[go: up one dir, main page]

JPH05156409A - High-strength martensitic stainless steel with excellent seawater resistance and its manufacturing method - Google Patents

High-strength martensitic stainless steel with excellent seawater resistance and its manufacturing method

Info

Publication number
JPH05156409A
JPH05156409A JP31702191A JP31702191A JPH05156409A JP H05156409 A JPH05156409 A JP H05156409A JP 31702191 A JP31702191 A JP 31702191A JP 31702191 A JP31702191 A JP 31702191A JP H05156409 A JPH05156409 A JP H05156409A
Authority
JP
Japan
Prior art keywords
less
creq
nieq
formula
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31702191A
Other languages
Japanese (ja)
Inventor
Masayuki Tento
雅之 天藤
Takanori Nakazawa
崇徳 中澤
Yuichi Sato
雄一 佐藤
Yutaka Tadokoro
裕 田所
Kazuhiro Suetsugu
和広 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31702191A priority Critical patent/JPH05156409A/en
Publication of JPH05156409A publication Critical patent/JPH05156409A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【目的】 本発明は、耐海水性に優れ、溶接性の良好な
高強度マルテンサイトステンレス鋼とその製造方法に関
するものである。 【構成】 重量%でC:0.03%以下、Si:1.0
%以下、Mn:2.0%以下、Cr:11〜15%、N
i:2.0〜7.0%、Mo:2.0%超〜4.0%、
N:0.02%以下を含み、さらに上記成分から計算さ
れるCreqとNieqの和が23.0以下、Creq
−Nieqが11.0以下を満足し、フェライト相を含
まないことを特徴とする耐海水性に優れた高強度マルテ
ンサイトステンレス鋼。必要に応じてさらにNb、Vの
1種または2種および/またはAl、Caの1種または
2種を適正量添加し、強度、靱性、溶接性をさらに改善
した上記発明鋼。また上記発明鋼を熱間圧延終了後、9
00〜1100℃から100℃以下まで焼入れ、500
〜700℃に焼戻すことを特徴とする耐海水性に優れた
高強度マルテンサイトステンレス鋼の製造方法。
(57) [Summary] [Object] The present invention relates to a high-strength martensitic stainless steel having excellent seawater resistance and good weldability, and a method for producing the same. [Composition] C: 0.03% or less by weight%, Si: 1.0
% Or less, Mn: 2.0% or less, Cr: 11 to 15%, N
i: 2.0 to 7.0%, Mo: more than 2.0% to 4.0%,
N: 0.02% or less, and the sum of Creq and Nieq calculated from the above components is 23.0 or less, Creq
-High-strength martensitic stainless steel excellent in seawater resistance, characterized in that Nieq satisfies 11.0 or less and does not contain a ferrite phase. The above-mentioned invention steel in which one or two kinds of Nb and V and / or one or two kinds of Al and Ca are added in appropriate amounts, if necessary, to further improve strength, toughness and weldability. After the hot rolling of the above-mentioned invention steel is completed,
Quenched from 00 to 1100 ℃ to 100 ℃ or below, 500
A method for producing a high-strength martensitic stainless steel excellent in seawater resistance, characterized by tempering to ~ 700 ° C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば船舶構造物など
に使用できる耐海水性に優れ、溶接性の良好な高強度マ
ルテンサイトステンレス鋼とその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength martensitic stainless steel having excellent seawater resistance and good weldability which can be used, for example, in ship structures and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】マルテンサイトステンレス鋼は焼入れ熱
処理によって容易に強度をあげることができるため、刃
物やバネ材として広く使用されている。しかし金属組織
をマルテンサイト相に維持するためCrを多量に添加す
ることができず、海水に対して十分な耐食性が得られな
かった。特開平1−162750号公報等に提唱されて
いるように、Moを添加すると耐食性が向上する。しか
もその効果はCr以上に期待されるが、Crと同様に添
加量が多くなるとフェライト相を形成し、靱性、疲労強
度、溶接性を劣化させるため構造用鋼として使用できな
くなる。一方、フェライト相の形成抑制にはNiの添加
が有効で、しかも靱性、溶接性の向上にも効果的であ
る。しかしNiはマルテンサイト相形成も抑制するた
め、添加量が多くなるとオーステナイト相を形成し、強
度が急激に低下する。以上の理由から、今までの高強度
マルテンサイトステンレス鋼のMo添加量はせいぜい2
%で、十分な耐海水性を有しているとはいえなかった。
2. Description of the Prior Art Martensitic stainless steel is widely used as a blade and a spring material because its strength can be easily increased by quenching heat treatment. However, a large amount of Cr could not be added to maintain the metal structure in the martensite phase, and sufficient corrosion resistance to seawater could not be obtained. As proposed in JP-A-1-162750 and the like, the addition of Mo improves the corrosion resistance. Moreover, the effect is expected to be higher than Cr, but like Cr, when the addition amount is large, a ferrite phase is formed, and toughness, fatigue strength, and weldability are deteriorated, so that it cannot be used as a structural steel. On the other hand, the addition of Ni is effective in suppressing the formation of the ferrite phase, and is also effective in improving the toughness and weldability. However, Ni also suppresses the formation of martensite phase, so when the addition amount increases, an austenite phase is formed and the strength sharply decreases. For the above reasons, the amount of Mo added in conventional high-strength martensitic stainless steels is at most 2
%, It could not be said to have sufficient seawater resistance.

