JPS6260835B2 - - Google Patents
Info
- Publication number
- JPS6260835B2 JPS6260835B2 JP58196057A JP19605783A JPS6260835B2 JP S6260835 B2 JPS6260835 B2 JP S6260835B2 JP 58196057 A JP58196057 A JP 58196057A JP 19605783 A JP19605783 A JP 19605783A JP S6260835 B2 JPS6260835 B2 JP S6260835B2
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- photoresist
- film
- substrate
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、低温リフトオフ法によるジヨセフソ
ン素子のパターン形成方法に係り、特に上部電極
パターンの形成に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for forming a Josephson device pattern by a low-temperature lift-off method, and particularly relates to the formation of an upper electrode pattern.
ジヨセフソン接合を応用したスイツチング素子
は、スイツチング時間や消費電力がSi半導体素子
に比べてそれぞれ約2桁優れた性能を有し、高速
論理、メモリ素子として有望視されている。この
ジヨセフソン素子の各電極および層間絶縁膜のパ
ターン形成は、リフトオフ法により作製される。
プロセスの作製条件は素子特性の劣下を防止する
ために70℃以下の低温で行つている。リフトオフ
マスクは、第1図に示す様に基板11上にポジ型
のホトレジスト12を塗布し、露光後C6H5Clで
現像し、レジストの断面構造をオーバハングにし
たいわゆる、レジストステンシルマスクが用いら
れている。ジヨセフソン素子の中で最も重要な作
製プロセスは、ジヨセフソン接合を形成するベー
ス電極と上部電極である。特に上部電極を形成す
る場合に用いるレジストマスクは、酸素イオンに
よるスパツタダメージを受ける。すなわち、ベー
ス電極接合面の高周波スパツタリングクリーニン
グとトンネルバリアを形成する酸素含有中での高
周波スパツタ酸化処理の影響を受けて第2図に示
す様にレジストのオーバハング部23が欠損す
る。一方上部電極材には素子特性の劣下の原因と
なるためにPb―In合金が用いられない。このた
めに、Pb―Biもしくは、Pb―Au―Pb合金を用い
なければならない。これら、電極材の最大の欠点
はいずれもアルカリ現像液や水に対して侵食され
るために、その表面に保護膜としてSiOコートを
施こす必要がある。
Switching devices using Josephson junctions have performance superior to Si semiconductor devices by about two orders of magnitude in terms of switching time and power consumption, and are considered promising as high-speed logic and memory devices. The electrodes and interlayer insulating film of this Josephson device are patterned by a lift-off method.
The manufacturing process is carried out at a low temperature of 70°C or less to prevent deterioration of device characteristics. The lift-off mask is a so-called resist stencil mask in which a positive type photoresist 12 is coated on a substrate 11 and developed with C 6 H 5 Cl after exposure, as shown in Fig. 1, so that the cross-sectional structure of the resist is overhanging. It is being The most important manufacturing process in a Josephson device is the base electrode and top electrode that form the Josephson junction. In particular, the resist mask used when forming the upper electrode is subject to spatter damage caused by oxygen ions. That is, under the influence of the high frequency sputtering cleaning of the base electrode bonding surface and the high frequency sputter oxidation treatment in an oxygen-containing atmosphere that forms a tunnel barrier, the overhang portion 23 of the resist is damaged as shown in FIG. On the other hand, Pb-In alloy is not used for the upper electrode material because it causes deterioration in device characteristics. For this purpose, Pb-Bi or Pb-Au-Pb alloy must be used. The biggest drawback of these electrode materials is that they are eroded by alkaline developers and water, so it is necessary to coat their surfaces with SiO as a protective film.
