JPS6254021A - Manufacture of high strength seamless steel pipe superior in sulfide stress corrosion cracking resistance - Google Patents
Manufacture of high strength seamless steel pipe superior in sulfide stress corrosion cracking resistanceInfo
- Publication number
- JPS6254021A JPS6254021A JP11493786A JP11493786A JPS6254021A JP S6254021 A JPS6254021 A JP S6254021A JP 11493786 A JP11493786 A JP 11493786A JP 11493786 A JP11493786 A JP 11493786A JP S6254021 A JPS6254021 A JP S6254021A
- Authority
- JP
- Japan
- Prior art keywords
- stress corrosion
- corrosion cracking
- sulfide stress
- steel pipe
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/14—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、サワー化傾向の下に深井戸化の著しい油井
管、またサワーガスやサワーオイル用ノラインパイプ、
さらには化学プラント用配管などの用途に用いて好適な
耐硫化物応力腐食割れ性に優れる高強度継目無鋼管の製
造方法に関し、硫化物応力腐食割れ発生の危険を、少な
くとも75kgf/m1T12のように高い降伏強さの
下に有効に回避することについての開発成果を開示する
ものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention is applicable to oil country tubular goods, which are becoming increasingly deeper due to the trend toward sour oil, and no-line pipes for sour gas and sour oil.
Furthermore, regarding the manufacturing method of high-strength seamless steel pipes with excellent sulfide stress corrosion cracking resistance suitable for use in applications such as chemical plant piping, the risk of sulfide stress corrosion cracking is reduced to at least 75 kgf/m1T12. This paper discloses the development results regarding effective avoidance under high yield strength.
(従来の技術)
上記したような深井戸化がっサワー化する傾向に対し、
では、一般に耐硫化物応力腐食割れ性が、強さの上昇と
共に劣化するので、両者の兼ね合いから現在のところ降
伏強さ64〜74kgf/ml112級のCr−Mo系
鋼が最も優れたものとされている。(Prior art) In response to the above-mentioned tendency for deeper wells to become sour,
In general, sulfide stress corrosion cracking resistance deteriorates as the strength increases, so Cr-Mo steel with a yield strength of 64 to 74 kgf/ml class 112 is currently considered to be the most excellent in terms of the balance between the two. ing.
ところで最近、特開昭53−78917号公報により、
従来の65kgf / H2級[:r−Mo鋼に比しC
r、 Moを増量し、かつを多量に添加して耐硫化物応
力腐食割れ性の改善を図った75〜9Qkgf / m
m2級の鋼が開発されたが、Mo、 Vなどの高価な
元素を多量に含むため高価につき、また多量の■を含む
ことから連続鋳造による熱間加工中に割れが発生し易か
った。By the way, recently, according to Japanese Patent Application Laid-Open No. 53-78917,
Compared to conventional 65kgf/H2 class [:r-Mo steel]
r, 75-9Qkgf/m by increasing Mo and adding a large amount of Katsu to improve sulfide stress corrosion cracking resistance.
M2 grade steel was developed, but it was expensive because it contained large amounts of expensive elements such as Mo and V, and because it contained a large amount of ■, it was prone to cracking during hot working by continuous casting.
また特開昭57−19322号および同57−1932
3号各公報において、耐硫化物応力腐食割れ性の優れた
La添加鋼が提案されたが、この鋼の降伏強さは最も高
くても80kgf / 11m2程度であって従来鋼に
比して強度の改善は事実上はとんど見られない。Also, JP-A-57-19322 and JP-A-57-1932
In each publication No. 3, a La-added steel with excellent sulfide stress corrosion cracking resistance was proposed, but the yield strength of this steel is at most about 80 kgf / 11 m2, which is lower than conventional steel. There is virtually no improvement seen.
さらに特開昭57−35622号公報には、P、Sを低
減した高強度油井用鋼が開示されているが、この鋼は強
度についてはかなり改善されているとはいえ、アルカリ
性環境のしかもH2Sは微量しか含まない場合にのみし
か耐応力腐食割れ性は保証されていない。Furthermore, JP-A No. 57-35622 discloses a high-strength steel for oil wells with reduced P and S content, but although this steel has considerably improved strength, it is suitable for use in alkaline environments and H2S Resistance to stress corrosion cracking is guaranteed only when it is contained in only trace amounts.
またさらに、特開昭52−52114号および特開昭5
4−119324号各公報に3いては、焼入れのための
加熱に際して、AC,変態点以上の平均加熱速度を3〜
b
t/s (特開昭54−119324号公報)程度の急
速加熱をほどこすことにより細粒鋼となし、もって耐硫
化物応力腐食割れ性を向上させた鋼が提案されているが
、このような方法では高強度と耐硫化物応力腐食割れ性
の両者を兼備させるには限界があった。Furthermore, JP-A-52-52114 and JP-A-5
4-119324, each publication states that when heating for quenching, AC, the average heating rate above the transformation point is set to 3 to 3.