【0003】[0003]

【発明が解決しようとする課題】海水環境で使用できる
耐食性に優れたマルテンサイトステンレス鋼を実現する
ために、従来のマルテンサイトステンレス鋼より耐食性
向上に有効なMo含有量を増加させ、しかも強度、靱
性、溶接性を劣化させるフェライト相あるいは強度低下
の原因となるオーステナイト相の生成を抑制する必要が
ある。また疲労強度、溶接性に有害な非金属介在物の低
減、形状制御は、溶接構造物に適用する上で重要な課題
である。本発明は金属組織を成分のバランスから制御す
ることによって、耐海水性を確保するのに十分な量のM
o添加を可能にし、耐食性に優れた高強度マルテンサイ
トステンレス鋼を実現し、さらに非金属介在物の低減、
形状制御により溶接構造物にも適用可能とするものであ
る。
In order to realize a martensitic stainless steel having excellent corrosion resistance that can be used in a seawater environment, the Mo content effective for improving the corrosion resistance is increased as compared with the conventional martensitic stainless steel, and the strength, It is necessary to suppress the formation of a ferrite phase which deteriorates the toughness and weldability or an austenite phase which causes a decrease in strength. In addition, reduction of non-metallic inclusions that are harmful to fatigue strength and weldability and shape control are important issues when applied to welded structures. The present invention controls the metallographic structure from the balance of the components so that the amount of M is sufficient to ensure seawater resistance.
o High-strength martensitic stainless steel with excellent corrosion resistance can be added, and non-metallic inclusions can be reduced.
It can be applied to welded structures by controlling the shape.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
し、耐海水性に優れた高強度マルテンサイトステンレス
鋼を実現させるために、成分およびその含有量の限定を
行い、さらにその成分範囲で最も有効な製造方法を見出
したものである。つまり本発明の第一の対象は、重量%
でC 0.03%以下、Si 1.0%以下、Mn
2.0%以下、Cr 11〜15% Ni 2.0〜
7.0%、Mo2.0%超〜4.0%、N 0.02%
以下を含有し、必要に応じてさらにNb0.01〜0.
5%、V 0.01〜0.5%の1種または2種および
/またはAl 0.001〜0.05%、Ca 0.0
005〜0.005%の1種または2種を含有し、さら
に下記の(1)式で表されるCreqと(2)式で表さ
れるNieqが、(3)式ならびに(4)式を満足する
ことにより、その金属組織がフェライト相を含まないマ
ルテンサイト相からなることを特徴とする耐海水性に優
れた高強度マルテンサイトステンレス鋼である。
In order to solve the above problems and realize a high-strength martensitic stainless steel excellent in seawater resistance, the present invention limits the components and the content thereof, and further the range of the components. Is the most effective manufacturing method. In other words, the first object of the present invention is the weight%
C 0.03% or less, Si 1.0% or less, Mn
2.0% or less, Cr 11-15% Ni 2.0-
7.0%, Mo over 2.0% to 4.0%, N 0.02%
It contains the following, and further contains Nb 0.01 to 0.
5%, 1 or 2 kinds of V 0.01 to 0.5% and / or Al 0.001 to 0.05%, Ca 0.0
Creq represented by the following equation (1) and Nieq represented by the following equation (2) contain 005 to 0.005% of one or two types, and When satisfied, the high-strength martensitic stainless steel excellent in seawater resistance is characterized in that its metallic structure is composed of a martensite phase containing no ferrite phase.

【0005】 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) (3)式は靱性に有害なデルタ・フェライト相を熱間圧
延後の金属組織中に残留させないための条件式であり、
(4)式は焼入れ熱処理によって組織をマルテンサイト
相に変態させ、高強度を実現させるための条件式であ
る。NbあるいはVの添加は焼戻し処理での軟化あるい
は耐粒界腐食性劣化の抑制に有効である。さらに非金属
介在物の低減、形状制御にはAlおよびCaの添加が有
効である。AlおよびCaは靱性、溶接性に有害なSお
よびOの含有量を低減する。
Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq-Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) (3) The formula is a conditional formula for preventing the delta / ferrite phase harmful to toughness from remaining in the metal structure after hot rolling,
Expression (4) is a conditional expression for transforming the structure into a martensite phase by quenching heat treatment and realizing high strength. Addition of Nb or V is effective in suppressing softening during tempering or deterioration of intergranular corrosion resistance. Furthermore, addition of Al and Ca is effective for reducing non-metallic inclusions and controlling the shape. Al and Ca reduce the contents of S and O, which are harmful to toughness and weldability.

【0006】本発明の第二の対象は、上記成分に限定さ
れた鋼材を熱間圧延終了後、900〜1100℃の温度
範囲から100℃以下まで焼入れ処理を施し、さらにそ
の後500〜700℃に焼戻し処理を施すことを特徴と
する耐海水性に優れた高強度マルテンサイトステンレス
鋼の製造方法である。
A second object of the present invention is to subject a steel material limited to the above components to a quenching treatment from a temperature range of 900 to 1100 ° C. to 100 ° C. or lower after completion of hot rolling, and then to 500 to 700 ° C. A method for producing a high-strength martensitic stainless steel having excellent seawater resistance, which is characterized by performing a tempering treatment.

【0007】[0007]

【作用】本発明の成分限定理由を詳細に説明する。 C:マルテンサイト相を硬くして、強度を上昇させるの
に有効な元素であるが、靱性および溶接性を著しく劣化
させるため、その含有量を0.03%以下とした。
The reason for limiting the components of the present invention will be described in detail. C: An element effective in hardening the martensite phase and increasing the strength, but its content was made 0.03% or less because it markedly deteriorates toughness and weldability.

【0008】Si:脱酸元素として鋼中に不可避的に含
有されるが、過剰に添加されると靱性および溶接性を劣
化させるため、その含有量を1.0%以下とした。 Mn:デルタ・フェライト相を抑制し、また鋼中のSを
固定する効果も有するが、過剰に添加すると靱性が低下
するため、その含有量を2.0%以下とした。 Cr:ステンレス鋼の基本元素であり、優れた耐食性を
得るためには少なくとも11%以上の含有量が必要であ
る。しかし15%を超えて添加するとマルテンサイト相
中にデルタ・フェライト相が残存し、靱性および溶接性
を劣化させる。
Si: Inevitably contained in steel as a deoxidizing element, but if added in excess, it deteriorates toughness and weldability, so its content was made 1.0% or less. Mn: It has the effect of suppressing the delta-ferrite phase and also fixing S in the steel, but if it is added excessively, the toughness decreases, so its content was made 2.0% or less. Cr: It is a basic element of stainless steel, and at least 11% or more is necessary for obtaining excellent corrosion resistance. However, if added in excess of 15%, the delta ferrite phase remains in the martensite phase and deteriorates toughness and weldability.