しかし、第3図に示す様に、該レジストマスク
ではPb―Bi電極パターン33の側面まで完全に
SiOコート34で被覆するのが困難である。第4
図はリフトオフ後のPb―Bi上部電極パターン4
3のSiOコート膜44の被覆状態を示したもので
ある。この現象は、次のホトレジ工程においてパ
ターン側壁から侵食が進行し、第5図a,bに示
す様に上部電極パターンの膨れ、剥離が頻発し大
きな弊害となつていた。 However, as shown in FIG. 3, the resist mask does not completely cover the sides of the Pb-Bi electrode pattern 33.
It is difficult to coat with SiO coat 34. Fourth
The figure shows Pb-Bi upper electrode pattern 4 after lift-off.
3 shows the coating state of the SiO coat film 44 of No. 3. This phenomenon caused serious problems as erosion progressed from the sidewalls of the pattern in the next photoresist process, causing frequent swelling and peeling of the upper electrode pattern as shown in FIGS. 5a and 5b.
本発明の目的は、ジヨセフソン素子の上部電極
パターンの膨れ、剥離を完全に防止することを可
能としたジヨセフソン素子のパターン形成法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a pattern of a Josephson device, which makes it possible to completely prevent swelling and peeling of the upper electrode pattern of a Josephson device.
上記の目的を実現するために、本発明では第6
図aに示す様に上部電極材Pb―Bi63を被着
後、レジストマスク62の側面を酸素ガスを用い
てプラズマアツシヤで軽くエツチングし、第6図
bに示す様に約0.3〜1.0μm程度の間隙を形成
し、その後に、SiOコート膜を被着した。なお、
65はプラズマアツシヤでレジストの側面がエツ
チングされた部分を示す。その結果、第6図cに
示す様に上部電極Pb―Biパターンの側面は、完
全にSiOコート膜64で被覆することが可能とな
つた。第6図dは、リフトオフ処理した後、引続
いてアルカリ現像液および水洗処理した後にPb
―Bi電極パターンを示したものである。この結
果、従来問題となつていたPb―Bi電極パターン
の侵食は完全に防止することが出来、膨れ、剥離
が皆無となつた。第7図は酸素ガスを用いたプラ
ズマアツシヤのレジストに対するプラズマアツシ
ヤ時間とエツチング量(横方向の)との関係を示
したものである。エツチング条件はレジスト厚
1.5μm、圧力0.5Torr、出力50Wである。
In order to achieve the above object, the present invention provides the sixth
After depositing the upper electrode material Pb-Bi 63 as shown in Figure a, the sides of the resist mask 62 are lightly etched with a plasma assher using oxygen gas to a thickness of approximately 0.3 to 1.0 μm as shown in Figure 6b. After forming a gap, a SiO coat film was deposited. In addition,
Reference numeral 65 indicates a portion where the side surface of the resist is etched by a plasma assher. As a result, it became possible to completely cover the side surfaces of the upper electrode Pb--Bi pattern with the SiO coating film 64, as shown in FIG. 6c. Figure 6d shows the Pb after lift-off treatment and subsequent alkaline developer and water washing treatment.
- This shows the Bi electrode pattern. As a result, the erosion of the Pb-Bi electrode pattern, which had been a problem in the past, was completely prevented, and there was no blistering or peeling. FIG. 7 shows the relationship between the plasma assher time and the etching amount (in the lateral direction) for resist using plasma assher using oxygen gas. Etching conditions are resist thickness
1.5μm, pressure 0.5Torr, output 50W.
以下、実施例について詳細に説明する。 Examples will be described in detail below.
実施例 1
本発明により形成したPb系ジヨセフソン論理
素子の断面図を第8図に示す。
Example 1 A cross-sectional view of a Pb-based Josephson logic element formed according to the present invention is shown in FIG.
基板には、直径50mmφ、厚さ350μm<100>の
Si基板81を用いる。なおSi基板81上には
600nmの熱酸化膜が施こしてある。このSi基板8
1上にNb膜を高速スパツタ法により膜厚300nm
を被着し、グランドプレーン82とした。 The substrate has a diameter of 50 mmφ and a thickness of 350 μm <100>.
