidation resistance, etc.) of the heat-resistant alloy in a high-temperature environment. Further, Cr is finely precipitated as ⁇ -Cr during use in a high temperature environment, thereby increasing the creep strength. If the Cr content is too low, these effects cannot be obtained. On the other hand, if the Cr content is too high, the stability of the structure decreases and the creep strength decreases. Therefore, the Cr content is 10 to less than 30%.
- the minimum with preferable Cr content is 11%, More preferably, it is 12%.
- the upper limit with preferable Cr content is 28%, More preferably, it is 26%.
- Ni Over 25-45% Nickel (Ni) stabilizes austenite. Ni further enhances the corrosion resistance of the heat-resistant alloy. If the Ni content is too low, these effects cannot be obtained. On the other hand, if the Ni content is too high, these effects are not only saturated, but hot workability is reduced. If the Ni content is too high, the raw material cost further increases. Therefore, the Ni content is more than 25 to 45%.
- the minimum with preferable Ni content is 26%, More preferably, it is 28%.
- the upper limit with preferable Ni content is 44%, More preferably, it is 42%.
- Al more than 2.5 to less than 4.5%
- Aluminum (Al) is combined with Ni to form fine NiAl during use in a high temperature environment, and increases the creep strength. Further, Al enhances corrosion resistance in a high temperature environment of 1000 ° C. or higher. If the Al content is too low, these effects cannot be obtained. On the other hand, if the Al content is too high, the structural stability is lowered and the strength is lowered. Therefore, the Al content is more than 2.5 to less than 4.5%.
- the minimum with preferable Al content is 2.55%, More preferably, it is 2.6%.
- the upper limit with preferable Al content is 4.4%, More preferably, it is 4.2%.
- the Al content means the total amount of Al contained in the steel material.
- Niobium (Nb) forms a Laves phase and a Ni 3 Nb phase as precipitation strengthening phases, and precipitates and strengthens the crystal grain boundaries and crystal grains, thereby increasing the creep strength of the heat-resistant alloy. If the Nb content is too low, the above effect cannot be obtained. On the other hand, if the Nb content is too high, the Laves phase and the Ni 3 Nb phase are excessively generated, and the toughness and hot workability of the alloy are lowered. If the Nb content is too high, the toughness after aging for a long time further decreases. Therefore, the Nb content is 0.2 to 3.5%. The minimum with preferable Nb content is 0.35%, More preferably, it is 0.5%. The upper limit with preferable Nb content is less than 3.2%, More preferably, it is 3.0%.
- N 0.025% or less Nitrogen (N) stabilizes austenite and is inevitably contained in a normal dissolution method. In addition, during use in a high temperature environment, N combines with the alloy element in the grain boundaries and grains to form fine nitrides. Fine nitride increases deformation resistance and increases creep strength. However, if the N content is too high, coarse nitrides that remain undissolved even after the solution treatment are formed and the toughness of the alloy is lowered. Therefore, the N content is 0.025% or less. The upper limit of the preferable N content is 0.02%, more preferably 0.01%.
- P 0.04% or less Phosphorus (P) is an impurity. P decreases the weldability and hot workability of the heat-resistant alloy. Therefore, the P content is 0.04% or less. The upper limit with preferable P content is 0.03%. The P content is preferably as low as possible.
- S 0.01% or less Sulfur (S) is an impurity. S decreases the weldability and hot workability of the heat-resistant alloy. Therefore, the S content is 0.01% or less. The upper limit with preferable S content is 0.008%. The S content is preferably as low as possible.
- the balance of the chemical composition of the austenitic heat-resistant alloy of this embodiment is composed of Fe and impurities.
- the impurities are those mixed from the ore, scrap, or production environment as raw materials when industrially producing austenitic heat-resistant alloys, and are allowed within a range that does not adversely affect the present invention. Means what will be done.
- the chemical composition of the austenitic heat-resistant alloy described above may further contain one or more selected from the group consisting of Ti, W, Mo, Zr and B, instead of a part of Fe. All of these elements are optional elements and increase the creep strength.
- Titanium (Ti) is an optional element and may not be contained. When it is contained, a Laves phase and a Ni 3 Ti phase that are precipitation strengthening phases are formed, and the creep strength is increased by precipitation strengthening. However, if the Ti content is too high, the Laves phase and the Ni 3 Ti phase are excessively generated, and the hot ductility and hot workability are reduced. If the Ti content is too high, the toughness after aging for a long time further decreases. Therefore, the Ti content is 0 to less than 0.2%. The minimum with preferable Ti content is 0.005%, More preferably, it is 0.01%. The upper limit with preferable Ti content is 0.15%, More preferably, it is 0.1%.
- W 0-6% Tungsten (W) is an optional element and may not be contained. When contained, it dissolves in the austenite of the matrix (matrix), and increases the creep strength by solid solution strengthening. Further, W forms a Laves phase in the crystal grain boundaries and in the crystal grains, and increases the creep strength by precipitation strengthening. However, if there is too much W content, a Laves phase will be generated excessively and hot ductility, hot workability, and toughness will fall. Accordingly, the W content is 0 to 6%.
- the minimum with preferable W content is 0.005%, More preferably, it is 0.01%.
- the upper limit with preferable content of W is 5.5%, More preferably, it is 5%.
- Mo 0-4% Molybdenum (Mo) is an optional element and may not be contained. When contained, it dissolves in the austenite of the parent phase and increases the creep strength by solid solution strengthening. Mo further forms a Laves phase in the grain boundaries and in the crystal grains, and increases the creep strength by precipitation strengthening. However, if the Mo content is too high, the Laves phase is excessively generated and the hot ductility, hot workability, and toughness are reduced. Therefore, the Mo content is 0 to 4%. The minimum with preferable Mo content is 0.005%, More preferably, it is 0.01%. The upper limit with preferable Mo content is 3.5%, More preferably, it is 3%.
- Zr 0 to 0.1%
- Zirconium (Zr) is an optional element and may not be contained. When contained, Zr increases creep strength by grain boundary strengthening. However, if the Zr content is too high, the weldability and hot workability of the heat-resistant alloy are lowered. Therefore, the Zr content is 0 to 0.1%.
- the minimum with preferable Zr is 0.0005%, More preferably, it is 0.001%.
- the upper limit with preferable Zr content is 0.06%.
- B 0 to 0.01%
- Boron (B) is an optional element and may not be contained. When contained, the creep strength is increased by grain boundary strengthening. However, if the B content is too high, weldability decreases. Therefore, the B content is 0 to 0.01%.
- a preferable lower limit of B is 0.0005%, and more preferably 0.001%. The upper limit with preferable B content is 0.005%.
- the chemical composition of the austenitic heat-resistant alloy described above may further contain one or more selected from the group consisting of Cu and rare earth elements instead of a part of Fe. Any of these elements is an arbitrary element and improves the corrosion resistance of the heat-resistant alloy.
- Copper (Cu) is an optional element and may not be contained. When contained, it promotes the formation of an Al 2 O 3 film in the vicinity of the surface and enhances the corrosion resistance of the heat-resistant alloy. However, if the Cu content is too high, not only the effect is saturated, but also the high temperature ductility is lowered. Therefore, the Cu content is 0 to 5%.
- the minimum with preferable Cu content is 0.05%, More preferably, it is 0.1%.
- the upper limit with preferable Cu content is 4.8%, More preferably, it is 4.5%.
- the rare earth element is an optional element and may not be contained. When it is contained, S is fixed as a sulfide to enhance hot workability. REM further forms oxides to increase corrosion resistance, creep strength, and creep ductility. However, if the REM content is too high, inclusions such as oxides increase, thereby reducing hot workability and weldability and increasing manufacturing costs. Therefore, the REM content is 0 to 0.1%.
- the minimum with preferable REM content is 0.0005%, More preferably, it is 0.001%.
- the upper limit with preferable REM content is 0.09%, More preferably, it is 0.08%.
- REM is a general term for a total of 17 elements of Sc, Y, and a lanthanoid.
- the REM content means the content of an element when the REM contained in the heat-resistant alloy is one of these elements.
- the REM content means the total content of these elements.
- REM is generally contained in misch metal. For this reason, for example, it may be added in the form of misch metal so that the REM content falls within the above range.