【0009】Ni:マルテンサイト相の靱性を向上さ
せ、溶接性を改善する重要な添加元素である。十分な靱
性を確保し、厚肉材の溶接性を良好に維持するためには
2.0%以上の含有量が必要である。しかし7.0%を
超えて添加すると残留オーステナイト相が急激に増加
し、強度が低下する。 Mo:耐食性を向上させ、耐海水性を確保するために重
要な添加元素である。また焼戻し後の強度、靱性を改善
させるのにも効果がある。2.0%を超える添加によ
り、十分な耐海水性が得られるが、過剰に添加するとデ
ルタ・フェライト相が消失しなくなるため、その上限を
4.0%とした。
Ni: An important additive element that improves the toughness of the martensitic phase and improves the weldability. In order to secure sufficient toughness and maintain good weldability of thick-walled materials, a content of 2.0% or more is necessary. However, if added in excess of 7.0%, the retained austenite phase will rapidly increase and the strength will decrease. Mo: An additive element important for improving corrosion resistance and ensuring seawater resistance. It is also effective in improving the strength and toughness after tempering. Sufficient seawater resistance can be obtained by adding over 2.0%, but if added excessively, the delta ferrite phase will not disappear, so the upper limit was made 4.0%.

【0010】Nb:焼戻し処理での耐粒界腐食性の低下
と強度低下を抑制する有効な元素である。その効果を発
揮させるためには0.01%以上の含有量が必要である
が、0.5%を超えて添加すると溶接時あるいは熱間圧
延時に割れが生じやすくなる。 V:Nbと同様に焼戻し処理での耐粒界腐食性の低下を
抑制する有効な元素である。その効果を発揮させるため
には0.01%以上の含有量が必要であるが、0.5%
を超えて添加すると溶接時あるいは熱間圧延時に割れが
生じやすくなる。
Nb: an effective element for suppressing the decrease in intergranular corrosion resistance and the decrease in strength during tempering. In order to exert the effect, the content is required to be 0.01% or more, but if added in excess of 0.5%, cracking tends to occur during welding or hot rolling. Similar to V: Nb, it is an effective element that suppresses a decrease in intergranular corrosion resistance during tempering. In order to exert its effect, a content of 0.01% or more is necessary, but 0.5%
If it is added over the range, cracking tends to occur during welding or hot rolling.

【0011】N:Cと同様にマルテンサイト相を硬くし
て、強度を上昇させるのに有効な元素であるが、靱性お
よび溶接性を著しく劣化させるため、その含有量を0.
02%以下とした。 Al:靱性に有害なS、Oを溶鋼段階で低減し、また鋼
中に残留するOをAl 2 3 介在物として、NをAlN
として固定する。そのためには0.001%以上の含有
量が必要であるが、0.05%を超えて含有するとAl
2 3 介在物がクラスター状に分布し、疲労強度あるい
は靱性を低下させる。
As with N: C, the martensite phase is hardened.
Is an element effective in increasing the strength, but toughness and
And its weldability is significantly deteriorated, its content is set to 0.
It was set to 02% or less. Al: S and O harmful to toughness are reduced in the molten steel stage, and steel
Remaining O in the Al 2O3As an inclusion, N is AlN
To fix as. For that purpose, the content of 0.001% or more
The amount is necessary, but if the content exceeds 0.05%, Al
2O3Inclusions are distributed in clusters and fatigue strength or
Reduces toughness.

【0012】Ca:Alと同様に溶鋼段階でS、Oを低
減する。またCaの添加は靱性に有害なSおよびOをC
a−Al−O−S系の介在物として固定し、この介在物
自身はMnSのように圧延により伸展せず、またAl2
3 のようにクラスター状に分布する傾向を有さないた
め、靱性向上にさらに有効である。このような介在物形
状を制御する効果を発揮させるためには少なくても0.
0005%以上の含有量が必要であるが、0.005%
を超えて含有させるとその介在物が粗大となるため、逆
に靱性、溶接性を低下させる。またS、O含有量を低減
し、その介在物形状を有効に制御するためには、Alと
Caを上記適正量にて同時添加することが最も望まし
い。この複合添加により鋼中に残留した介在物を微小
に、しかも分散した状態にでき、特に靱性、疲労特性の
改善に有効である。
Similar to Ca: Al, S and O are reduced in the molten steel stage. Also, the addition of Ca changes S and O, which are harmful to toughness, into C
It is fixed as an a-Al-OS-s inclusion, and this inclusion itself does not extend by rolling like MnS, and Al 2
Since it does not tend to be distributed in clusters like O 3 , it is more effective in improving toughness. In order to exert such an effect of controlling the shape of inclusions, at least 0.
A content of 0005% or more is required, but 0.005%
If it is contained in excess, the inclusions become coarse and, conversely, the toughness and weldability are reduced. Further, in order to reduce the S and O contents and effectively control the shape of inclusions, it is most desirable to simultaneously add Al and Ca in the appropriate amounts. By this composite addition, inclusions remaining in the steel can be made minute and dispersed, which is particularly effective in improving toughness and fatigue properties.

【0013】その他の元素としてCuは、焼戻し処理後
の強度を上昇させる効果を有するが、過剰に添加すると
溶接熱影響部が著しく硬くなり溶接割れが発生しやすく
なるため、その上限は2%とすることが望ましい。鋼中
に不可避的に含有されるP、S、Oは鋼材の靱性を低下
させ、溶接性を劣化させるため、その含有量は各々で
0.03%以下、0.005%以下、0.005%以下
とすることが望ましい。La、Ceなどのランタノイド
系希土類元素の添加もSおよびOの固定に有効である
が、その酸化物あるいは硫化物は比重が大きく、精錬中
に浮上しにくいため鋼中に残存しやすい。従って、その
添加量は0.05%以下に抑えることが望ましい。
Cu as another element has the effect of increasing the strength after tempering treatment, but if added in excess, the weld heat affected zone becomes extremely hard and weld cracking tends to occur, so the upper limit is 2%. It is desirable to do. P, S, and O inevitably contained in the steel lower the toughness of the steel material and deteriorate the weldability, so that the respective contents are 0.03% or less, 0.005% or less, 0.005% or less. % Or less is desirable. The addition of lanthanoid rare earth elements such as La and Ce is also effective for fixing S and O, but the oxides or sulfides thereof have a large specific gravity and are hard to float during refining, so they tend to remain in the steel. Therefore, it is desirable to suppress the addition amount to 0.05% or less.