A Si substrate 81 is used. Note that on the Si substrate 81
A 600nm thermal oxide film is applied. This Si substrate 8
1, a Nb film with a thickness of 300nm was applied using a high-speed sputtering method.
was applied to form a ground plane 82.
その後、陽極酸化法によりNbの表面にNb2O5
83を膜厚150nm形成し、ついで、層間絶縁膜と
してSiO84を膜厚200nm被着した。この上にベ
ース電極用のレジストマスクを、次の条件で形成
した。AZ1350J(AZ社商品)を0.8μmの厚さに
形成し、空気中で70℃、30分間のプリベークを行
う。ついで、所望パターンを露光後、C6H5Cl液
に10分間浸漬し、さらに、アルカリ系現像液を用
いて90秒間の現像処理を行つた。現像液の組成は
AZテペロツパー(AZ社商品名):水=1:1を
用いた。上記の条件でSi基板81を真空槽に挿入
しSiO84の表面に吸着した水分や汚れを取り除
くためにArでスパツタクリーニングを行つた。 After that, Nb 2 O 5 was added to the Nb surface by anodizing.
83 was formed to a thickness of 150 nm, and then SiO 84 was deposited to a thickness of 200 nm as an interlayer insulating film. A resist mask for the base electrode was formed on this under the following conditions. AZ1350J (AZ Company product) is formed to a thickness of 0.8 μm and prebaked in air at 70°C for 30 minutes. Then, after exposing the desired pattern, it was immersed in a C 6 H 5 Cl solution for 10 minutes, and further developed for 90 seconds using an alkaline developer. The composition of the developer is
AZ Teperotspur (trade name of AZ Company): Water = 1:1 was used. The Si substrate 81 was inserted into a vacuum chamber under the above conditions, and spatter cleaning was performed with Ar to remove moisture and dirt adsorbed on the surface of the SiO 84.
この時の条件は480VでAr圧力3×10-3Torr、
スパツタ時間は5分である。次に真空槽内の真空
度を5×10-7Torrに減圧した後、抵抗加熱ヒー
タにより、Au、Pb、Inの順で積層蒸着を行つ
た。膜厚は4nm、160nm、36nmである。蒸着
後、表面保護膜を形成するために、真空槽に酸素
ガスを導入し1気圧にしてから、真空槽の温度を
60℃に保ち60分間の酸化処理を行つた。この後、
真空槽内より基板81を取り出しアセトン中でリ
フトオフを行ないベース電極85を形成した。次
に、接合ウインドウ孔87用のレジストマスクを
ベース電極と同様に形成し、再び真空槽内におい
てArによるスパツタクリーニングを行つた後、
SiOを膜厚270nm被着した。リフトオフは前述し
たベース電極と同様な方法で行ない接合ウインド
ウ孔87を形成した。次に、上部電極用のレジス
トマスクを次の条件で作製した。AZ1350Jレジス
トを1.5μmの厚さに形成し、空気中で70℃、30
分のプリベークを行つた。ついで、所望パターン
を露光後、C6H5Cl液に10分間浸漬し、その後、
アルカリ現像液を用いて90秒間の現像処理を行つ
た。現像液の組成はベース電極と同じである。但
し、露光時間は前述した条件に比べて2倍の時間
に設定し照射した。再び、真空槽内において減圧
した後、ベース電極面を酸素ガスによるスパツタ
クリーニングを行つた。諸条件はベース電極と同
様である。但し、ガス種は前述した酸素である。
引続いて、トンネルバリアを形成するために酸素
ガスを導入し、8×10-3Torrにした後、360Vで
20分間の高周波スパツタ酸化処理を行ないトンネ
ルバリア86を形成した。ついで、真空槽内の真
空度を5×10-7Torrに減圧した後、抵抗加熱ヒ
ータによりPb―Bi(29wt%)を同時蒸着により
膜厚420nm被着し真空槽内より取り出し、プラズ
マ灰化装置の真空槽に挿入した。一度5×
10-2Torrに減圧した後、酸素ガスを導入し真空
槽内を0.5Torrに設定し、出力50W、1分間のプ
ラズマアツシヤ処理を施した。この時のレジスト
の横方向におけるエツチング量は約0.7μmに形
成した。この後、引続いて、真空槽内に挿入し、
一度5×10-6Torrの真空度にした後、酸素ガス
を導入し3×10-3Torrに設定し、480Vで3分間
のスパツタクリーニングを行ない、再び、5×
10-6Torrに真空槽を減圧し、保護膜として膜厚
100nmのSiOを被着した。蒸着後、真空槽内から