- the chemical composition of the austenitic heat-resistant alloy described above may further include one or more selected from the group consisting of Ca and Mg instead of a part of Fe. Any of these elements is an arbitrary element and improves the hot workability of the heat-resistant alloy.
- Ca 0 to 0.05%
- Calcium (Ca) is an optional element and may not be contained. When it is contained, S is fixed as a sulfide to enhance hot workability. On the other hand, if the Ca content is too high, toughness, ductility and cleanliness will be reduced. Therefore, the Ca content is 0 to 0.05%.
- a preferable lower limit of Ca is 0.0005%.
- the upper limit with preferable Ca content is 0.01%.
- Mg 0 to 0.05%
- Magnesium (Mg) is an optional element and may not be contained. When contained, it fixes S as a sulfide and improves the hot workability of the heat-resistant alloy. On the other hand, if the Ca content is too high, toughness, ductility and cleanliness will be reduced. Therefore, the Ca content is 0 to 0.05%. A preferable lower limit of Ca is 0.0005%. The upper limit with preferable Ca content is 0.01%.
- the austenitic heat-resistant alloy of the present embodiment precipitates fine precipitates during use in a high temperature environment, increases creep strength, and maintains toughness.
- the precipitate include carbide, nitride, NiAl, and ⁇ -Cr. If the precipitate is coarse, creep strength and toughness are lowered. Therefore, in the heat-resistant alloy before use, it is preferable that there are few coarse precipitates.
- the equivalent circle diameter means the diameter ( ⁇ m) when the area of the precipitate is converted into the area of the circle.
- the total volume ratio of coarse precipitates in the structure of the austenitic heat-resistant alloy of this embodiment can be measured by the following method.
- the austenitic heat-resistant alloy material is an alloy pipe
- a test piece is sampled from the central thickness portion of the cross section perpendicular to the axial direction.
- observation surface After polishing the cross section (observation surface) of the collected specimen, the observation surface is etched with a mixed acid solution of hydrochloric acid and nitric acid.
- a scanning electron microscope (SEM) is used to photograph 10 fields of view on the observation surface to create an SEM image (reflection electron image). Each field of view is 100 ⁇ m ⁇ 100 ⁇ m.
- the precipitates and the matrix have different contrasts.
- the area of the precipitate specified by the difference in contrast is obtained, and the equivalent circle diameter of each precipitate is calculated. After the calculation, a precipitate (coarse precipitate) having an equivalent circle diameter of 6 ⁇ m or more is specified.
- the shape of the austenitic heat-resistant alloy according to this embodiment is not particularly limited.
- An austenitic heat-resistant alloy is, for example, an alloy tube.
- Austenitic heat-resistant alloy pipes are used as boiler pipes and chemical plant reaction pipes.
- the austenitic heat-resistant alloy may be a plate material, a rod material, or a wire material.
- the manufacturing method of the present embodiment includes a step of preparing a material having the above-described chemical composition (preparation step), a step of hot forging the prepared material (hot forging step), and a hot forged material. And a step of producing an intermediate material by performing hot working (hot working step) and a step of performing solution heat treatment on the intermediate material (solution heat treatment step).
- preparation step a step of preparing a material having the above-described chemical composition
- hot forging step hot forging step
- a hot forged material a step of producing an intermediate material by performing hot working (hot working step) and a step of performing solution heat treatment on the intermediate material (solution heat treatment step).
- a molten steel having the above chemical composition is produced.
- a well-known degassing process is implemented with respect to molten steel as needed.
- a raw material is manufactured by casting using molten steel.
- the material may be an ingot obtained by an ingot-making method or a slab such as a slab, bloom or billet obtained by a continuous casting method.
- precipitates such as eutectic carbides are present in the structure of the material produced by casting. These precipitates are coarse, and there are many that have an equivalent circle diameter of 6 ⁇ m or more. Such coarse precipitates are difficult to dissolve in a solution treatment in a later step.
- the cross-section reduction rate in the hot forging process is 30% or more, coarse precipitates are destroyed during hot forging and the size is reduced. For this reason, the precipitate is easily dissolved in the solution heat treatment in the subsequent step. As a result, the volume ratio of precipitates having an equivalent circle diameter of 6 ⁇ m or more is 5% or less.
- the preferable cross-sectional reduction rate is 35% or more, and more preferably 40% or more.
- the upper limit of the cross-section reduction rate is not particularly limited, it is 90% in consideration of productivity.
- Hot working is performed on the hot-forged material (cylindrical material) to manufacture an alloy base tube that is an intermediate material.
- a through hole is formed in the center of a cylindrical material by machining.
- Hot extrusion is performed on the cylindrical material in which the through holes are formed, and an alloy base tube is manufactured.
- a cylindrical raw material (intermediate material) may be manufactured by piercing and rolling a cylindrical material.
- Cold working may be performed on the intermediate material after hot working.
- the cold working is, for example, cold drawing or the like.
- An intermediate material is manufactured by the above process.
- Solution heat treatment process Solution heat treatment is performed on the manufactured intermediate material.
- the precipitate in the intermediate material is dissolved by solution heat treatment.
- the heat treatment temperature in the solution heat treatment is 1100 to 1250 ° C. If the heat treatment temperature is less than 1100 ° C., the precipitate is not sufficiently dissolved, and as a result, the volume fraction of the coarse precipitate exceeds 5%. On the other hand, if the heat treatment temperature is too high, the austenite grains are coarsened and the productivity is lowered.
- the precipitate is sufficiently dissolved, and the total volume ratio of the coarse precipitate is 5% or less.
- the solution heat treatment time is not particularly limited.
- the solution heat treatment time is, for example, 1 minute to 1 hour.
- pickling treatment may be performed for the purpose of removing scale formed on the surface.
- pickling for example, a mixed acid solution of nitric acid and hydrochloric acid is used.
- the pickling time is, for example, 30 to 60 minutes.
- a blasting process using a projection material may be performed on the intermediate material after the pickling process.
- blasting is performed on the inner surface of the alloy tube.
- a processed layer is formed on the surface, and corrosion resistance (oxidation resistance and the like) is increased.
- the austenitic heat-resistant alloy of this embodiment is manufactured by the above manufacturing method.
- the manufacturing method of the alloy pipe was demonstrated above.
- a cylindrical ingot (30 kg) having an outer diameter of 120 mm was manufactured using the molten steel.
- the ingot was hot forged at a cross-sectional reduction rate shown in Table 2 to produce a rectangular material.
- the rectangular material was hot-rolled and cold-rolled to produce a plate-like intermediate material having a thickness of 1.5 mm.
- the intermediate material was subjected to a solution treatment for 10 minutes at the heat treatment temperature shown in Table 2. After holding for 10 minutes, the intermediate material was water-cooled to produce an alloy sheet.
- Test results The test results are shown in Table 2.
- the chemical compositions of Test No. 1 to Test No. 11 were appropriate, and the volume fraction of coarse precipitates was 5% or less.
- the creep strength was 140 MPa or more, indicating an excellent creep strength.
- the Charpy impact value was 40 J / cm 2 or more, and excellent toughness was exhibited even after long-term aging treatment.
- test number 12 the C content was too high. Therefore, the volume ratio of the coarse precipitate exceeded 5%. As a result, the creep strength was less than 140 MPa, and the Charpy impact value was less than 40 J / cm 2 .
- test number 17 the cross-sectional reduction rate during hot forging was less than 30%. Therefore, the total volume ratio of coarse precipitates exceeded 5%. As a result, the creep strength was less than 140 MPa, and the Charpy impact value was less than 40 J / cm 2 .
- test number 18 the solution heat treatment temperature was less than 1100 ° C. Therefore, the total volume ratio of coarse precipitates exceeded 5%. As a result, the creep rupture strength was less than 140 MPa, and the Charpy impact value was less than 40 J / cm 2 .
- the austenitic heat-resistant alloy of the present invention can be widely used in a high temperature environment of 700 ° C. or higher.