A steel with improved sulfide stress corrosion cracking resistance has been proposed, which is made into a fine-grained steel through rapid heating of approximately b t/s (Japanese Unexamined Patent Publication No. 54-119324). These methods have limitations in achieving both high strength and resistance to sulfide stress corrosion cracking.
実際、特開昭54−119324号公報に示された鋼の
降伏強さは55kgf/mn++2程度であり、また特
開昭52−52114号公報に示された鋼では、降伏強
さ75kgf/mm2の鋼の硫化物応力腐食割れを発生
しない最高負荷応力は55kgf/mm2(降伏強さの
73%)程度、降伏強e90kgf/++un”の鋼の
それは40 kgf/ mm’(降伏強さの44%)程
度でしかない。In fact, the yield strength of the steel shown in JP-A-54-119324 is about 55 kgf/mn++2, and the steel shown in JP-A-52-52114 has a yield strength of 75 kgf/mm2. The maximum load stress of steel that does not cause sulfide stress corrosion cracking is about 55 kgf/mm2 (73% of yield strength), and that of steel with yield strength e90 kgf/++un' is 40 kgf/mm' (44% of yield strength). It's only a matter of degree.
このような現状下で最近では、降伏強さ75kgf/m
m’以上の高強度でかつ優れた耐硫化物応力腐食割れ性
を兼備する材料の要求が高まっていて、ハステロイ、イ
ンコネルなどのN1基合金の継目無管を油井管として使
用することも試みられているが、これらの材料はあまり
にも高価であるので、その使用は限定せざるを得す、安
価な低合金鋼系の材料の開発が強く要望されていた。Under these current circumstances, the yield strength has recently been reduced to 75 kgf/m.
There is an increasing demand for materials that have a high strength of m' or higher and excellent resistance to sulfide stress corrosion cracking, and attempts have been made to use seamless pipes made of N1-based alloys such as Hastelloy and Inconel as oil country tubular goods. However, since these materials are too expensive, their use has to be limited, and there has been a strong demand for the development of inexpensive low-alloy steel materials.
(発明が解決しようとする問題点)
上記したように従来鋼はいずれも、価格の面または特性
の面で何かしらの問題を残していた。(Problems to be Solved by the Invention) As mentioned above, all conventional steels have had some problems in terms of price or properties.
この発明は、上記の問題を有利に解決するもので、上掲
したような高価な元素を多量に含まず連続鋳造にも適し
た安価な成分系であって、しかも優れた耐硫化物応力腐
食割れ性と共に降伏強さが75〜120 kgf/mm
2 という高強度を兼ね備える継目無鋼管の有利な製造
方法を提供することを目的とする。The present invention advantageously solves the above problems, and is an inexpensive composition system suitable for continuous casting that does not contain a large amount of the expensive elements listed above, and has excellent sulfide stress corrosion resistance. Breakability and yield strength are 75-120 kgf/mm
The purpose of the present invention is to provide an advantageous manufacturing method for seamless steel pipes having high strength.
(問題点を解決するための手段)
さて発明者らは、上記の問題を解決すべく、鋭意研究を
重ねた結果、以下に述べる知見を得た。(Means for Solving the Problems) The inventors have conducted extensive research in order to solve the above problems, and have obtained the knowledge described below.
(1)硫化物応力腐食割れは、高強度になるほど発生し
易くなるが、同一レベルでは焼戻し温度が高い程耐硫化
物応力腐食割れ性は優れている。(1) Sulfide stress corrosion cracking occurs more easily as the strength increases, but at the same level, the higher the tempering temperature, the better the sulfide stress corrosion cracking resistance.
〔2)降伏強さ75kgf/mm2以上の鋼で優れた耐
硫化物応力腐食割れ性を得るためには、少なくとも焼戻
し温度を680℃以上とする必要がある。[2) In order to obtain excellent sulfide stress corrosion cracking resistance with a steel having a yield strength of 75 kgf/mm2 or more, the tempering temperature must be at least 680°C or higher.
(3)焼戻し温度を680℃以上とした場合に、75k
gf/mm2以上の降伏強さを安定して得るためには、
Cを0.4Qwt% (以下単に%で示す)を超えて含
有するCr−Mo鋼において、Cr : 0.8%以上
、)、10:0.6%以上とする必要がある。(3) When the tempering temperature is 680℃ or higher, 75k
In order to stably obtain a yield strength of gf/mm2 or higher,
In a Cr-Mo steel containing more than 0.4 Qwt% (hereinafter simply expressed as %) of C, it is necessary that Cr: 0.8% or more, 10: 0.6% or more.
(4)焼戻し温度を680℃以上としても、鋼中にPが
0.020%以上またはSが0.010%以上存在する
場合には、良好な耐硫化物応力腐食割れ性を得ることは
できない。(4) Even if the tempering temperature is 680°C or higher, if the steel contains 0.020% or more of P or 0.010% or more of S, good sulfide stress corrosion cracking resistance cannot be obtained. .