取り出してからアセトン中でリフトオフを行ない
上部電極88と保護膜SiO89を形成した。次
に、層間絶縁膜として、前記上部電極と同じレジ
ストマスクを用いて基板81を挿入した。スパツ
タクリーニングは、Arガスを用いて3×
10-6Torr、出力480Vで3分間の処理を行ない、
6×10-6Torrに減圧した後、SiOを膜厚600nm被
着した。再び真空槽から取り出しアセトン中でリ
フトオフを行ない層間絶縁膜90を形成した。次
に制御線用のレジストマスクを前述の上部電極、
層間絶縁膜と同様な方法で作製した。再び、真空
槽へ挿入し、Arによるスパツタクリーニング
後、5×10-7Torr以下で、Pb、Au、Inの順で積
層蒸着を行つた。膜厚はそれぞれ540nm、
10nm、250nmである。被着後、真空槽から取り
出してアセトン中でリフトオフを行ない制御線9
1を形成した。最後に保護膜としてSiOを膜厚1.3
μmを被着しリフトオフにより形成した。以上述
べた様に、上部電極の作製においては、Pb―Bi
被着後、酸素ガスによるプラズマアツシヤー処理
を行ない、その後に保護膜SiOを被着する新しい
プロセスを取り入れPb系ジヨセフソン論理素子
の作製を完了した。 The conditions at this time were 480V and Ar pressure of 3×10 -3 Torr.
Sputtering time is 5 minutes. Next, after reducing the degree of vacuum in the vacuum chamber to 5×10 −7 Torr, layered deposition of Au, Pb, and In was performed in this order using a resistance heater. The film thicknesses are 4nm, 160nm, and 36nm. After vapor deposition, in order to form a surface protective film, oxygen gas is introduced into the vacuum chamber to 1 atm, and then the temperature of the vacuum chamber is lowered.
Oxidation treatment was performed at 60°C for 60 minutes. After this,
The substrate 81 was taken out from the vacuum chamber and lifted off in acetone to form a base electrode 85. Next, a resist mask for the bonding window hole 87 is formed in the same manner as for the base electrode, and after performing spatter cleaning with Ar in the vacuum chamber again,
SiO was deposited to a thickness of 270 nm. Lift-off was performed in the same manner as for the base electrode described above to form a bonding window hole 87. Next, a resist mask for the upper electrode was produced under the following conditions. AZ1350J resist was formed to a thickness of 1.5 μm and heated in air at 70℃ for 30 minutes.
I did a pre-bake for a few minutes. Then, after exposing the desired pattern, it was immersed in a C 6 H 5 Cl solution for 10 minutes, and then
Development was performed for 90 seconds using an alkaline developer. The composition of the developer is the same as that of the base electrode. However, the exposure time was set to twice that of the conditions described above. After reducing the pressure in the vacuum chamber again, the base electrode surface was spatter cleaned with oxygen gas. Conditions are the same as for the base electrode. However, the gas species is the aforementioned oxygen.
Subsequently, oxygen gas was introduced to form a tunnel barrier, and after the pressure was set to 8×10 -3 Torr, the voltage was set at 360V.