- it is particularly suitable for use as an alloy pipe in a power generation boiler, a chemical industry plant or the like exposed to a high temperature environment of 700 ° C. or higher.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
耐熱合金を鋳造した後の凝固組織には、炭化物、窒化物、NiAl、α-Cr等の析出物(以下、単に析出物という)が存在する。これらの析出物は、デンドライトの間に存在する溶質元素が濃縮した液相に生成する。これらの析出物は通常は粗大な形状を有し、組織中へ不均一に分散している。そのため、耐熱合金の靭性が低下する。 [Limit of amount of precipitates with equivalent circle diameter of 6 μm or more]
In the solidified structure after casting the heat-resistant alloy, there are precipitates of carbide, nitride, NiAl, α-Cr, etc. (hereinafter simply referred to as precipitates). These precipitates are generated in a liquid phase in which solute elements existing between dendrites are concentrated. These precipitates usually have a coarse shape and are unevenly distributed in the tissue. Therefore, the toughness of the heat resistant alloy is reduced.
本実施形態によるオーステナイト系耐熱合金はたとえば、合金管である。オーステナイト系耐熱合金の化学組成は、次の元素を含有する。 [Chemical composition]
The austenitic heat-resistant alloy according to the present embodiment is, for example, an alloy tube. The chemical composition of the austenitic heat-resistant alloy contains the following elements.
炭素(C)は炭化物を形成し、クリープ強度を高める。具体的には、Cは、高温環境での使用中に、結晶粒界及び粒内に合金元素と結合して微細な炭化物を形成する。微細な炭化物は変形抵抗を高め、クリープ強度を高める。C含有量が低すぎれば、この効果が得られない。一方、C含有量が高すぎれば、耐熱合金の鋳造後の凝固組織中に粗大な共晶炭化物を多数形成する。共晶炭化物は溶体化処理後も粗大なまま組織中に残存するため、耐熱合金の靭性を低下する。さらに、粗大な共晶炭化物が残存すれば、高温環境での使用中に微細炭化物が析出しにくく、クリープ強度が低下する。したがって、C含有量は0.03~0.25%未満である。C含有量の好ましい下限は0.05%であり、より好ましくは0.08%である。C含有量の好ましい上限は0.23%であり、より好ましくは0.20%である。 C: 0.03 to less than 0.25% Carbon (C) forms a carbide and increases the creep strength. Specifically, during use in a high temperature environment, C combines with an alloy element within a grain boundary and within the grains to form fine carbides. Fine carbides increase deformation resistance and increase creep strength. If the C content is too low, this effect cannot be obtained. On the other hand, if the C content is too high, many coarse eutectic carbides are formed in the solidified structure after casting of the heat-resistant alloy. Since the eutectic carbide remains coarse in the structure even after the solution treatment, the toughness of the heat-resistant alloy is lowered. Furthermore, if coarse eutectic carbides remain, fine carbides are less likely to precipitate during use in a high temperature environment, and the creep strength decreases. Therefore, the C content is 0.03 to less than 0.25%. The minimum with preferable C content is 0.05%, More preferably, it is 0.08%. The upper limit with preferable C content is 0.23%, More preferably, it is 0.20%.
シリコン(Si)は耐熱合金を脱酸する。Siはさらに、耐熱合金の耐食性(耐酸化性及び耐水蒸気酸化性)を高める。Siは不可避的に含有される元素であるが、他の元素で脱酸を十分に実施できる場合、Siの含有量は出来るだけ少なくてもよい。一方、Si含有量が高すぎれば、熱間加工性が低下する。したがって、Si含有量は0.01~2.0%である。Si含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%である。Si含有量の好ましい上限は1.0%である。 Si: 0.01 to 2.0%
Silicon (Si) deoxidizes the heat-resistant alloy. Si further enhances the corrosion resistance (oxidation resistance and steam oxidation resistance) of the heat-resistant alloy. Si is an element inevitably contained, but the content of Si may be as small as possible when deoxidation can be sufficiently performed with other elements. On the other hand, if the Si content is too high, the hot workability decreases. Therefore, the Si content is 0.01 to 2.0%. The minimum with preferable Si content is 0.02%, More preferably, it is 0.03%. The upper limit with preferable Si content is 1.0%.
マンガン(Mn)は不可避に含有される。Mnは耐熱合金中に含まれるSと結合してMnSを形成し、耐熱合金の熱間加工性を高める。しかしながら、Mn含有量が高すぎれば、耐熱合金が硬くなりすぎ、熱間加工性及び溶接性が低下する。したがって、Mn含有量は2.0%以下である。Mn含有量の好ましい下限は0.1%であり、さらに好ましくは0.2%である。Mn含有量の好ましい上限は1.2%である。 Mn: 2.0% or less Manganese (Mn) is unavoidably contained. Mn combines with S contained in the heat-resistant alloy to form MnS and enhances the hot workability of the heat-resistant alloy. However, if the Mn content is too high, the heat-resistant alloy becomes too hard and the hot workability and weldability deteriorate. Therefore, the Mn content is 2.0% or less. The minimum with preferable Mn content is 0.1%, More preferably, it is 0.2%. The upper limit with preferable Mn content is 1.2%.
クロム(Cr)は、高温環境での耐熱合金の耐食性(耐酸化性、耐水蒸気酸化性等)を高める。Crはさらに、高温環境での使用中において、α-Crとして微細析出して、クリープ強度を高める。Cr含有量が低すぎれば、これらの効果が得られない。一方、Cr含有量が高すぎれば、組織の安定性が低下してクリープ強度が低下する。したがって、Cr含有量は10~30%未満である。Cr含有量の好ましい下限は11%であり、さらに好ましくは12%である。Cr含有量の好ましい上限は28%であり、さらに好ましくは26%である。 Cr: 10 to less than 30% Chromium (Cr) improves the corrosion resistance (oxidation resistance, steam oxidation resistance, etc.) of the heat-resistant alloy in a high-temperature environment. Further, Cr is finely precipitated as α-Cr during use in a high temperature environment, thereby increasing the creep strength. If the Cr content is too low, these effects cannot be obtained. On the other hand, if the Cr content is too high, the stability of the structure decreases and the creep strength decreases. Therefore, the Cr content is 10 to less than 30%. The minimum with preferable Cr content is 11%, More preferably, it is 12%. The upper limit with preferable Cr content is 28%, More preferably, it is 26%.
ニッケル(Ni)は、オーステナイトを安定化させる。Niはさらに、耐熱合金の耐食性を高める。Ni含有量が低すぎれば、これらの効果が得られない。一方、Ni含有量が高すぎれば、これらの効果が飽和するだけでなく、熱間加工性が低下する。Ni含有量が高すぎればさらに、原料コストが高くなる。したがって、Ni含有量は25超~45%である。Ni含有量の好ましい下限は26%であり、さらに好ましくは28%である。Ni含有量の好ましい上限は44%であり、さらに好ましくは42%である。 Ni: Over 25-45%
Nickel (Ni) stabilizes austenite. Ni further enhances the corrosion resistance of the heat-resistant alloy. If the Ni content is too low, these effects cannot be obtained. On the other hand, if the Ni content is too high, these effects are not only saturated, but hot workability is reduced. If the Ni content is too high, the raw material cost further increases. Therefore, the Ni content is more than 25 to 45%. The minimum with preferable Ni content is 26%, More preferably, it is 28%. The upper limit with preferable Ni content is 44%, More preferably, it is 42%.
アルミニウム(Al)は、高温環境での使用中において、Niと結合して微細なNiAlを形成し、クリープ強度を高める。Alはさらに、1000℃以上の高温環境において耐食性を高める。Al含有量が低すぎれば、これらの効果が得られない。一方、Al含有量が高すぎれば、組織安定性が低下し、強度が低下する。したがって、Al含有量は2.5超~4.5%未満である。Al含有量の好ましい下限は2.55%であり、さらに好ましくは2.6%である。Al含有量の好ましい上限は4.4%であり、さらに好ましくは4.2%である。本発明によるオーステナイト系耐熱合金において、Al含有量は、鋼材中に含有する全Al量を意味する。 Al: more than 2.5 to less than 4.5% Aluminum (Al) is combined with Ni to form fine NiAl during use in a high temperature environment, and increases the creep strength. Further, Al enhances corrosion resistance in a high temperature environment of 1000 ° C. or higher. If the Al content is too low, these effects cannot be obtained. On the other hand, if the Al content is too high, the structural stability is lowered and the strength is lowered. Therefore, the Al content is more than 2.5 to less than 4.5%. The minimum with preferable Al content is 2.55%, More preferably, it is 2.6%. The upper limit with preferable Al content is 4.4%, More preferably, it is 4.2%. In the austenitic heat-resistant alloy according to the present invention, the Al content means the total amount of Al contained in the steel material.