【0014】次に上記成分範囲に限定した鋼材の最適製
造方法を説明する。熱間圧延後の焼入れ温度を高くする
とデルタ・フェライト相が生成し、また焼入れ温度が低
すぎると炭化物あるいは窒化物が析出し、いずれの場合
も靱性および溶接性を低下させる。従って焼入れ温度は
900℃以上、1100℃以下とする。焼入れ時の冷却
速度は毎分10℃以上とすることが望ましい。また焼入
れ処理は熱間圧延終了後直ちに実施するか、一旦冷却し
た後に上記温度範囲に再加熱するかのいずれの方法によ
っても有効である。
Next, an optimum method for manufacturing a steel material limited to the above range of components will be described. If the quenching temperature after hot rolling is increased, a delta ferrite phase is generated, and if the quenching temperature is too low, carbides or nitrides are precipitated, and in any case, toughness and weldability are deteriorated. Therefore, the quenching temperature is 900 ° C or higher and 1100 ° C or lower. It is desirable that the cooling rate during quenching be 10 ° C. or more per minute. Further, the quenching treatment is effective either immediately after the hot rolling is completed or after being once cooled and then reheated to the above temperature range.

【0015】焼入れ処理ままではマルテンサイト相が不
安定であること、また焼入れ処理時に熱ひずみによる残
留応力が導入されることから十分な靱性が得られず、ま
た溶接部の遅れ破壊の原因となる。従って焼戻し熱処理
が必要である。焼戻し温度が500℃未満では残留応力
除去には不十分であり、また700℃超では冷却時に再
び不安定なマルテンサイト相が生成するため焼戻し効果
が減少する。この焼戻し熱処理は溶接施工後も実施する
ことが望ましい。
Since the martensite phase is unstable in the as-quenched state and residual stress due to thermal strain is introduced during the quenching process, sufficient toughness cannot be obtained and it causes delayed fracture of the welded part. .. Therefore, tempering heat treatment is necessary. If the tempering temperature is less than 500 ° C, the residual stress is not sufficiently removed, and if it exceeds 700 ° C, an unstable martensite phase is formed again during cooling, so that the tempering effect is reduced. It is desirable to carry out this tempering heat treatment even after welding.

【0016】本発明では、靱性および溶接性を向上させ
るためにデルタ・フェライト相を生成しない成分の限
定、製造条件の限定を行っているが、溶製・凝固時の成
分偏析、特にMoの偏析によって部分的にデルタ・フェ
ライト相が生成する場合は、熱間圧延前あるいは熱間圧
延後に均質化焼鈍することが望ましい。また本発明鋼の
鋼板製造時あるいは溶接施工時には、溶接性を著しく害
する水素の混入を極力さける必要がある。水素の影響が
ある場合は、600℃以下で拡散焼鈍を実施することが
望ましい。
In the present invention, in order to improve the toughness and weldability, the components that do not form the delta ferrite phase are limited and the production conditions are limited. However, the component segregation during melting and solidification, especially the segregation of Mo. When a delta-ferrite phase is partially formed by the above method, it is desirable to carry out homogenizing annealing before or after hot rolling. Further, it is necessary to prevent the mixing of hydrogen, which significantly impairs weldability, at the time of manufacturing the steel sheet of the invention steel or performing welding. When there is an influence of hydrogen, it is desirable to perform diffusion annealing at 600 ° C. or lower.

【0017】[0017]

【実施例】表1に供試鋼の化学成分を示す。供試鋼は真
空溶解炉で溶製後、いずれも30mmまで熱間圧延したも
のである。供試鋼A〜Jの焼入れ・焼戻し処理は同一条
件で実施した。つまり熱間圧延終了後再加熱し、100
0℃で1時間保持後に室温まで水冷し、その後に600
℃で4時間保持し、空冷した。
[Examples] Table 1 shows the chemical composition of the test steel. The test steels were melted in a vacuum melting furnace and then hot rolled to 30 mm. Quenching and tempering treatment of the test steels A to J were performed under the same conditions. In other words, after the hot rolling is finished, it is reheated to 100
After keeping at 0 ℃ for 1 hour, water-cool to room temperature, then 600
The temperature was maintained at 4 ° C. for 4 hours, and then air cooling was performed.

【0018】[0018]

【表1】 [Table 1]

【0019】母材の板厚中央から圧延方向とは垂直に引
張試験片、シャルピー試験片および疲労試験片を切り出
し、その機械的性質と腐食疲労強度を調べた。腐食疲労
試験は平行部40mm径の丸棒試験片を用い、3.5%N
aCl水溶液中に浸漬し、片振引張応力付与下で繰り返
し速度1Hz、最高繰り返し回数2×106まで実施し、
その回数での疲労強度を求めた。
Tensile test pieces, Charpy test pieces and fatigue test pieces were cut out from the center of the plate thickness of the base material perpendicularly to the rolling direction, and their mechanical properties and corrosion fatigue strength were investigated. For the corrosion fatigue test, a round bar test piece with a diameter of 40 mm in the parallel part was used, and 3.5% N
Immersed in an aCl aqueous solution and subjected to a unilateral tensile stress at a repetition rate of 1 Hz and a maximum number of repetitions of 2 × 10 6 ,
The fatigue strength at that number of times was determined.