(5)前掲(3)項に示したようにCr、 Moのみで
強さを向上させたものよりも、さらにTi、VおよびN
bのうち少なくともいずれか一種を複合添加した鋼の方
が、耐硫化物応力腐食割れ性の面で一層優れており、と
くにCr−Mo−Ti−V−Nb系とすることによって
耐サワー臨界応力比が90%以上にも達する。ここに耐
サワー臨界応力比とは、サワー環境下で硫化物応力腐食
割れが発生しない最高応力と材料の降伏強さとの比を百
分率で表わしたものである。(5) As shown in item (3) above, Ti, V and N
Steels to which at least one of b. The ratio reaches over 90%. Here, the sour critical stress ratio is the ratio between the maximum stress at which sulfide stress corrosion cracking does not occur in a sour environment and the yield strength of the material, expressed as a percentage.
(6)シかしながらこの発明で対象としていような0.
40%を超えて多量のCを含むCr −Mo鋼において
は、油井管の如き長尺、厚肉のパイプとして焼入れ処理
をほどこす場合、通常行われるでいるように、単に加熱
状態から水、油などの冷媒中へ投入した場合には焼割れ
を生じる。したがって比較的ゆっくりと冷却する必要が
あるが、あまり冷却速度が遅いと焼きが入らず、焼戻し
後の耐硫化物応力腐食割れ性が著しく劣化する。(6) However, 0.0, which is the target of this invention.
When quenching Cr-Mo steel containing a large amount of C exceeding 40% as a long, thick-walled pipe such as an oil country tubular goods, it is common practice to simply remove water from the heated state. If placed in a refrigerant such as oil, cracking will occur. Therefore, it is necessary to cool the steel relatively slowly, but if the cooling rate is too slow, hardening will not occur and the resistance to sulfide stress corrosion cracking after tempering will deteriorate significantly.
これを防ぐためには焼入れ後の組織を、90%以上のマ
ルテンサイトとする必要があるが、このためには加熱温
度からマルテンサイト変態がほぼ完全に終了する300
℃付近までの平均冷却速度を1℃/S以上とする必要が
ある。一方、焼割れを防止するためには、かかる平均冷
却速度は50℃/S以下とする必要がある。In order to prevent this, it is necessary to make the structure after quenching into 90% or more martensite, but for this purpose, the heating temperature must be set at 300°C, at which the martensitic transformation is almost completely completed.
It is necessary to set the average cooling rate to around 1°C to 1°C/S or more. On the other hand, in order to prevent quench cracking, the average cooling rate needs to be 50° C./S or less.
この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.
すなわちこの発明は、C:0.40超〜0.60%、S
l: 0.20〜0.35%、Mn : 0.4〜1.
2%、Cr:0.8〜1.5%、Mo:Q、5〜1.0
%およびAI:0.005〜0.1%を、0.020%
以下に抑制したPおよび0.010%以下に抑制したS
と共に含有し、ときにはさらに0.1%以下の範囲でT
i、 VおよびNbのうち少なくとも一種を含む組成に
なる継目無鋼管用中空素材に、熱間加工を施し、ついで
Ac3変態点以上の温度に加熱後1.この温度から少な
(とも300℃までを平均冷却速度:1〜b
マルテンサイト組織としたのち、680 ℃以上AC。That is, this invention has C: more than 0.40 to 0.60%, S
l: 0.20-0.35%, Mn: 0.4-1.
2%, Cr: 0.8-1.5%, Mo: Q, 5-1.0
% and AI: 0.005-0.1%, 0.020%
P suppressed below and S suppressed below 0.010%
and sometimes further contains T in a range of 0.1% or less
A hollow material for a seamless steel pipe having a composition containing at least one of i, V, and Nb is subjected to hot working, and then heated to a temperature equal to or higher than the Ac3 transformation point. After forming a martensitic structure from this temperature to 300°C (average cooling rate: 1-b), AC at 680°C or higher.
変態点以下の温度範囲で焼戻すことを特徴とする、耐硫
化物応力腐食割れ性に優れる高強度継目無鋼管の製造方
法である。This is a method for producing high-strength seamless steel pipes with excellent resistance to sulfide stress corrosion cracking, characterized by tempering at a temperature range below the transformation point.
黒下この発明を、具体的に説明する。Kuroshita: This invention will be explained in detail.
まずこの発明において、素材成分を上記の範囲に限定し
た理由について説明する。First, in this invention, the reason why the material components are limited to the above range will be explained.
C:0.40超〜0.60%
Cは、高温焼戻しにおいても高い強度を得る上で有用な
元素であり、とくにこの発明で所期したように680℃
以上の高温焼戻し処理によって75kgf/mm2以上
の降伏強さを安定して得るためには、少なくとも0.4
0%を超える量のCを必要とするが、0.60%を超え
ると焼割れが発生するおそれが生じるので、0.40超
〜0.60%の範囲で添加することにした。C: more than 0.40 to 0.60% C is a useful element for obtaining high strength even in high temperature tempering, especially at 680°C as expected in this invention.
In order to stably obtain a yield strength of 75 kgf/mm2 or more through the above high temperature tempering treatment, at least 0.4
C is required in an amount exceeding 0%, but if it exceeds 0.60%, there is a risk of quench cracking, so it was decided to add in a range of over 0.40 to 0.60%.