ニオブ(Nb)は、析出強化相となるラーベス相及びNi3Nb相を形成して、結晶粒界及び結晶粒内を析出強化し、耐熱合金のクリープ強度を高める。Nb含有量が低すぎれば、上記効果が得られない。一方、Nb含有量が高すぎれば、ラーベス相及びNi3Nb相が過剰に生成して、合金の靭性及び熱間加工性が低下する。Nb含有量が高すぎればさらに、長時間時効後の靭性も低下する。したがって、Nb含有量は0.2~3.5%である。Nb含有量の好ましい下限は0.35%であり、さらに好ましくは0.5%である。Nb含有量の好ましい上限は3.2%未満であり、さらに好ましくは3.0%である。 Nb: 0.2-3.5%
Niobium (Nb) forms a Laves phase and a Ni 3 Nb phase as precipitation strengthening phases, and precipitates and strengthens the crystal grain boundaries and crystal grains, thereby increasing the creep strength of the heat-resistant alloy. If the Nb content is too low, the above effect cannot be obtained. On the other hand, if the Nb content is too high, the Laves phase and the Ni 3 Nb phase are excessively generated, and the toughness and hot workability of the alloy are lowered. If the Nb content is too high, the toughness after aging for a long time further decreases. Therefore, the Nb content is 0.2 to 3.5%. The minimum with preferable Nb content is 0.35%, More preferably, it is 0.5%. The upper limit with preferable Nb content is less than 3.2%, More preferably, it is 3.0%.
窒素(N)はオーステナイトを安定化し、通常の溶解法では不可避に含有される。また、Nは、高温環境での使用中に、結晶粒界及び粒内に合金元素と結合して微細な窒化物を形成する。微細な窒化物は変形抵抗を高め、クリープ強度を高める。しかしながら、N含有量が高すぎれば、溶体化処理後でも未固溶で残存する粗大な窒化物を形成して合金の靱性を低下する。したがって、N含有量は0.025%以下である。好ましいN含有量の上限は0.02%であり、さらに好ましくは0.01%である。 N: 0.025% or less Nitrogen (N) stabilizes austenite and is inevitably contained in a normal dissolution method. In addition, during use in a high temperature environment, N combines with the alloy element in the grain boundaries and grains to form fine nitrides. Fine nitride increases deformation resistance and increases creep strength. However, if the N content is too high, coarse nitrides that remain undissolved even after the solution treatment are formed and the toughness of the alloy is lowered. Therefore, the N content is 0.025% or less. The upper limit of the preferable N content is 0.02%, more preferably 0.01%.
燐(P)は不純物である。Pは耐熱合金の溶接性及び熱間加工性を低下する。したがって、P含有量は0.04%以下である。P含有量の好ましい上限は0.03%である。P含有量はなるべく低い方が好ましい。 P: 0.04% or less Phosphorus (P) is an impurity. P decreases the weldability and hot workability of the heat-resistant alloy. Therefore, the P content is 0.04% or less. The upper limit with preferable P content is 0.03%. The P content is preferably as low as possible.
硫黄(S)は不純物である。Sは耐熱合金の溶接性及び熱間加工性を低下する。したがって、S含有量は0.01%以下である。S含有量の好ましい上限は0.008%である。S含有量はなるべく低い方が好ましい。 S: 0.01% or less Sulfur (S) is an impurity. S decreases the weldability and hot workability of the heat-resistant alloy. Therefore, the S content is 0.01% or less. The upper limit with preferable S content is 0.008%. The S content is preferably as low as possible.
上述のオーステナイト系耐熱合金の化学組成はさらに、Feの一部に代えて、Ti、W、Mo、Zr及びBからなる群から選択される1種又は2種以上を含有してもよい。これらの元素はいずれも任意元素であり、クリープ強度を高める。 [Arbitrary elements]
The chemical composition of the austenitic heat-resistant alloy described above may further contain one or more selected from the group consisting of Ti, W, Mo, Zr and B, instead of a part of Fe. All of these elements are optional elements and increase the creep strength.
チタン(Ti)は任意元素であり、含有されなくてもよい。含有される場合、析出強化相となるラーベス相及びNi3Ti相を形成して、析出強化によりクリープ強度を高める。しかしながら、Ti含有量が高すぎれば、ラーベス相及びNi3Ti相が過剰に生成して、高温延性及び熱間加工性が低下する。Ti含有量が高すぎればさらに、長時間時効後の靭性が低下する。したがって、Ti含有量は0~0.2%未満である。Ti含有量の好ましい下限は0.005%であり、さらに好ましくは、0.01%である。Ti含有量の好ましい上限は0.15%であり、さらに好ましくは、0.1%である。 Ti: 0 to less than 0.2% Titanium (Ti) is an optional element and may not be contained. When it is contained, a Laves phase and a Ni 3 Ti phase that are precipitation strengthening phases are formed, and the creep strength is increased by precipitation strengthening. However, if the Ti content is too high, the Laves phase and the Ni 3 Ti phase are excessively generated, and the hot ductility and hot workability are reduced. If the Ti content is too high, the toughness after aging for a long time further decreases. Therefore, the Ti content is 0 to less than 0.2%. The minimum with preferable Ti content is 0.005%, More preferably, it is 0.01%. The upper limit with preferable Ti content is 0.15%, More preferably, it is 0.1%.
タングステン(W)は任意元素であり、含有されなくてもよい。含有される場合、母相(マトリクス)のオーステナイトに固溶して、固溶強化によりクリープ強度を高める。Wはさらに、結晶粒界および結晶粒内にラーベス相を形成して、析出強化によりクリープ強度を高める。しかしながら、W含有量が多すぎれば、ラーベス相が過剰に生成して高温延性、熱間加工性、及び靭性を低下する。したがって、W含有量は0~6%である。W含有量の好ましい下限は0.005%であり、さらに好ましくは、0.01%である。Wの含有量の好ましい上限は5.5%であり、さらに好ましくは5%である。 W: 0-6%
Tungsten (W) is an optional element and may not be contained. When contained, it dissolves in the austenite of the matrix (matrix), and increases the creep strength by solid solution strengthening. Further, W forms a Laves phase in the crystal grain boundaries and in the crystal grains, and increases the creep strength by precipitation strengthening. However, if there is too much W content, a Laves phase will be generated excessively and hot ductility, hot workability, and toughness will fall. Accordingly, the W content is 0 to 6%. The minimum with preferable W content is 0.005%, More preferably, it is 0.01%. The upper limit with preferable content of W is 5.5%, More preferably, it is 5%.
モリブデン(Mo)は任意元素であり、含有されなくてもよい。含有される場合、母相のオーステナイトに固溶して、固溶強化によりクリープ強度を高める。Moはさらに、結晶粒界および結晶粒内にラーベス相を形成して、析出強化によりクリープ強度を高める。しかしながら、Mo含有量が高すぎれば、ラーベス相が過剰に生成して高温延性、熱間加工性、及び靭性を低下する。したがって、Mo含有量は0~4%である。Mo含有量の好ましい下限は0.005%であり、さらに好ましくは、0.01%である。Moの含有量の好ましい上限は3.5%であり、さらに好ましくは3%である。 Mo: 0-4%
Molybdenum (Mo) is an optional element and may not be contained. When contained, it dissolves in the austenite of the parent phase and increases the creep strength by solid solution strengthening. Mo further forms a Laves phase in the grain boundaries and in the crystal grains, and increases the creep strength by precipitation strengthening. However, if the Mo content is too high, the Laves phase is excessively generated and the hot ductility, hot workability, and toughness are reduced. Therefore, the Mo content is 0 to 4%. The minimum with preferable Mo content is 0.005%, More preferably, it is 0.01%. The upper limit with preferable Mo content is 3.5%, More preferably, it is 3%.