【0020】また同一素材の表層部から5mm厚×20mm
幅×40mm長の試験片を切り出し、塩水噴霧試験を実施
した。塩水噴霧は3.5%NaCl水溶液を使用し、室
温で24時間試験した後に発錆の有無を確認した。さら
に供試鋼の溶接性を調べるために、素材にH形狭開先
(幅15mm)を切り出し、TIG溶接を行った。溶接は
供試鋼Hと同じ成分の溶接棒を使用し、溶接電流25
A、溶接速度毎分5cmの条件で片側10層ずつ行った。
溶接前の予熱は実施せず、溶接完了24時間後に断面を
切り出し、割れ発生の有無を確認した。
5 mm thick x 20 mm from the surface layer of the same material
A test piece having a width of 40 mm was cut out and a salt spray test was carried out. For salt spraying, a 3.5% NaCl aqueous solution was used, and after testing at room temperature for 24 hours, the presence or absence of rusting was confirmed. Further, in order to examine the weldability of the test steel, an H-shaped narrow groove (width 15 mm) was cut out from the material and TIG welding was performed. Welding uses a welding rod with the same composition as the sample steel H, welding current 25
A, 10 layers were formed on each side at a welding speed of 5 cm / min.
The preheating before welding was not carried out, and the cross section was cut out 24 hours after the completion of welding, and the presence or absence of cracking was confirmed.

【0021】以上の試験から求めた0.2%耐力、引張
強度、破断伸び、0℃でのシャルピー吸収エネルギー、
塩水噴霧での孔食発生の有無、腐食疲労強度および溶接
時の割れ発生の有無を表2に示す。表2から本発明鋼は
高強度で海水中での耐食性に優れ、さらに靱性、腐食疲
労強度および溶接性にも優れていることがわかる。
0.2% proof stress, tensile strength, elongation at break, Charpy absorbed energy at 0 ° C., obtained from the above tests,
Table 2 shows the presence / absence of pitting corrosion in salt spray, the corrosion fatigue strength, and the presence / absence of cracking during welding. It can be seen from Table 2 that the steel of the present invention has high strength and excellent corrosion resistance in seawater, as well as excellent toughness, corrosion fatigue strength and weldability.

【0022】[0022]

【表2】 [Table 2]

【0023】供試鋼Kは表3に示す各種温度で焼入れ、
焼戻し熱処理を実施した。保持時間および冷却方法は上
記供試鋼A〜Jで実施した条件と同じとした。その後、
上記と同様に試験片を切り出し、機械的性質、耐食性お
よび溶接性を調べた。その結果も併せて表3に示す。こ
の表から本発明の温度範囲以外で焼入れ、焼戻し処理を
実施すると強度、耐食性、腐食疲労特性、溶接性のいず
れかが低下することがわかり、海水環境中で使用可能に
するためには本発明に従って製造する必要があることが
明らかである。
The sample steel K was quenched at various temperatures shown in Table 3,
A tempering heat treatment was performed. The holding time and the cooling method were the same as the conditions carried out for the sample steels A to J. afterwards,
A test piece was cut out in the same manner as above and examined for mechanical properties, corrosion resistance and weldability. The results are also shown in Table 3. From this table, it can be seen that if quenching or tempering is performed outside the temperature range of the present invention, one of strength, corrosion resistance, corrosion fatigue properties, and weldability deteriorates. It is clear that it has to be manufactured according to

【0024】[0024]

【表3】 [Table 3]

【0025】以上の実施例から本発明鋼は高強度でかつ
耐海水性に優れ、さらに靱性、腐食疲労強度が高く、厚
肉材においても溶接性が良好であることがわかる。
From the above examples, it is understood that the steel of the present invention has high strength and excellent seawater resistance, high toughness and corrosion fatigue strength, and good weldability even in thick-walled materials.

【0026】[0026]

【発明の効果】本発明の高強度マルテンサイトステンレ
ス鋼は耐食性に優れ、厚肉材においても優れた溶接性を
示すことから、高速船の水中翼等の耐海水性を要する船
舶構造物に最適であり、産業上寄与するところは極めて
大である。
EFFECTS OF THE INVENTION The high-strength martensitic stainless steel of the present invention is excellent in corrosion resistance and exhibits excellent weldability even in thick-walled materials. Therefore, the industrial contribution is extremely large.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年4月3日[Submission date] April 3, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】母材の板厚中央から圧延方向とは垂直に引
張試験片、シャルピー試験片および疲労試験片を切り出
し、その機械的性質と腐食疲労強度を調べた。腐食疲労
試験は平行部10mm径の丸棒試験片を用い、3.5%N
aCl水溶液中に浸漬し、片振引張応力付与下で繰り返
し速度1Hz、最高繰り返し回数2×106まで実施し、
その回数での疲労強度を求めた。
Tensile test pieces, Charpy test pieces and fatigue test pieces were cut out from the center of the plate thickness of the base material perpendicularly to the rolling direction, and their mechanical properties and corrosion fatigue strength were investigated. For the corrosion fatigue test, a round bar test piece with a diameter of 10 mm in the parallel part was used, and 3.5% N
Immersed in an aCl aqueous solution and subjected to unilateral tensile stress at a repetition rate of 1 Hz and a maximum number of repetitions of 2 × 10 6 ,
The fatigue strength at that number of times was determined.

フロントページの続き (72)発明者 田所 裕 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 末次 和広 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内Front Page Continuation (72) Inventor Hiroshi Tadokoro 20-1 Shintomi, Futtsu City, Chiba Shin-Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Kazuhiro Suetsugu No. 1 Tobata-cho, Tobata-ku, Kitakyushu, Japan Shin-Nippon Steelworks Yawata Works