Si : 0.20〜0.35%
Siは、鋼の脱酸と強度向上のためには少なくとも0.
20%を必要とするが、0.35%を超えると靭性の劣
化を招くので、0.20〜0.35%の範囲に限定した
。Si: 0.20-0.35% Si is at least 0.20% to 0.35% for deoxidizing steel and improving strength.
Although 20% is required, if it exceeds 0.35%, the toughness deteriorates, so it is limited to a range of 0.20 to 0.35%.
!、In : 0.4〜1.2%
Mnは、焼入れ性や強度の向上、さらには脱酸にも有用
な元素であるが、含有量が0,4%に満たないとその添
加効果に乏しく、一方1.2%を超えるとP。! , In: 0.4-1.2% Mn is an element that is useful for improving hardenability and strength, and also for deoxidizing, but if the content is less than 0.4%, the effect of its addition is poor. , on the other hand, if it exceeds 1.2%, it is P.
Sなどの偏析を招いて耐硫化物応力腐食割れ性を劣化さ
せるので、0.4〜1.2%の範囲で含有させることに
した。Since it causes segregation of S and the like and deteriorates the resistance to sulfide stress corrosion cracking, it was decided to contain it in the range of 0.4 to 1.2%.
Cr : 0,8〜1.5%
Crは、焼入れ焼戻し処理において炭化物を形成し、強
度および焼戻し抵抗性を高めるのに有効に寄与する。そ
のためには0.8%以上の添加が必要であるが、145
%を超えて添加してもその効果は飽和に達するだけでな
くかえって耐硫化物応力腐食割れ性の劣化を招くので、
068〜1.5%の範囲に限定した。Cr: 0.8 to 1.5% Cr forms carbides during quenching and tempering treatment, and effectively contributes to increasing strength and tempering resistance. For that purpose, it is necessary to add 0.8% or more, but 145
%, the effect not only reaches saturation but also causes deterioration of sulfide stress corrosion cracking resistance.
The content was limited to a range of 0.068 to 1.5%.
Mo : 0.6〜1.0%
)40もCrと同様、強度および焼戻し抵抗性を高め、
しかもPの粒界偏析を防いで耐硫化物応力腐食割れ性を
向上させるのに有効に寄与するが、含有量が0.6%に
満たないとその添加効果に乏しく、一方1.0%を超え
て添加してもその効果は飽和に達するだけでなくかえっ
て靭性の劣化を招くきらいにあり、さらにコスト高とも
なるので、Moの含有量は0.6〜1.0%の範囲に限
定した。Mo: 0.6-1.0%) 40 also increases strength and tempering resistance, similar to Cr,
Moreover, it effectively contributes to improving sulfide stress corrosion cracking resistance by preventing grain boundary segregation of P, but if the content is less than 0.6%, the addition effect is poor; If Mo is added in excess, the effect not only reaches saturation, but also tends to cause deterioration of toughness, which also increases costs, so the content of Mo was limited to a range of 0.6 to 1.0%. .
At : 0.005〜0.1%
AIは、脱酸に寄与するだけでなく、Nと化合して結晶
粒を微細化し、靭性、強度および耐硫化物応力腐食割れ
性を向上させる有用な元素である。At: 0.005-0.1% AI is a useful element that not only contributes to deoxidation but also combines with N to refine crystal grains and improve toughness, strength, and sulfide stress corrosion cracking resistance. It is.
しかしながらその含有量が0.005%に満たないとそ
の添加効果に乏しく、一方0.1%を超えるとその効果
は飽和に達するだけでなく、むしろ靭性の劣化を招くの
で、0.005〜0.1%の範囲に限定した。However, if the content is less than 0.005%, the effect of its addition is poor, while if it exceeds 0.1%, the effect not only reaches saturation, but also causes deterioration of toughness. .1% range.
P:0.020%以下、S:0,010%以下Pおよび
Sはいずれも、鋼の耐硫化物応力腐食割れ性の著しい劣
化を招く有害元素であり、この発明に従い、Moを添加
し、焼戻し温度を680℃以上の高温にした場合におい
て、初期した強度および耐硫化物応力腐食割れ性を確保
するためには、それぞれP≦0.020%、S≦0.0
10%に抑制する必要がある。P: 0.020% or less, S: 0,010% or less Both P and S are harmful elements that cause a significant deterioration of the sulfide stress corrosion cracking resistance of steel.According to this invention, Mo is added, When the tempering temperature is set to a high temperature of 680°C or higher, in order to ensure the initial strength and sulfide stress corrosion cracking resistance, P≦0.020% and S≦0.0, respectively.
It is necessary to suppress it to 10%.
さて上記した好適成分組成に調製した溶湯を鋳込んだの
ち、常法に従うせん孔加工を施して中空素材とする。After casting the molten metal prepared to have the above-mentioned preferred composition, a hollow material is obtained by drilling according to a conventional method.