ジルコニウム(Zr)は任意元素であり、含有されなくてもよい。含有される場合、Zrは粒界強化によりクリープ強度を高める。しかしながら、Zr含有量が高すぎれば、耐熱合金の溶接性及び熱間加工性が低下する。したがって、Zr含有量は0~0.1%である。Zrの好ましい下限は0.0005%であり、さらに好ましくは、0.001%である。Zr含有量の好ましい上限は0.06%である。 Zr: 0 to 0.1%
Zirconium (Zr) is an optional element and may not be contained. When contained, Zr increases creep strength by grain boundary strengthening. However, if the Zr content is too high, the weldability and hot workability of the heat-resistant alloy are lowered. Therefore, the Zr content is 0 to 0.1%. The minimum with preferable Zr is 0.0005%, More preferably, it is 0.001%. The upper limit with preferable Zr content is 0.06%.
ホウ素(B)は任意元素であり、含有されなくてもよい。含有される場合、粒界強化によりクリープ強度を高める。しかしながら、B含有量が高すぎれば、溶接性が低下する。したがって、B含有量は0~0.01%である。Bの好ましい下限は0.0005%であり、さらに好ましくは、0.001%である。B含有量の好ましい上限は0.005%である。 B: 0 to 0.01%
Boron (B) is an optional element and may not be contained. When contained, the creep strength is increased by grain boundary strengthening. However, if the B content is too high, weldability decreases. Therefore, the B content is 0 to 0.01%. A preferable lower limit of B is 0.0005%, and more preferably 0.001%. The upper limit with preferable B content is 0.005%.
銅(Cu)は任意元素であり、含有されなくてもよい。含有される場合、表面近傍におけるAl2O3皮膜の形成を促進して、耐熱合金の耐食性を高める。しかしながら、Cu含有量が高すぎれば、効果が飽和するだけでなく、高温延性が低下する。したがって、Cu含有量は0~5%である。Cu含有量の好ましい下限は0.05%であり、さらに好ましくは、0.1%である。Cu含有量の好ましい上限は4.8%であり、さらに好ましくは4.5%である。 Cu: 0 to 5%
Copper (Cu) is an optional element and may not be contained. When contained, it promotes the formation of an Al 2 O 3 film in the vicinity of the surface and enhances the corrosion resistance of the heat-resistant alloy. However, if the Cu content is too high, not only the effect is saturated, but also the high temperature ductility is lowered. Therefore, the Cu content is 0 to 5%. The minimum with preferable Cu content is 0.05%, More preferably, it is 0.1%. The upper limit with preferable Cu content is 4.8%, More preferably, it is 4.5%.
希土類元素(REM)は任意元素であり、含有されなくてもよい。含有される場合、Sを硫化物として固定し、熱間加工性を高める。REMはさらに、酸化物を形成して、耐食性、クリープ強度、及びクリープ延性を高める。しかしながら、REM含有量が高すぎれば、酸化物等の介在物が多くなり、熱間加工性及び溶接性を低下させ、製造コストが上昇する。したがって、REM含有量は0~0.1%である。REM含有量の好ましい下限は0.0005%であり、さらに好ましくは、0.001%である。REM含有量の好ましい上限は0.09%であり、さらに好ましくは0.08%である。 Rare earth elements: 0 to 0.1%
The rare earth element (REM) is an optional element and may not be contained. When it is contained, S is fixed as a sulfide to enhance hot workability. REM further forms oxides to increase corrosion resistance, creep strength, and creep ductility. However, if the REM content is too high, inclusions such as oxides increase, thereby reducing hot workability and weldability and increasing manufacturing costs. Therefore, the REM content is 0 to 0.1%. The minimum with preferable REM content is 0.0005%, More preferably, it is 0.001%. The upper limit with preferable REM content is 0.09%, More preferably, it is 0.08%.
カルシウム(Ca)は任意元素であり、含有されなくてもよい。含有される場合、Sを硫化物として固定し、熱間加工性を高める。一方、Ca含有量が高すぎれば、靱性、延性及び清浄性が低下する。したがって、Ca含有量は0~0.05%である。Caの好ましい下限は0.0005%である。Ca含有量の好ましい上限は0.01%である。 Ca: 0 to 0.05%
Calcium (Ca) is an optional element and may not be contained. When it is contained, S is fixed as a sulfide to enhance hot workability. On the other hand, if the Ca content is too high, toughness, ductility and cleanliness will be reduced. Therefore, the Ca content is 0 to 0.05%. A preferable lower limit of Ca is 0.0005%. The upper limit with preferable Ca content is 0.01%.
マグネシウム(Mg)は任意元素であり、含有されなくてもよい。含有される場合、Sを硫化物として固定し、耐熱合金の熱間加工性を高める。一方、Ca含有量が高すぎれば、靱性、延性及び清浄性が低下する。したがって、Ca含有量は0~0.05%である。Caの好ましい下限は0.0005%である。Ca含有量の好ましい上限は0.01%である。 Mg: 0 to 0.05%
Magnesium (Mg) is an optional element and may not be contained. When contained, it fixes S as a sulfide and improves the hot workability of the heat-resistant alloy. On the other hand, if the Ca content is too high, toughness, ductility and cleanliness will be reduced. Therefore, the Ca content is 0 to 0.05%. A preferable lower limit of Ca is 0.0005%. The upper limit with preferable Ca content is 0.01%.
上述のとおり、本実施形態のオーステナイト系耐熱合金は、高温環境での使用中に微細な析出物を析出して、クリープ強度を高め、靭性を維持する。析出物とは例えば炭化物、窒化物、NiAl及びα-Crである。析出物が粗大であれば、クリープ強度及び靭性が低下する。そのため、使用前の耐熱合金中では、粗大析出物が少ない方が好ましい。耐熱合金の組織中において、円相当径で6μm以上の析出物(粗大析出物)の総体積率が5%以下であれば、高温環境での使用中に微細な析出物が析出して、クリープ強度及び靭性が高まる。粗大析出物の総体積率の好ましい上限は4%であり、さらに好ましくは3%である。ここで、円相当径とは、析出物の面積を円の面積に換算した場合の直径(μm)を意味する。 [Total volume ratio of precipitates with coarse equivalent diameter of 6 μm or more (coarse precipitates): 5% or less]
As described above, the austenitic heat-resistant alloy of the present embodiment precipitates fine precipitates during use in a high temperature environment, increases creep strength, and maintains toughness. Examples of the precipitate include carbide, nitride, NiAl, and α-Cr. If the precipitate is coarse, creep strength and toughness are lowered. Therefore, in the heat-resistant alloy before use, it is preferable that there are few coarse precipitates. If the total volume fraction of precipitates (coarse precipitates) with an equivalent circle diameter of 6 μm or more in the microstructure of the heat-resistant alloy is 5% or less, fine precipitates precipitate during use in a high-temperature environment and creep. Strength and toughness are increased. The upper limit with the preferable total volume ratio of a coarse precipitate is 4%, More preferably, it is 3%. Here, the equivalent circle diameter means the diameter (μm) when the area of the precipitate is converted into the area of the circle.
本実施形態のオーステナイト系耐熱合金の組織中の粗大析出物の総体積率は次の方法で測定できる。 [Method for measuring the total volume fraction of coarse precipitates in the structure]
The total volume ratio of coarse precipitates in the structure of the austenitic heat-resistant alloy of this embodiment can be measured by the following method.
本実施形態のオーステナイト系耐熱合金の製造方法の一例として、合金管の製造方法を説明する。本実施形態の製造方法は、上述の化学組成の素材を準備する工程(準備工程)と、準備された素材を熱間鍛造する工程(熱間鍛造工程)と、熱間鍛造された素材に対して熱間加工を実施して中間材を製造する工程(熱間加工工程)と、中間材に対して溶体化熱処理を実施する工程(溶体化熱処理工程)とを備える。以下、各工程について説明する。 [Production method]
As an example of a method for producing the austenitic heat-resistant alloy of the present embodiment, a method for producing an alloy tube will be described. The manufacturing method of the present embodiment includes a step of preparing a material having the above-described chemical composition (preparation step), a step of hot forging the prepared material (hot forging step), and a hot forged material. And a step of producing an intermediate material by performing hot working (hot working step) and a step of performing solution heat treatment on the intermediate material (solution heat treatment step). Hereinafter, each step will be described.