A tunnel barrier 86 was formed by high frequency sputter oxidation treatment for 20 minutes. Next, after reducing the vacuum in the vacuum chamber to 5 × 10 -7 Torr, Pb-Bi (29wt%) was deposited to a thickness of 420 nm by simultaneous vapor deposition using a resistance heater, and then taken out from the vacuum chamber and subjected to plasma ashing. It was inserted into the vacuum chamber of the device. once 5x
After reducing the pressure to 10 -2 Torr, oxygen gas was introduced and the inside of the vacuum chamber was set at 0.5 Torr, and plasma ashing treatment was performed at an output of 50 W for 1 minute. At this time, the amount of etching in the lateral direction of the resist was approximately 0.7 μm. After this, successively insert it into a vacuum chamber,
Once the vacuum level was set to 5 x 10 -6 Torr, oxygen gas was introduced and the vacuum was set at 3 x 10 -3 Torr, spatter cleaning was performed at 480V for 3 minutes, and then the vacuum level was set at 5 x 10 -3 Torr.
Depressurize the vacuum chamber to 10 -6 Torr and reduce the film thickness as a protective film.
100 nm of SiO was deposited. After vapor deposition, it was taken out from the vacuum chamber and lifted off in acetone to form an upper electrode 88 and a protective film SiO 89. Next, a substrate 81 was inserted as an interlayer insulating film using the same resist mask as the upper electrode. For spatter cleaning, use Ar gas 3x
Process for 3 minutes at 10 -6 Torr and 480V output.
After reducing the pressure to 6×10 −6 Torr, SiO was deposited to a thickness of 600 nm. It was taken out from the vacuum chamber again and lifted off in acetone to form an interlayer insulating film 90. Next, apply a resist mask for the control line to the above-mentioned upper electrode,
It was fabricated using the same method as the interlayer insulating film. It was inserted into the vacuum chamber again, and after spatter cleaning with Ar, layered deposition of Pb, Au, and In was performed in this order at 5×10 −7 Torr or less. The film thickness is 540nm, respectively.
10nm, 250nm. After adhering, take it out from the vacuum chamber and perform lift-off in acetone to remove the control wire 9.
1 was formed. Finally, apply SiO as a protective film with a thickness of 1.3
It was formed by depositing .mu.m and lift-off. As mentioned above, in the fabrication of the upper electrode, Pb-Bi
After deposition, a plasma assher treatment using oxygen gas is performed, and then a protective film of SiO is applied.A new process was adopted to complete the fabrication of a Pb-based Josephson logic element.
以上、本発明により作製したジヨセフソン論理
素子は、従来問題となつていたPb―Bi電極パタ
ーンエツジからの侵食は完全に防止することがで
きる様になり、膨れ、剥離が皆無となつた。この
結果、超電導特性も劣下なく作製プロセスも極め
て安定となり歩留りが著しく向上した。また、酸
素プラズマアツシヤーによるPb―Biへの酸化の
影響もまつたく無いことが超電導特性より確認出
来た。
As described above, the Josephson logic element manufactured according to the present invention can completely prevent erosion from the edges of the Pb--Bi electrode pattern, which has been a problem in the past, and there is no swelling or peeling. As a result, the superconducting properties were not degraded, the manufacturing process was extremely stable, and the yield was significantly improved. Furthermore, it was confirmed from the superconducting properties that there was no effect of oxidation on Pb-Bi due to oxygen plasma assher.
本発明は、また、上部電極材にPb―Au―Pbを
用いてもPb―Biと同様に超電導特性の良い結果
を得ることが確認できた。 In the present invention, it has also been confirmed that even when Pb--Au--Pb is used as the upper electrode material, good superconducting properties can be obtained similar to Pb--Bi.