ついでかくして得られた継目無鋼管用中空素材に、熱間
で伸延加工を施したのち、焼入れ焼戻し処理を施す。The thus obtained hollow material for a seamless steel pipe is then subjected to a hot elongation process, and then subjected to a quenching and tempering process.
この焼入れ処理においては、焼割れを招くことなしに9
0%以上をマルテンサイト組織とする必要があるが、こ
のためにはへC3変態点以上の温度に加熱したのち、こ
の温度から少なくとも300℃までの冷却を1〜b
/Sの平均冷却速度で行う必要がある。ここに平均冷却
速度を1〜b
均冷却速度が1℃/Sよりも遅いと十分に焼きが入らな
いので、焼戻し後に満足いく程の耐硫化物応力腐食割れ
性が得られず、一方50℃/Sを超えると焼割れの発生
するおそれが大きいからである。In this quenching treatment, the
It is necessary to make 0% or more of the martensitic structure, but for this purpose, after heating to a temperature above the C3 transformation point, cooling from this temperature to at least 300°C at an average cooling rate of 1 to b/S. There is a need to do. Here, the average cooling rate is 1 to b.If the uniform cooling rate is slower than 1℃/S, sufficient quenching will not occur, and satisfactory sulfide stress corrosion cracking resistance will not be obtained after tempering. This is because if it exceeds /S, there is a great possibility that quench cracking will occur.
かかる冷却方法としては、例えば鋼管に冷媒をスプレー
、シャワー、フォグ等で吹付ける方法において冷媒の量
、吹付圧等を制御する方法や、加熱前にあらかじめ鋼管
を耐熱性に富みかつ保温性が良好な耐火材で包んでおき
、加熱後水冷または油冷する方法、あるいは目的にあう
冷却能を有する冷媒を調合する方法など種々の方法があ
るが、上記範囲の平均冷却速度さえ満足すればいずれの
方法を採用してもよい。Such cooling methods include, for example, methods in which refrigerant is sprayed onto steel pipes by spraying, showering, fogging, etc., in which the amount of refrigerant, spraying pressure, etc. are controlled, and methods in which the steel pipes are made in advance with high heat resistance and good heat retention before heating. There are various methods, such as wrapping the material in refractory material and cooling it with water or oil after heating, or preparing a refrigerant with a cooling capacity that suits the purpose. method may be adopted.
また焼戻し処理は、680℃以上、Ac、変態点以下の
温度範囲で行う必要がある。というのは、この発明で初
期したような降伏強さニア5〜120 kgf/m[l
]2でかつ良好な耐硫化物応力腐食割れ性を得るには、
680℃以上の高温で焼戻し処理を施すことが不可欠だ
からであり、一方Ac、変態点を超えるとオーステナイ
トが生じる結果、常温まで冷却したときにこのオーステ
ナイトが焼戻しを受けないマルテンサイトとなって耐硫
化物応力腐食割れ性の著しい劣化を招くからである。Further, the tempering treatment needs to be performed in a temperature range of 680° C. or higher, Ac, or lower than the transformation point. This is because, as initially developed in this invention, the yield strength is near 5 to 120 kgf/m [l
]2 and to obtain good sulfide stress corrosion cracking resistance,
This is because it is essential to perform tempering treatment at a high temperature of 680°C or higher.On the other hand, when the Ac transformation temperature is exceeded, austenite is formed, and when cooled to room temperature, this austenite becomes martensite that does not undergo tempering, making it resistant to sulfuration. This is because it causes a significant deterioration in the stress corrosion cracking properties of the material.
かくして優れた耐硫化物応力腐食割れ性を有する高強度
継目無鋼管が得られるが、この発明では、強度および耐
サワー臨界応力比の一層の向上を図るために、T1やN
b、 Vを添加することができる。In this way, a high-strength seamless steel pipe with excellent sulfide stress corrosion cracking resistance is obtained. However, in this invention, in order to further improve the strength and sour critical stress ratio, T1 and N
b, V can be added.
TI、 Nbおよび/またはV:0,1%以下Ti、
Nbおよび■はいずれも、Cr、 Moと同様に焼入れ
焼戻し処理において炭化物を形成し、鋼の焼入れ性およ
び焼戻し軟化抵抗性の向上に有効に寄与する。しかしな
がらこれらの添加量が0.1%を超えると析出物の粗大
化を招き、かえって耐硫化物応力腐食割れ性を劣化させ
るだけでな(、加工性゛ および靭性も低下させるので
、Ti、 Nbおよび■は、単独添加および複合添加い
ずれの場合も0.1%以下の範囲で添加する必要がある
。TI, Nb and/or V: 0.1% or less Ti,
Like Cr and Mo, both Nb and (2) form carbides during quenching and tempering treatment, and effectively contribute to improving the hardenability and temper softening resistance of steel. However, if the amount of these added exceeds 0.1%, the precipitates become coarser, which not only deteriorates the sulfide stress corrosion cracking resistance (but also reduces the workability and toughness). and (2) must be added in an amount of 0.1% or less, whether added alone or in combination.