上述の化学組成を有する溶鋼を製造する。溶鋼に対して、必要に応じて周知の脱ガス処理を実施する。溶鋼を用いて、鋳造により素材を製造する。素材は、造塊法によるインゴットであってもよいし、連続鋳造法によるスラブやブルーム、ビレット等の鋳片であってもよい。 [Preparation process]
A molten steel having the above chemical composition is produced. A well-known degassing process is implemented with respect to molten steel as needed. A raw material is manufactured by casting using molten steel. The material may be an ingot obtained by an ingot-making method or a slab such as a slab, bloom or billet obtained by a continuous casting method.
製造された素材に対して熱間鍛造を実施して円柱素材を製造する。熱間鍛造では、式(1)で定義される断面減少率を30%以上にする。
断面減少率=100-(熱間加工後の素材の断面積/熱間鍛造前の素材の断面積)×100(%) (1) [Hot forging process]
A cylindrical material is manufactured by hot forging the manufactured material. In hot forging, the cross-section reduction rate defined by the formula (1) is set to 30% or more.
Cross-sectional reduction rate = 100- (cross-sectional area of material after hot working / cross-sectional area of material before hot forging) × 100 (%) (1)
熱間鍛造された素材(円柱素材)に対して熱間加工を実施して、中間材である合金素管を製造する。たとえば、機械加工により円柱素材中心に貫通孔を形成する。貫通孔が形成された円柱素材に対して熱間押出を実施して、合金素管を製造する。円柱素材を穿孔圧延して合金素管(中間材)を製造してもよい。熱間加工後の中間材に対して冷間加工を実施してもよい。冷間加工はたとえば、冷間引抜等である。以上の工程により、中間材を製造する。 [Hot working process]
Hot working is performed on the hot-forged material (cylindrical material) to manufacture an alloy base tube that is an intermediate material. For example, a through hole is formed in the center of a cylindrical material by machining. Hot extrusion is performed on the cylindrical material in which the through holes are formed, and an alloy base tube is manufactured. A cylindrical raw material (intermediate material) may be manufactured by piercing and rolling a cylindrical material. Cold working may be performed on the intermediate material after hot working. The cold working is, for example, cold drawing or the like. An intermediate material is manufactured by the above process.
製造された中間材に対して溶体化熱処理を実施する。溶体化熱処理により、中間材中の析出物を固溶する。 [Solution heat treatment process]
Solution heat treatment is performed on the manufactured intermediate material. The precipitate in the intermediate material is dissolved by solution heat treatment.
表1に示す化学組成を有する溶鋼を、真空溶解炉を用いて製造した。 [Production method]
Molten steel having the chemical composition shown in Table 1 was produced using a vacuum melting furnace.
製造された合金板材から、試験片を作製した。試験片は、合金板材の厚さ中心部から長手方向(圧延方向)に平行に採取した。試験片は丸棒試験片であり、平行部の直径は6mm、標点間距離は30mmであった。試験片を用いて、クリープ破断試験を行った。クリープ破断試験は700~800℃の大気雰囲気において実施した。得られた破断強度に基づいて、ラーソン-ミラーパラメータ法によって、700℃における1.0×104時間でのクリープ強度(MPa)を求めた。 [Creep rupture test]
A test piece was prepared from the manufactured alloy sheet. The test piece was sampled in parallel to the longitudinal direction (rolling direction) from the thickness center of the alloy sheet. The test piece was a round bar test piece, the diameter of the parallel part was 6 mm, and the distance between the gauge points was 30 mm. A creep rupture test was performed using the test piece. The creep rupture test was conducted in an air atmosphere at 700 to 800 ° C. Based on the obtained breaking strength, the creep strength (MPa) at 700 ° C. at 1.0 × 10 4 hours was determined by the Larson-Miller parameter method.
製造された合金板材に対して、700℃で8000時間保持する時効処理を実施した後、水冷した。時効処理後の板材の厚さ方向中央部から、JIS Z2242(2005)に規定されたVノッチシャルピー衝撃試験片を採取した。ノッチは、合金板材の長手方向に平行に作製した。試験片の幅は5mm、高さは10mm、長さは55mmであり、ノッチ深さは2mmであった。0℃にて、JIS Z2242(2005)に準拠したシャルピー衝撃試験を実施して、衝撃値(J/cm2)を求めた。 [Charpy impact test]
The manufactured alloy sheet was subjected to aging treatment at 700 ° C. for 8000 hours, followed by water cooling. A V-notch Charpy impact test piece defined in JIS Z2242 (2005) was collected from the thickness direction center of the plate after aging treatment. The notch was made parallel to the longitudinal direction of the alloy sheet. The test piece had a width of 5 mm, a height of 10 mm, a length of 55 mm, and a notch depth of 2 mm. At 0 ° C., a Charpy impact test in accordance with JIS Z2242 (2005) was performed to determine an impact value (J / cm 2 ).
試験結果を表2に示す。 [Test results]
The test results are shown in Table 2.
The austenitic heat-resistant alloy of the present invention can be widely used in a high temperature environment of 700 ° C. or higher. In particular, it is particularly suitable for use as an alloy pipe in a power generation boiler, a chemical industry plant or the like exposed to a high temperature environment of 700 ° C. or higher.
Claims (5)
- 質量%で、
C:0.03~0.25%未満、
Si:0.01~2.0%、
Mn:2.0%以下、
Cr:10~30%未満、
Ni:25超~45%、
Al:2.5超~4.5%未満、
Nb:0.2~3.5%、
N:0.025%以下、
Ti:0~0.2%未満、
W:0~6%、
Mo:0~4%、
Zr:0~0.1%、
B:0~0.01%、
Cu:0~5%、
希土類元素:0~0.1%、
Ca:0~0.05%、及び、
Mg:0~0.05%を含有し、
残部がFe及び不純物からなり、
不純物中のP及びSが各々、
P:0.04%以下、及び
S:0.01%以下の化学組成を有し、
組織中において、円相当径が6μm以上の析出物の総体積率が5%以下であることを特徴とする、オーステナイト系耐熱合金。 % By mass
C: 0.03 to less than 0.25%,
Si: 0.01 to 2.0%,
Mn: 2.0% or less,
Cr: 10 to less than 30%,
Ni: more than 25 to 45%,
Al: more than 2.5 to less than 4.5%,
Nb: 0.2 to 3.5%
N: 0.025% or less,
Ti: 0 to less than 0.2%,
W: 0-6%
Mo: 0-4%,
Zr: 0 to 0.1%,
B: 0 to 0.01%
Cu: 0 to 5%,
Rare earth elements: 0-0.1%,
Ca: 0 to 0.05% and
Mg: 0 to 0.05% contained,
The balance consists of Fe and impurities,
P and S in the impurity are each
P: has a chemical composition of 0.04% or less, and S: 0.01% or less,
An austenitic heat-resistant alloy, wherein the total volume fraction of precipitates having an equivalent circle diameter of 6 μm or more in the structure is 5% or less. - 請求項1に記載のオーステナイト系耐熱合金であって、
前記化学組成は、
Ti:0.005~0.2%未満、
W:0.005~6%、
Mo:0.005~4%、
Zr:0.0005~0.1%、及び、
B:0.0005~0.01%からなる群から選択される1種又は2種以上を含有することを特徴とする、オーステナイト系耐熱合金。 The austenitic heat-resistant alloy according to claim 1,
The chemical composition is
Ti: 0.005 to less than 0.2%,
W: 0.005 to 6%,
Mo: 0.005 to 4%,
Zr: 0.0005 to 0.1%, and
B: An austenitic heat-resistant alloy containing one or more selected from the group consisting of 0.0005 to 0.01%. - 請求項1又は請求項2に記載のオーステナイト系耐熱合金であって、
前記化学組成は、
Cu:0.05~5%、及び、
希土類元素:0.0005~0.1%からなる群から選択される1種以上を含有することを特徴とする、オーステナイト系耐熱合金。 The austenitic heat-resistant alloy according to claim 1 or 2,
The chemical composition is
Cu: 0.05 to 5%, and
Rare earth element: An austenitic heat-resistant alloy characterized by containing at least one selected from the group consisting of 0.0005 to 0.1%. - 請求項1~請求項3のいずれか1項に記載のオーステナイト系耐熱合金であって、
前記化学組成は、
Ca:0.0005~0.05%、及び、
Mg:0.0005~0.05%からなる群から選択される1種以上を含有することを特徴とする、オーステナイト系耐熱合金。 The austenitic heat-resistant alloy according to any one of claims 1 to 3,
The chemical composition is
Ca: 0.0005 to 0.05%, and
Mg: One or more selected from the group consisting of 0.0005 to 0.05%, an austenitic heat resistant alloy. - 請求項1~請求項4のいずれか1項に記載の化学組成を有する素材に対して、30%以上の断面減少率で熱間鍛造を実施する工程と、