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC 0.03%以下、Si
1.0%以下、Mn2.0%以下、Cr 11〜15
%、Ni 2.0〜7.0%、Mo 2.0%超〜4.
0%、N 0.02%以下を含有し、残部はFeおよび
不可避的不純物元素からなり、さらに下記の(1)式で
表されるCreqと(2)式で表されるNieqが、
(3)式ならびに(4)式を満足することにより、その
金属組織にフェライト相を含まないマルテンサイト相か
らなることを特徴とする耐海水性に優れた高強度マルテ
ンサイトステンレス鋼。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[ ]は、各成分の鋼中含有量(重量%)を
示す。
1. C 0.03% or less by weight%, Si
1.0% or less, Mn 2.0% or less, Cr 11 to 15
%, Ni 2.0-7.0%, Mo over 2.0% -4.
0%, N 0.02% or less, the balance consisting of Fe and inevitable impurity elements, and Creq represented by the following formula (1) and Nieq represented by the formula (2)
A high-strength martensitic stainless steel excellent in seawater resistance, characterized by satisfying the expressions (3) and (4) and comprising a martensite phase containing no ferrite phase in its metal structure. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq-Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the formula Indicates the content (% by weight) of each component in steel.
【請求項2】 重量%でC 0.03%以下、Si
1.0%以下、Mn2.0%以下、Cr 11〜15
%、Ni 2.0〜7.0%、Mo 2.0%超〜4.
0%、N 0.02%以下を含有し、さらにNb 0.
01〜0.5%、V 0.01〜0.5%の1種または
2種を含有し、残部はFeおよび不可避的不純物元素か
らなり、さらに下記の(1)式で表されるCreqと
(2)式で表されるNieqが、(3)式ならびに
(4)式を満足することにより、その金属組織にフェラ
イト相を含まないマルテンサイト相からなることを特徴
とする耐海水性に優れた高強度マルテンサイトステンレ
ス鋼。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[ ]は、各成分の鋼中含有量(重量%)を
示す。
2. C 0.03% or less by weight%, Si
1.0% or less, Mn 2.0% or less, Cr 11 to 15
%, Ni 2.0-7.0%, Mo over 2.0% -4.
0%, N 0.02% or less, and Nb 0.
01-0.5%, V 0.01-0.5% of 1 type or 2 types, the balance consists of Fe and unavoidable impurity elements, and Creq represented by the following formula (1): Nieq represented by the formula (2) satisfies the formulas (3) and (4), and is composed of a martensite phase containing no ferrite phase in its metal structure, which is excellent in seawater resistance. High strength martensitic stainless steel. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq-Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the formula Indicates the content (% by weight) of each component in steel.
【請求項3】 重量%でC 0.03%以下、Si
1.0%以下、Mn2.0%以下、Cr 11〜15
%、Ni 2.0〜7.0%、Mo 2.0%超〜4.
0%、N 0.02%以下を含有し、さらにAl 0.
001〜0.05%、Ca 0.0005〜0.005
%の1種または2種を含有し、残部はFeおよび不可避
的不純物元素からなり、さらに下記の(1)式で表され
るCreqと(2)式で表されるNieqが、(3)式
ならびに(4)式を満足することにより、その金属組織
にフェライト相を含まないマルテンサイト相からなるこ
とを特徴とする耐海水性に優れた高強度マルテンサイト
ステンレス鋼。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[ ]は、各成分の鋼中含有量(重量%)を
示す。
3. C in an amount of 0.03% or less by weight, Si
1.0% or less, Mn 2.0% or less, Cr 11 to 15
%, Ni 2.0-7.0%, Mo over 2.0% -4.
0%, N 0.02% or less, Al 0.
001-0.05%, Ca 0.0005-0.005
% Of 1 or 2 and the balance Fe and unavoidable impurity elements, and Creq represented by the following formula (1) and Nieq represented by the formula (2) below are represented by the formula (3): In addition, a high-strength martensitic stainless steel excellent in seawater resistance, characterized by satisfying the formula (4) and consisting of a martensite phase containing no ferrite phase in its metal structure. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq-Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the formula Indicates the content (% by weight) of each component in steel.
【請求項4】 重量%でC 0.03%以下、Si
1.0%以下、Mn2.0%以下、Cr 11〜15
%、Ni 2.0〜7.0%、Mo 2.0%超〜4.
0%、N 0.02%以下を含有し、かつNb 0.0
1〜0.5%、V 0.01〜0.5%の1種または2
種を含有し、さらにAl 0.001〜0.05%、C
a 0.0005〜0.005%の1種または2種を含
有し、残部はFeおよび不可避的不純物元素からなり、
さらに下記の(1)式で表されるCreqと(2)式で
表されるNieqが、(3)式ならびに(4)式を満足
することにより、その金属組織にフェライト相を含まな
いマルテンサイト相からなることを特徴とする耐海水性
に優れた高強度マルテンサイトステンレス鋼。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[ ]は、各成分の鋼中含有量(重量%)を
示す。
4. C by weight% is 0.03% or less, Si
1.0% or less, Mn 2.0% or less, Cr 11 to 15
%, Ni 2.0-7.0%, Mo over 2.0% -4.
0%, N 0.02% or less, and Nb 0.0
1-0.5%, V 0.01-0.5% of 1 type or 2
Containing seeds, Al 0.001-0.05%, C
a 0.0005 to 0.005% of 1 type or 2 types, the balance consisting of Fe and unavoidable impurity elements,
Furthermore, when Creq represented by the following formula (1) and Nieq represented by the formula (2) satisfy the formulas (3) and (4), martensite containing no ferrite phase in its metal structure High-strength martensitic stainless steel with excellent seawater resistance, which consists of two phases. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq-Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the formula Indicates the content (% by weight) of each component in steel.
【請求項5】 重量%でC 0.03%以下、Si
1.0%以下、Mn2.0%以下、Cr 11〜15
%、Ni 2.0〜7.0%、Mo 2.0%超〜4.
0%、N 0.02%以下を含有し、残部はFeおよび
不可避的不純物元素からなり、さらに下記の(1)式で
表されるCreqと(2)式で表されるNieqが、
(3)式ならびに(4)式を満足することにより、その
金属組織にフェライト相を含まない鋼材を、熱間圧延終
了後、900〜1100℃の温度範囲から100℃以下
まで焼入れ処理を施し、さらにその後500〜700℃
に焼戻し処理を施すことを特徴とする耐海水性に優れた
高強度マルテンサイトステンレス鋼の製造方法。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[ ]は、各成分の鋼中含有量(重量%)を
示す。
5. A weight percent of C 0.03% or less, Si
1.0% or less, Mn 2.0% or less, Cr 11 to 15
%, Ni 2.0-7.0%, Mo over 2.0% -4.
0%, N 0.02% or less, the balance consisting of Fe and inevitable impurity elements, and Creq represented by the following formula (1) and Nieq represented by the formula (2)
By satisfying the expressions (3) and (4), a steel material containing no ferrite phase in its metal structure is subjected to quenching treatment from a temperature range of 900 to 1100 ° C. to 100 ° C. or less after hot rolling is completed, After that, 500-700 ° C