(作 用)
この発明に従うことによって、強度のみならず耐硫化物
応力腐食割れ性が著しく改善される理由は、まだ明確に
解明されたわけではないが、次のとおりと考えられる。(Function) The reason why not only the strength but also the resistance to sulfide stress corrosion cracking is significantly improved by following the present invention has not yet been clearly elucidated, but it is thought to be as follows.
すなわち硫化物応力腐食割れは、硫化水素を含む水溶液
による鋼材の腐食によって生じた水素が鋼中に侵入し、
介在物、析出物、転位などの応力集中部に集積して鋼を
脆化させる水素脆性の一種と考えられるが、P、Sを低
減し、介在物を減らすと共に、680℃以上の高温焼戻
しによって転位密度を減少させ、析出物を球状化させる
こと、また90%以上のマルテンサイトとする完全焼入
機高温焼戻しをすることによって析出物が微細かつ均一
に分布する組織が得られること、などによって水素が集
積する応力集中個所が著しく減少されることによるもの
と考えられる。In other words, sulfide stress corrosion cracking occurs when hydrogen generated by corrosion of steel by an aqueous solution containing hydrogen sulfide penetrates into the steel.
It is considered to be a type of hydrogen embrittlement that accumulates in stress concentration areas such as inclusions, precipitates, and dislocations and embrittles steel. By reducing the dislocation density and making the precipitates spheroidal, and by performing high-temperature tempering in a complete quenching machine to make the precipitates more than 90% martensite, a structure in which the precipitates are finely and uniformly distributed can be obtained. This is thought to be due to the fact that stress concentration points where hydrogen accumulates are significantly reduced.
通常、上記のように低転位密度、球状析出物とするため
に高温焼戻しを行うと鋼材の強度は低下するのであるが
、この発明の成分の組合せによれば適切な形状、分布の
析出物を有する組織が得られ耐硫化物応力腐食割れ性を
損うことなく高強度が得られるものと考えられる。Normally, as mentioned above, when high-temperature tempering is performed to produce spherical precipitates with a low dislocation density, the strength of the steel material decreases, but with the combination of ingredients of this invention, precipitates with an appropriate shape and distribution can be produced. It is thought that this structure provides a structure with high strength and high strength without impairing sulfide stress corrosion cracking resistance.
(実施例)
表1に示した各成分組成になる継目無鋼管用中空素材を
熱間加工後、Ac1変態点まで加熱したのち、表1に示
した平均冷却速度で冷却し、ついで同じく表1に示した
各温度で焼戻し処理を施して、製品とした。(Example) After hot working, a hollow material for a seamless steel pipe having each component composition shown in Table 1 was heated to the Ac1 transformation point, and then cooled at the average cooling rate shown in Table 1. The products were subjected to tempering treatment at the temperatures shown in .
かくして得られた各継目無鋼管の降伏強さくY、S、)
、引張り強さくT、 S、 )および耐硫化物応力腐食
割れ性について調べた結果を表1に併記する。The yield strength of each seamless steel pipe thus obtained (Y, S,)
, tensile strength T, S, ) and sulfide stress corrosion cracking resistance are also listed in Table 1.
なお耐硫化物応力腐食割れ性は、丸棒引張り試験片をN
ACE液(0,5%酢酸、5%食塩添加飽和硫化水素水
)中において、降伏強さの80%の応力を負荷する試験
によって評価し、かかる試験において30日間破断しな
かったものを○印で、また破断したものをX印で示した
。For sulfide stress corrosion cracking resistance, round bar tensile test pieces were tested with N
It was evaluated by a test in which a stress of 80% of the yield strength was applied in ACE liquid (0.5% acetic acid, 5% salt-added saturated hydrogen sulfide water), and those that did not break for 30 days in this test were marked with an ○. The broken pieces are also marked with an X.
同表より明らかなように、この発明に従って得られた継
目無鋼管(記号1〜10)はいずれも、高いYSおよび
TS値と共に、優れた耐硫化物応力腐食割れ性が得られ
ている。As is clear from the table, all seamless steel pipes (symbols 1 to 10) obtained according to the present invention have high YS and TS values and excellent sulfide stress corrosion cracking resistance.
これに対し成分組成は適正範囲を満足しているものの、
焼戻し温度が下限に満たない比較鋼(記号IL 12)
および焼入時の冷却速度が下限に満たない比較鋼(記号
25)は、耐硫化物応力腐食割れ性に劣っていた。また
焼入時の冷却速度が上限を超える比較鋼(記号24)は
耐硫化物応力腐食割れ性はすぐれていたが焼割れを発生
した。On the other hand, although the component composition satisfies the appropriate range,
Comparative steel whose tempering temperature is below the lower limit (symbol IL 12)
The comparative steel (symbol 25) whose cooling rate during quenching was less than the lower limit was inferior in sulfide stress corrosion cracking resistance. In addition, a comparative steel (symbol 24) whose cooling rate during quenching exceeded the upper limit had excellent sulfide stress corrosion cracking resistance, but suffered from quench cracking.