熱間鍛造された前記素材に対して熱間加工を実施して中間材を製造する工程と、
前記中間材に対して1100~1250℃で溶体化処理を実施する工程とを備えることを特徴とする、オーステナイト系耐熱合金の製造方法。
A step of hot forging the material having the chemical composition according to any one of claims 1 to 4 at a cross-section reduction rate of 30% or more;
A process of producing an intermediate material by performing hot working on the hot forged material;
And a step of performing a solution treatment on the intermediate material at 1100 to 1250 ° C., and a method for producing an austenitic heat-resistant alloy.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3009770A CA3009770A1 (en) | 2016-01-05 | 2017-01-04 | Austenitic heat resistant alloy and method for producing the same |
JP2017560386A JP6493566B2 (en) | 2016-01-05 | 2017-01-04 | Austenitic heat-resistant alloy and manufacturing method thereof |
EP17735952.8A EP3401415A4 (en) | 2016-01-05 | 2017-01-04 | HEAT-RESISTANT AUSTENITIC ALLOY AND METHOD FOR MANUFACTURING THE SAME |
KR1020187020362A KR102090201B1 (en) | 2016-01-05 | 2017-01-04 | Austenitic heat-resistant alloy and its manufacturing method |
SG11201805206PA SG11201805206PA (en) | 2016-01-05 | 2017-01-04 | Austenitic heat resistant alloy and method for producing the same |
US16/067,751 US20190010565A1 (en) | 2016-01-05 | 2017-01-04 | Austenitic Heat Resistant Alloy and Method for Producing the Same |
CN201780005402.2A CN108474072A (en) | 2016-01-05 | 2017-01-04 | Austenitic heat-resistant alloy and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-000375 | 2016-01-05 | ||
JP2016000375 | 2016-01-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017119415A1 true WO2017119415A1 (en) | 2017-07-13 |
Family
ID=59274572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/000056 WO2017119415A1 (en) | 2016-01-05 | 2017-01-04 | Austenitic heat-resistant alloy and method for manufacturing same |
Country Status (8)
Country | Link |
---|---|
US (1) | US20190010565A1 (en) |
EP (1) | EP3401415A4 (en) |
JP (1) | JP6493566B2 (en) |
KR (1) | KR102090201B1 (en) |
CN (1) | CN108474072A (en) |
CA (1) | CA3009770A1 (en) |
SG (1) | SG11201805206PA (en) |
WO (1) | WO2017119415A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131954A1 (en) | 2017-12-28 | 2019-07-04 | 日本製鉄株式会社 | Austenite-based heat-resistant alloy |
WO2019189576A1 (en) * | 2018-03-28 | 2019-10-03 | 日鉄ステンレス株式会社 | Alloy sheet and production method thereof |
WO2020067444A1 (en) * | 2018-09-27 | 2020-04-02 | 日本製鉄株式会社 | Austenitic alloy |
JP2020079437A (en) * | 2018-11-14 | 2020-05-28 | 日本製鉄株式会社 | Austenitic stainless steel |
JP2020132919A (en) * | 2019-02-14 | 2020-08-31 | 日本製鉄株式会社 | Heat-resistant alloy and method for producing the same |
JPWO2021039266A1 (en) * | 2019-08-29 | 2021-03-04 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019138987A1 (en) * | 2018-01-10 | 2019-07-18 | 日本製鉄株式会社 | Austenitic heat-resistant alloy, method for producing same, and austenitic heat-resistant alloy material |
JP6950752B2 (en) * | 2018-01-10 | 2021-10-13 | 日本製鉄株式会社 | Austenitic heat-resistant alloy and its manufacturing method |
CN109898028B (en) * | 2019-03-15 | 2021-09-28 | 山西太钢不锈钢股份有限公司 | High-temperature oxidation resistant austenitic heat-resistant stainless steel and preparation method and application thereof |
CN110079737B (en) * | 2019-05-27 | 2021-04-27 | 山西太钢不锈钢股份有限公司 | Twin crystal strengthened aluminum-containing austenitic heat-resistant stainless steel and preparation method and application thereof |
CN110551932A (en) * | 2019-09-23 | 2019-12-10 | 广东鑫发精密金属科技有限公司 | 304 thin strip stainless steel battery heating piece and preparation method thereof |
CN110484841B (en) * | 2019-09-29 | 2020-09-29 | 北京钢研高纳科技股份有限公司 | Heat treatment method of GH4780 alloy forging |
EP4098756A4 (en) * | 2020-01-31 | 2023-11-15 | Nippon Steel Corporation | Antioxidant for use in heating of alloy material, and method for heating alloy material using same |
JP7560732B2 (en) * | 2020-02-14 | 2024-10-03 | 日本製鉄株式会社 | Austenitic Stainless Steel |
CN111455161B (en) * | 2020-04-08 | 2021-11-16 | 山西太钢不锈钢股份有限公司 | Method for regulating and controlling structure performance of austenitic heat-resistant stainless steel seamless tube |
DE112021006352T5 (en) * | 2020-12-10 | 2023-09-14 | Proterial, Ltd. | METHOD FOR PRODUCING AN AUSTENITIC STAINLESS STEEL STRIP |
CN114032440A (en) * | 2021-11-23 | 2022-02-11 | 北京科技大学 | A kind of Laves phase strengthened austenitic heat-resistant steel and preparation method thereof |
CN115141984B (en) * | 2021-11-23 | 2023-02-24 | 燕山大学 | High-entropy austenitic stainless steel and preparation method thereof |
CN115011879B (en) * | 2022-06-23 | 2024-02-06 | 西北工业大学 | Austenitic heat-resistant steel and heat treatment method thereof |
CN115233105B (en) * | 2022-07-28 | 2023-03-28 | 中国核动力研究设计院 | Austenitic stainless steel alloy for supercritical gas-cooled reactor fuel cladding and preparation method thereof |
CN115233107A (en) * | 2022-07-28 | 2022-10-25 | 中国核动力研究设计院 | Al-containing austenitic stainless steel for supercritical fluid gas-cooled reactor cladding and preparation method thereof |
CN115505820B (en) * | 2022-09-15 | 2024-01-05 | 山西太钢不锈钢股份有限公司 | Continuous casting method of niobium-containing high-nitrogen nickel-based alloy |
CN115772635A (en) * | 2022-11-23 | 2023-03-10 | 江苏新华合金有限公司 | Cr25Ni20Si2 heat-resistant steel bar and manufacturing method thereof |
CN116288029B (en) * | 2023-01-06 | 2023-09-05 | 清华大学 | Lightweight ultra-high strength austenitic stainless steel and preparation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5610983B2 (en) * | 1975-06-03 | 1981-03-11 | ||
JPS59229468A (en) * | 1983-06-09 | 1984-12-22 | Sumitomo Metal Ind Ltd | High temperature sulfidation resistant austenitic stainless steel |
JPH02115348A (en) | 1988-10-24 | 1990-04-27 | Nippon Steel Corp | High A1 austenitic heat-resistant steel with excellent hot workability |
JPH07316751A (en) | 1994-05-20 | 1995-12-05 | Nkk Corp | Stainless steel excellent in repeated oxidation resistance |
US20080304996A1 (en) * | 2007-01-04 | 2008-12-11 | Ut-Battelle, Llc | High Nb, Ta, and Al Creep- and Oxidation-Resistant Austenitic Stainless Steels |
US20130266477A1 (en) * | 2012-04-05 | 2013-10-10 | Ut-Battelle, Llc | Alumina Forming Iron Base Superalloy |
JP2013227644A (en) | 2012-03-28 | 2013-11-07 | Nippon Steel & Sumitomo Metal Corp | Austenite-based heat resistant alloy |
JP2014043621A (en) | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | Austenitic heat resistant steel |
CN103774056A (en) * | 2014-01-13 | 2014-05-07 | 江苏大学 | Novel austenitic stainless steel for ultra (super) critical coal-fired unit |