A method for producing high-strength martensitic stainless steel with excellent seawater resistance, which comprises subjecting a steel to a tempering treatment. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq-Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the formula Indicates the content (% by weight) of each component in steel.
【請求項6】 重量%でC 0.03%以下、Si
1.0%以下、Mn2.0%以下、Cr 11〜15
%、Ni 2.0〜7.0%、Mo 2.0%超〜4.
0%、N 0.02%以下を含有し、さらにNb 0.
01〜0.5%、V 0.01〜0.5%の1種または
2種を含有し、残部はFeおよび不可避的不純物元素か
らなり、さらに下記の(1)式で表されるCreqと
(2)式で表されるNieqが、(3)式ならびに
(4)式を満足することにより、その金属組織にフェラ
イト相を含まない鋼材を、熱間圧延終了後、900〜1
100℃の温度範囲から100℃以下まで焼入れ処理を
施し、さらにその後500〜700℃に焼戻し処理を施
すことを特徴とする耐海水性に優れた高強度マルテンサ
イトステンレス鋼の製造方法。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[ ]は、各成分の鋼中含有量(重量%)を
示す。
6. A weight percent of C 0.03% or less, Si
1.0% or less, Mn 2.0% or less, Cr 11 to 15
%, Ni 2.0-7.0%, Mo over 2.0% -4.
0%, N 0.02% or less, and Nb 0.
01-0.5%, V 0.01-0.5% of 1 type or 2 types, the balance consists of Fe and unavoidable impurity elements, and Creq represented by the following formula (1): When Nieq represented by the formula (2) satisfies the formulas (3) and (4), a steel material containing no ferrite phase in its metal structure is heated to 900 to 1 after completion of hot rolling.
A method for producing a high-strength martensitic stainless steel excellent in seawater resistance, which comprises performing quenching treatment from a temperature range of 100 ° C. to 100 ° C. or lower, and then tempering treatment at 500 to 700 ° C. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq-Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the formula Indicates the content (% by weight) of each component in steel.
【請求項7】 重量%でC 0.03%以下、Si
1.0%以下、Mn2.0%以下、Cr 11〜15
%、Ni 2.0〜7.0%、Mo 2.0%超〜4.
0%、N 0.02%以下を含有し、さらにAl 0.
001〜0.05%、Ca 0.0005〜0.005
%の1種または2種を含有し、残部はFeおよび不可避
的不純物元素からなり、さらに下記の(1)式で表され
るCreqと(2)式で表されるNieqが、(3)式
ならびに(4)式を満足することにより、その金属組織
にフェライト相を含まない鋼材を、熱間圧延終了後、9
00〜1100℃の温度範囲から100℃以下まで焼入
れ処理を施し、さらにその後500〜700℃に焼戻し
処理を施すことを特徴とする耐海水性に優れた高強度マ
ルテンサイトステンレス鋼の製造方法。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[ ]は、各成分の鋼中含有量(重量%)を
示す。
7. A weight percent of C 0.03% or less, Si
1.0% or less, Mn 2.0% or less, Cr 11 to 15
%, Ni 2.0-7.0%, Mo over 2.0% -4.
0%, N 0.02% or less, Al 0.
001-0.05%, Ca 0.0005-0.005
% Of 1 or 2 and the balance Fe and unavoidable impurity elements, and Creq represented by the following formula (1) and Nieq represented by the formula (2) below are represented by the formula (3): Also, by satisfying the expression (4), a steel material containing no ferrite phase in its metallographic structure should be
A method for producing a high-strength martensitic stainless steel excellent in seawater resistance, which comprises performing quenching treatment from a temperature range of 00 to 1100 ° C. to 100 ° C. or lower, and then tempering treatment to 500 to 700 ° C. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq-Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the formula Indicates the content (% by weight) of each component in steel.
【請求項8】 重量%でC 0.03%以下、Si
1.0%以下、Mn2.0%以下、Cr 11〜15
%、Ni 2.0〜7.0%、Mo 2.0%超〜4.
0%、N 0.02%以下を含有し、かつNb 0.0
1〜0.5%、V 0.01〜0.5%の1種または2
種を含有し、さらにAl 0.001〜0.05%、C
a 0.0005〜0.005%の1種または2種を含
有し、残部はFeおよび不可避的不純物元素からなり、
さらに下記の(1)式で表されるCreqと(2)式で
表されるNieqが、(3)式ならびに(4)式を満足
することにより、その金属組織にフェライト相を含まな
い鋼材を、熱間圧延終了後、900〜1100℃の温度
範囲から100℃以下まで焼入れ処理を施し、さらにそ
の後500〜700℃に焼戻し処理を施すことを特徴と
する耐海水性に優れた高強度マルテンサイトステンレス
鋼の製造方法。 Nieq=Ni+0.5[Mn]+30[C+N] (1) Creq=Cr+Mo+1.5[Si] (2) Creq−Nieq≦11.0 (3) Creq+Nieq≦23.0 (4) なお式中の[ ]は、各成分の鋼中含有量(重量%)を
示す。
8. A weight percentage of C 0.03% or less, Si
1.0% or less, Mn 2.0% or less, Cr 11 to 15
%, Ni 2.0-7.0%, Mo over 2.0% -4.
0%, N 0.02% or less, and Nb 0.0
1-0.5%, V 0.01-0.5% of 1 type or 2
Containing seeds, Al 0.001-0.05%, C
a 0.0005 to 0.005% of 1 type or 2 types, the balance consisting of Fe and unavoidable impurity elements,
Further, Creq represented by the following formula (1) and Nieq represented by the formula (2) satisfy the formulas (3) and (4), so that a steel material containing no ferrite phase in its metal structure can be obtained. After the hot rolling, the high-strength martensite excellent in seawater resistance is characterized by being subjected to quenching treatment from a temperature range of 900 to 1100 ° C. to 100 ° C. or lower, and then tempering treatment to 500 to 700 ° C. Manufacturing method of stainless steel. Nieq = Ni + 0.5 [Mn] +30 [C + N] (1) Creq = Cr + Mo + 1.5 [Si] (2) Creq-Nieq ≦ 11.0 (3) Creq + Nieq ≦ 23.0 (4) [] in the formula Indicates the content (% by weight) of each component in steel.
JP31702191A 1991-11-29 1991-11-29 High-strength martensitic stainless steel with excellent seawater resistance and its manufacturing method Withdrawn JPH05156409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31702191A JPH05156409A (en) 1991-11-29 1991-11-29 High-strength martensitic stainless steel with excellent seawater resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31702191A JPH05156409A (en) 1991-11-29 1991-11-29 High-strength martensitic stainless steel with excellent seawater resistance and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH05156409A true JPH05156409A (en) 1993-06-22