第1図はレジストマスクの断面図、第2図は欠
損したオーバハング部の断面図、第3図はSiOコ
ート膜の被覆不良を示す断面図、第4図はリフト
オフ後のPb―Bi電極パターンの断面図、第5図
a,bは上部電極パターンの膨れおよび剥離を示
す断面図、第6図aはPb―Biの被着後の断面
図、第6図bは本発明によるプラズマアツシヤ後
のレジストマスクの断面図、第6図cはSiOコー
ト膜により完全被覆されたPb―Bi電極パターン
の断面図、第6図dは、リフトオフ後のPb―Bi
電極パターンの断面図、第7図はプラズマアツシ
ヤ時間とエツチング量との関係を示す図、第8図
は本発明により形成したPb系ジヨセフソン論理
素子の断面図を示す。
符号の説明 11,21,31,41,51,
61,81……基板、12,22,32,62…
…レジストマスク、23……スパツタにより損失
したレジストのオーバハング部、33,43,5
3,63,……Pb―Bi上部電極、34,44,
54,64……SiOコート膜、65……プラズマ
アツシヤによりエツチングされたレジストの側
面、81……Si基板、82……Nbグランドプレ
ーン、83……Nb2O3陽極酸化膜、84……層間
絶縁膜、85……ベース電極、86……トンネル
バリア、87……接合ウインドウ孔、88……上
部電極、89……SiOコート膜、90……層間絶
縁膜、91……制御線、92……保護膜。
Figure 1 is a cross-sectional view of the resist mask, Figure 2 is a cross-sectional view of the missing overhang, Figure 3 is a cross-sectional view showing poor coverage of the SiO coating film, and Figure 4 is a cross-sectional view of the Pb-Bi electrode pattern after lift-off. 5a and 5b are cross-sectional views showing swelling and peeling of the upper electrode pattern, FIG. 6 a is a cross-sectional view after Pb-Bi deposition, and FIG. 6 b is a cross-sectional view after plasma assembling according to the present invention. Figure 6c is a cross-sectional view of the Pb-Bi electrode pattern completely covered with the SiO coating film, and Figure 6d is the Pb-Bi electrode pattern after lift-off.
FIG. 7 is a cross-sectional view of an electrode pattern, FIG. 7 is a diagram showing the relationship between plasma ashing time and etching amount, and FIG. 8 is a cross-sectional view of a Pb-based Josephson logic element formed according to the present invention. Explanation of symbols 11, 21, 31, 41, 51,
61, 81...Substrate, 12, 22, 32, 62...
...Resist mask, 23... Resist overhang lost due to spatter, 33, 43, 5
3,63,...Pb-Bi upper electrode, 34,44,
54, 64... SiO coat film, 65... Side surface of resist etched by plasma assher, 81... Si substrate, 82... Nb ground plane, 83... Nb 2 O 3 anodic oxide film, 84... Interlayer insulating film, 85... Base electrode, 86... Tunnel barrier, 87... Junction window hole, 88... Upper electrode, 89... SiO coat film, 90... Interlayer insulating film, 91... Control line, 92 ……Protective film.