CN104561821A (en) * | 2014-11-13 | 2015-04-29 | 江苏大学 | Austenitic stainless steel and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5923855A (en) * | 1982-07-28 | 1984-02-07 | Nippon Kokan Kk <Nkk> | Steel having high strength at high temperature containing carbide forming element |
JPS60262945A (en) * | 1984-06-11 | 1985-12-26 | Kawasaki Steel Corp | Oxidation resistant austenitic steel and its manufacture |
JP3515770B2 (en) * | 2001-09-05 | 2004-04-05 | 住友電工スチールワイヤー株式会社 | Heat-resistant steel wire and spring |
JP2004107777A (en) * | 2002-09-20 | 2004-04-08 | Toshiba Corp | Austenitic heat resistant alloy, production method therefor and steam turbine parts |
JP5610983B2 (en) * | 2010-11-01 | 2014-10-22 | 三菱電機株式会社 | Radar equipment |
CN104073739B (en) * | 2014-07-25 | 2016-09-21 | 太原钢铁(集团)有限公司 | A kind of manufacture method of heat-resistance stainless steel seamless steel pipe and rustless steel and seamless steel pipe |
-
2017
- 2017-01-04 JP JP2017560386A patent/JP6493566B2/en not_active Expired - Fee Related
- 2017-01-04 CA CA3009770A patent/CA3009770A1/en not_active Abandoned
- 2017-01-04 EP EP17735952.8A patent/EP3401415A4/en not_active Withdrawn
- 2017-01-04 CN CN201780005402.2A patent/CN108474072A/en active Pending
- 2017-01-04 KR KR1020187020362A patent/KR102090201B1/en not_active Expired - Fee Related
- 2017-01-04 WO PCT/JP2017/000056 patent/WO2017119415A1/en active Application Filing
- 2017-01-04 SG SG11201805206PA patent/SG11201805206PA/en unknown
- 2017-01-04 US US16/067,751 patent/US20190010565A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5610983B2 (en) * | 1975-06-03 | 1981-03-11 | ||
JPS59229468A (en) * | 1983-06-09 | 1984-12-22 | Sumitomo Metal Ind Ltd | High temperature sulfidation resistant austenitic stainless steel |
JPH02115348A (en) | 1988-10-24 | 1990-04-27 | Nippon Steel Corp | High A1 austenitic heat-resistant steel with excellent hot workability |
JPH07316751A (en) | 1994-05-20 | 1995-12-05 | Nkk Corp | Stainless steel excellent in repeated oxidation resistance |
US20080304996A1 (en) * | 2007-01-04 | 2008-12-11 | Ut-Battelle, Llc | High Nb, Ta, and Al Creep- and Oxidation-Resistant Austenitic Stainless Steels |
JP2013227644A (en) | 2012-03-28 | 2013-11-07 | Nippon Steel & Sumitomo Metal Corp | Austenite-based heat resistant alloy |
US20130266477A1 (en) * | 2012-04-05 | 2013-10-10 | Ut-Battelle, Llc | Alumina Forming Iron Base Superalloy |
JP2014043621A (en) | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | Austenitic heat resistant steel |
CN103774056A (en) * | 2014-01-13 | 2014-05-07 | 江苏大学 | Novel austenitic stainless steel for ultra (super) critical coal-fired unit |
CN104561821A (en) * | 2014-11-13 | 2015-04-29 | 江苏大学 | Austenitic stainless steel and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
See also references of EP3401415A4 * |
YAMAMOTO,Y. ET AL.: "Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates", INTERMETALLICS, vol. 16, no. 3, March 2008 (2008-03-01), pages 453 - 462, XP022500387 * |
ZHOU,D.Q ET AL.: "Precipitate characteristics and their effects on the high-temperature creep resistance of alumina-forming austenitic stainless steels", MATERIALS SCIENCE & ENGINEERING A, vol. 622, 12 January 2015 (2015-01-12), pages 91 - 100, XP029115889 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131954A1 (en) | 2017-12-28 | 2019-07-04 | 日本製鉄株式会社 | Austenite-based heat-resistant alloy |
CN111542639A (en) * | 2017-12-28 | 2020-08-14 | 日本制铁株式会社 | Austenitic heat-resistant alloys |
WO2019189576A1 (en) * | 2018-03-28 | 2019-10-03 | 日鉄ステンレス株式会社 | Alloy sheet and production method thereof |
JP6609727B1 (en) * | 2018-03-28 | 2019-11-20 | 日鉄ステンレス株式会社 | Alloy plate and manufacturing method thereof |
WO2020067444A1 (en) * | 2018-09-27 | 2020-04-02 | 日本製鉄株式会社 | Austenitic alloy |
JP2020079437A (en) * | 2018-11-14 | 2020-05-28 | 日本製鉄株式会社 | Austenitic stainless steel |
JP7131318B2 (en) | 2018-11-14 | 2022-09-06 | 日本製鉄株式会社 | austenitic stainless steel |
JP2020132919A (en) * | 2019-02-14 | 2020-08-31 | 日本製鉄株式会社 | Heat-resistant alloy and method for producing the same |
JP7205277B2 (en) | 2019-02-14 | 2023-01-17 | 日本製鉄株式会社 | Heat-resistant alloy and its manufacturing method |
JPWO2021039266A1 (en) * | 2019-08-29 | 2021-03-04 | ||
WO2021039266A1 (en) * | 2019-08-29 | 2021-03-04 | 日本製鉄株式会社 | Austenitic heat-resistant steel |
JP7265203B2 (en) | 2019-08-29 | 2023-04-26 | 日本製鉄株式会社 | Austenitic heat resistant steel |
Also Published As
Publication number | Publication date |
---|---|
JP6493566B2 (en) | 2019-04-03 |
KR102090201B1 (en) | 2020-04-23 |
JPWO2017119415A1 (en) | 2018-09-27 |
SG11201805206PA (en) | 2018-07-30 |
EP3401415A4 (en) | 2019-08-07 |
KR20180095640A (en) | 2018-08-27 |
US20190010565A1 (en) | 2019-01-10 |
CN108474072A (en) | 2018-08-31 |
EP3401415A1 (en) | 2018-11-14 |
CA3009770A1 (en) | 2017-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6493566B2 (en) | Austenitic heat-resistant alloy and manufacturing method thereof | |
JP6705508B2 (en) | NiCrFe alloy | |
JP7173359B2 (en) | duplex stainless steel | |
JP5201297B2 (en) | Austenitic stainless steel and method for producing austenitic stainless steel | |
JP7052807B2 (en) | Manufacturing method of Ni-based alloy and Ni-based alloy | |
JP7518342B2 (en) | Duplex Stainless Steel | |
US20210062314A1 (en) | Austenitic heat resistant alloy | |
JP6816779B2 (en) | Austenitic heat-resistant alloy member and its manufacturing method | |
US20190127832A1 (en) | Austenitic Stainless Steel | |
WO2023132339A1 (en) | Fe-Cr-Ni ALLOY MATERIAL | |
JP6520546B2 (en) | Austenitic heat-resistant alloy member and method of manufacturing the same | |
JP4070695B2 (en) | Heat-resistant alloy parts material | |
WO2020067444A1 (en) | Austenitic alloy | |
JP2021080564A (en) | Austenitic stainless steel material | |
JP6627662B2 (en) | Austenitic stainless steel | |
JP7464817B2 (en) | Austenitic stainless steel | |
JP6575266B2 (en) | Austenitic stainless steel | |
WO2023238851A1 (en) | Austenitic stainless alloy material | |
JP2017039983A (en) | Seamless steel pipe and method for producing the same | |
JP2021080565A (en) | Austenitic stainless steel material | |
JP2020079437A (en) | Austenitic stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17735952 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017560386 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201805206P Country of ref document: SG |
|
ENP | Entry into the national phase |
Ref document number: 3009770 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187020362 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187020362 Country of ref document: KR |