Family

ID=18083538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31702191A Withdrawn JPH05156409A (en) 1991-11-29 1991-11-29 High-strength martensitic stainless steel with excellent seawater resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH05156409A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034690A1 (en) * 1994-06-16 1995-12-21 Nippon Steel Corporation Process for producing steel pipe excellent in corrosion resistance and weldability
EP0798394A1 (en) * 1996-03-27 1997-10-01 Kawasaki Steel Corporation Martensitic steel for line pipe having excellent corrosion resistance and weldability
EP1143024A4 (en) * 1998-12-18 2002-08-07 Nippon Kokan Kk MARTENSITIC STAINLESS STEEL
EP1112804A3 (en) * 1999-12-28 2003-10-01 Kawasaki Steel Corporation Welding material and arc welding method for low carbon martensitic stainless steel
WO2004057050A1 (en) * 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking
WO2006054430A1 (en) * 2004-11-19 2006-05-26 Sumitomo Metal Industries, Ltd. Martensitic stainless steel
CN105658833A (en) * 2013-10-31 2016-06-08 杰富意钢铁株式会社 Ferrite-martensite two-phase stainless steel, and method for producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034690A1 (en) * 1994-06-16 1995-12-21 Nippon Steel Corporation Process for producing steel pipe excellent in corrosion resistance and weldability
US5820703A (en) * 1994-06-16 1998-10-13 Nippon Steel Corporation Production method of steel pipe excellent in corrosion resistance and weldability
EP0798394A1 (en) * 1996-03-27 1997-10-01 Kawasaki Steel Corporation Martensitic steel for line pipe having excellent corrosion resistance and weldability
US5985209A (en) * 1996-03-27 1999-11-16 Kawasaki Steel Corporation Martensitic steel for line pipe having excellent corrosion resistance and weldability
EP1143024A4 (en) * 1998-12-18 2002-08-07 Nippon Kokan Kk MARTENSITIC STAINLESS STEEL
EP1112804A3 (en) * 1999-12-28 2003-10-01 Kawasaki Steel Corporation Welding material and arc welding method for low carbon martensitic stainless steel
AU2003289437B2 (en) * 2002-12-20 2007-09-20 Nippon Steel Corporation High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking
WO2004057050A1 (en) * 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking
CN100368579C (en) * 2002-12-20 2008-02-13 住友金属工业株式会社 High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance
EP1584699A4 (en) * 2002-12-20 2009-06-03 Sumitomo Metal Ind HIGH RESISTANCE MARTENSITIC STAINLESS STEEL HAVING EXCELLENT RESISTANCE TO CORROSION OF CARBON GAS AND STRESS CORROSION CRACKING DUE TO SULFIDE
NO337858B1 (en) * 2002-12-20 2016-07-04 Sumitomo Metal Ind High-strength martensitic stainless steel excellent for corrosion resistance to carbon dioxide gas and sulphide stress corrosion crack resistance.
WO2006054430A1 (en) * 2004-11-19 2006-05-26 Sumitomo Metal Industries, Ltd. Martensitic stainless steel
EP1826285A4 (en) * 2004-11-19 2009-04-08 Sumitomo Metal Ind MARTENSITIC STAINLESS STEEL
CN105658833A (en) * 2013-10-31 2016-06-08 杰富意钢铁株式会社 Ferrite-martensite two-phase stainless steel, and method for producing same
EP3029170A4 (en) * 2013-10-31 2016-10-05 Jfe Steel Corp FERRITE-MARTENSITE DIPHASIC STAINLESS STEEL AND PROCESS FOR PRODUCING THE SAME
US10745774B2 (en) 2013-10-31 2020-08-18 Jfe Steel Corporation Ferrite-martensite dual-phase stainless steel and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4814141A (en) High toughness, ultra-high strength steel having an excellent stress corrosion cracking resistance with a yield stress of not less than 110 kgf/mm2
WO1996017964A1 (en) Ultra-high strength steels and method thereof
JPH10121202A (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
JP5151693B2 (en) Manufacturing method of high-strength steel
EP0738784B1 (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JP2008208406A (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JPH05156409A (en) High-strength martensitic stainless steel with excellent seawater resistance and its manufacturing method
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2995524B2 (en) High strength martensitic stainless steel and its manufacturing method
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2002339037A (en) High-strength steel excellent in low-temperature joint toughness and SSC resistance and method for producing the same
KR920008133B1 (en) Manufacturing method of welding steel with excellent stress corrosion cracking resistance
JP3099155B2 (en) High strength martensitic stainless steel with excellent weldability and its manufacturing method
JPH05156408A (en) High-strength martensitic stainless steel with excellent weldability and its manufacturing method
JP3705161B2 (en) High tensile steel plate
JP3313440B2 (en) High corrosion resistance high strength clad steel and method for producing the same
JPH06240406A (en) Steel plate with high strength and high toughness
JPS61272316A (en) Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JP2842268B2 (en) Method for producing welded structure excellent in hydrogen sulfide stress corrosion cracking resistance and low temperature toughness
JPH0633189A (en) Spring steel with excellent delayed fracture resistance
JPH05186820A (en) Manufacturing method of high toughness and high strength steel with excellent elongation properties
JP2019127613A (en) High hardness precipitation hardening stainless steel having excellent hot workability and requiring no sub-zero treatment
JPS6358892B2 (en)
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204