さらに成分組成のいずれかがこの発明の適正範囲を逸脱
しているもの(記号13〜23および26.27)のう
ち、C量が下限に満たない記号18.、26.27は、
耐硫化物応力腐食割れ性は良好ではあったものの、低い
YSおよびTS値しか得られなかった。その他の記号1
3〜17ならびに19〜23はいずれも、YS、 TS
値は良好であったが、耐硫化物応力腐食割れ性に劣って
いた。Further, among the components (symbols 13 to 23 and 26.27) in which any of the component compositions deviate from the appropriate range of the present invention, the C content is below the lower limit (symbol 18). , 26.27 is
Although the sulfide stress corrosion cracking resistance was good, only low YS and TS values were obtained. Other symbols 1
3-17 and 19-23 are all YS, TS
Although the value was good, the resistance to sulfide stress corrosion cracking was poor.
(発明の効果)
かくしてこの発明によれば、従来のように高価な元素を
多量に含まず連続鋳造にも適し7た安価な成分系で、
降伏強さニア5〜120 kgf/++un2という高
強度を有しながら、降伏強さの80%の負荷応力下でも
硫化物応力腐食割れを生じない優れた耐硫化物応力腐食
割れ性をも兼ね備える継目無鋼管を得ることができる。(Effects of the Invention) Thus, according to the present invention, an inexpensive component system that does not contain large amounts of expensive elements as in the past and is suitable for continuous casting.
A seam that has a high yield strength of near 5 to 120 kgf/++un2, but also has excellent sulfide stress corrosion cracking resistance that does not cause sulfide stress corrosion cracking even under a load stress of 80% of the yield strength. You can get steel-free pipes.
Claims (1)
間加工を施し、ついでAc_3変態点以上の温度に加熱
後、この温度から少なくとも300℃までを平均冷却速
度:1〜50℃/sで冷却する焼入れを施してマルテン
サイト組織としたのち、680℃以上Ac_1変態点以
下の温度範囲で焼戻すことを特徴とする、耐硫化物応力
腐食割れ性に優れる高強度継目無鋼管の製造方法。[Claims] 1. C: more than 0.40 to 0.60 wt% Si: 0.20 to 0.35 wt% Mn: 0.4 to 1.2 wt% Cr: 0.8 to 1.5 wt% Mo : 0.6 to 1.0 wt% and Al: 0.005 to 0.1 wt%, together with P suppressed to 0.020 wt% or less and S suppressed to 0.010 wt% or less. The hollow material for use is subjected to hot working, then heated to a temperature above the Ac_3 transformation point, and then quenched from this temperature to at least 300°C at an average cooling rate of 1 to 50°C/s to form a martensitic structure. A method for producing a high-strength seamless steel pipe having excellent resistance to sulfide stress corrosion cracking, the method comprising: tempering at a temperature range of 680° C. or higher and Ac_1 transformation point or lower.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60-109231 | 1985-05-23 | ||
JP10923185 | 1985-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6254021A true JPS6254021A (en) | 1987-03-09 |
Family
ID=14504936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11493786A Pending JPS6254021A (en) | 1985-05-23 | 1986-05-21 | Manufacture of high strength seamless steel pipe superior in sulfide stress corrosion cracking resistance |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0224591B1 (en) |
JP (1) | JPS6254021A (en) |
DE (1) | DE3688906T2 (en) |
WO (1) | WO1986007096A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405459A (en) * | 1992-10-16 | 1995-04-11 | Toyota Jidosha Kabushiki Kaisha | Production process for producing hollow steel tube of high strength |
JP2006265657A (en) * | 2005-03-24 | 2006-10-05 | Sumitomo Metal Ind Ltd | Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe |
WO2015011917A1 (en) * | 2013-07-26 | 2015-01-29 | 新日鐵住金株式会社 | Low-alloy steel pipe for oil well and production method therefor |
US11060160B2 (en) | 2014-12-12 | 2021-07-13 | Nippon Steel Corporation | Low-alloy steel for oil well pipe and method of manufacturing low-alloy steel oil well pipe |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5085733A (en) * | 1989-08-24 | 1992-02-04 | Nippon Seiko Kabushiki Kaisha | Rolling steel bearing |
DE4019118C1 (en) * | 1990-06-12 | 1991-04-18 | Mannesmann Ag, 4000 Duesseldorf, De | |
DE69525171T2 (en) * | 1994-10-20 | 2002-10-02 | Sumitomo Metal Industries, Ltd. | METHOD FOR PRODUCING SEAMLESS STEEL TUBES AND PRODUCTION PLANT THEREFOR |
GB0216074D0 (en) | 2002-07-11 | 2002-08-21 | Weatherford Lamb | Improving collapse resistance of tubing |
JP5907083B2 (en) * | 2013-01-31 | 2016-04-20 | Jfeスチール株式会社 | Manufacturing method and equipment for seamless steel pipe with excellent toughness |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3992231A (en) * | 1975-05-01 | 1976-11-16 | Amax Inc. | Temper-stressed oil well casing |
US4354882A (en) * | 1981-05-08 | 1982-10-19 | Lone Star Steel Company | High performance tubulars for critical oil country applications and process for their preparation |
JPS589918A (en) * | 1981-07-11 | 1983-01-20 | Kawasaki Steel Corp | Production of sulfide stress corrosion cracking resistant steel material |