Claims (1)
ン形成方法。 (1) 基板上にポジ型ホトレジストを塗布する工
程、 (2) 上記ホトレジストの所望部分に紫外光を照射
し、その後現像処理を施し、ホトレジストパタ
ーンを形成する工程、 (3) 上記ホトレジストをリフトオフマスクとし超
電導膜を被着する工程、 (4) 上記超電導膜を被着後、酸素ガスによるプラ
ズマアツシヤーを行ない上記ホトレジストの露
出部をエツチングすることにより、基板上の超
電導膜とホトレジストの間に間隔を設ける工
程、 (5) 上記プラズマアツシヤ後、上記基板上の超電
導膜の周囲にSiO膜を100〜150nm被着する工
程、 (6) 上記SiO膜被着後、リフトオフ処理をする工
程から成ることを特徴とするジヨセフソン素子
のパターン形成方法。 2 酸素プラズマアツシヤーの条件として、酸素
ガス圧0.3〜0.6Torr、出力10〜100Wで1〜2分
間行なうことを特徴とする特許請求の範囲第1項
記載のジヨセフソン素子のパターン形成方法。 3 超電導膜としてPb―Bi、Pb―Bi―Au、Pb―
Au―Pbのいずれか1種の合金を用いることを特
徴とする特許請求の範囲第1項又は第2項記載の
ジヨセフソン素子のパターン形成方法。[Claims] 1. A method for forming a Josephson device pattern, which includes the following steps. (1) A step of applying a positive photoresist onto a substrate, (2) A step of irradiating a desired portion of the photoresist with ultraviolet light and then performing a development process to form a photoresist pattern, (3) A step of applying the photoresist to a lift-off mask. (4) After depositing the superconducting film, a gap is created between the superconducting film on the substrate and the photoresist by etching the exposed part of the photoresist by performing plasma asshiring using oxygen gas. (5) After the plasma assembling described above, a step of depositing a SiO film of 100 to 150 nm around the superconducting film on the substrate; (6) After depositing the SiO film, the step of performing a lift-off treatment. A method for forming a pattern of a Josephson element, characterized by the following. 2. The method for forming a pattern of a Josephson element according to claim 1, wherein the oxygen plasma assher is performed at an oxygen gas pressure of 0.3 to 0.6 Torr and an output of 10 to 100 W for 1 to 2 minutes. 3 Pb-Bi, Pb-Bi-Au, Pb- as superconducting films
3. A method for forming a pattern of a Josephson element according to claim 1 or 2, characterized in that any one of Au--Pb alloys is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58196057A JPS6088484A (en) | 1983-10-21 | 1983-10-21 | Pattern formation of josephson element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58196057A JPS6088484A (en) | 1983-10-21 | 1983-10-21 | Pattern formation of josephson element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6088484A JPS6088484A (en) | 1985-05-18 |
JPS6260835B2 true JPS6260835B2 (en) | 1987-12-18 |
Family
ID=16351477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58196057A Granted JPS6088484A (en) | 1983-10-21 | 1983-10-21 | Pattern formation of josephson element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6088484A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0457139U (en) * | 1990-09-17 | 1992-05-15 |
-
1983
- 1983-10-21 JP JP58196057A patent/JPS6088484A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0457139U (en) * | 1990-09-17 | 1992-05-15 |
Also Published As
Publication number | Publication date |
---|---|
JPS6088484A (en) | 1985-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6110392A (en) | Process for reducing surface roughness of superconductor integrated circuit having a ground plane of niobium nitride of improved smoothness | |
EP0013130B1 (en) | Method of producing josephson elements of the tunneling junction type | |
JPS6260835B2 (en) | ||
US4458409A (en) | Process for producing niobium Josephson junctions | |
JPH0526358B2 (en) | ||
JPH0511432B2 (en) | ||
JPH02298085A (en) | Manufacture of josephson device | |
JPH0145218B2 (en) | ||
JP2976904B2 (en) | Superconducting field effect element and method for producing the same | |
JPS61144892A (en) | Manufacturing method of Syosefson integrated circuit | |
JPS6258677B2 (en) | ||
JPH0210589B2 (en) | ||
JPS6257273B2 (en) | ||
JPS61263180A (en) | Manufacture of josephson junction element | |
JPH0530310B2 (en) | ||
JPH01168080A (en) | Manufacture of josephson junction element | |
JPS5961975A (en) | Josephson element and manufacture thereof | |
JPS6259915B2 (en) | ||
JPS6143488A (en) | Manufacture of superconductive contact | |
JPS63234575A (en) | Formation of pattern of superconducting circuit | |
JPS6025277A (en) | Manufacturing method of semiconductor device | |
JPH0448788A (en) | Pattern formation method of Josephson junction device | |
JPS60208874A (en) | Manufacture of josephson junction element | |
JPS60208872A (en) | Manufacturing method for superconducting contacts | |
JPS6167975A (en) | Manufacture of josephson junction element |