JPS5974221A (en) * | 1982-10-19 | 1984-04-26 | Kawasaki Steel Corp | Production of high strength seamless steel pipe |
-
1986
- 1986-05-21 JP JP11493786A patent/JPS6254021A/en active Pending
- 1986-05-22 WO PCT/JP1986/000261 patent/WO1986007096A1/en active IP Right Grant
- 1986-05-22 DE DE19863688906 patent/DE3688906T2/en not_active Expired - Fee Related
- 1986-05-22 EP EP86903563A patent/EP0224591B1/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405459A (en) * | 1992-10-16 | 1995-04-11 | Toyota Jidosha Kabushiki Kaisha | Production process for producing hollow steel tube of high strength |
JP2006265657A (en) * | 2005-03-24 | 2006-10-05 | Sumitomo Metal Ind Ltd | Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe |
US8617462B2 (en) | 2005-03-24 | 2013-12-31 | Nippon Steel & Sumitomo Metal Corporation | Steel for oil well pipe excellent in sulfide stress cracking resistance |
WO2015011917A1 (en) * | 2013-07-26 | 2015-01-29 | 新日鐵住金株式会社 | Low-alloy steel pipe for oil well and production method therefor |
JP5880787B2 (en) * | 2013-07-26 | 2016-03-09 | 新日鐵住金株式会社 | Steel tube for low alloy oil well and manufacturing method thereof |
CN105492642A (en) * | 2013-07-26 | 2016-04-13 | 新日铁住金株式会社 | Low-alloy steel pipe for oil well and production method therefor |
EA029884B1 (en) * | 2013-07-26 | 2018-05-31 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Low alloy oil well steel pipe and method for manufacturing same |
US11060160B2 (en) | 2014-12-12 | 2021-07-13 | Nippon Steel Corporation | Low-alloy steel for oil well pipe and method of manufacturing low-alloy steel oil well pipe |
Also Published As
Publication number | Publication date |
---|---|
EP0224591B1 (en) | 1993-08-18 |
EP0224591A1 (en) | 1987-06-10 |
WO1986007096A1 (en) | 1986-12-04 |
EP0224591A4 (en) | 1989-03-22 |
DE3688906T2 (en) | 1993-12-09 |
DE3688906D1 (en) | 1993-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1169682A (en) | High tensile steel and process for producing the same | |
JPS6254021A (en) | Manufacture of high strength seamless steel pipe superior in sulfide stress corrosion cracking resistance | |
JPH0421718A (en) | Manufacturing method for high-strength steel with excellent sulfide stress cracking resistance | |
JPS60174822A (en) | Manufacture of thick-walled seamless steel pipe of high strength | |
US6136109A (en) | Method of manufacturing high chromium martensite steel pipe having excellent pitting resistance | |
JPS5877530A (en) | Method for producing steel sheet with excellent resistance to hydrogen-induced cracking and sulfide stress corrosion cracking | |
JPH05156409A (en) | High-strength martensitic stainless steel with excellent seawater resistance and its manufacturing method | |
JPH0387332A (en) | High strength-low alloy-heat resistant steel | |
JPS62149813A (en) | Production of high-strength seamless steel pipe having excellent resistance to sulfide stress corrosion cracking | |
JPS62149814A (en) | Production of low-carbon high-strength seamless steel pipe by direct hardening method | |
JPH0225969B2 (en) | ||
JP2730090B2 (en) | High yield ratio martensitic stainless steel | |
JPS62202053A (en) | Steel materials for low yield ratio chains | |
JP3422877B2 (en) | High corrosion resistance martensitic stainless steel with low weld hardness | |
JPS5980755A (en) | Chrome-molybdenum steel having superior temper embrittlement resistance at weld heat-affected zone | |
JPS5817808B2 (en) | Method for producing welded steel pipes with excellent stress corrosion cracking resistance | |
JPS6020460B2 (en) | Cr-Mo low alloy steel for pressure vessels | |
JPH0121849B2 (en) | ||
CA1286209C (en) | Production of high strength seamless steel pipe with superior resistanceagainst sulfide stress corrosion cracking | |
JPS63203748A (en) | High strength steel having superior resistance to sulfide stress corrosion cracking | |
JPS609582B2 (en) | High tensile strength steel with excellent sulfide corrosion cracking resistance and corrosion resistance | |
JPH07113126B2 (en) | Method for producing stainless steel with excellent resistance to stress corrosion cracking | |
JPS59232226A (en) | Production of clad pipe bend having excellent corrosion resistance and toughness | |
JPH10102193A (en) | Tempered high-strength steel excellent in weldability and hot-dip galvanizing crack resistance, and method for producing the same | |
JPS62235420A (en) | Manufacture of forged steel for pressure vessel |