JPS62149813A - Production of high-strength seamless steel pipe having excellent resistance to sulfide stress corrosion cracking - Google Patents
Production of high-strength seamless steel pipe having excellent resistance to sulfide stress corrosion crackingInfo
- Publication number
- JPS62149813A JPS62149813A JP28767185A JP28767185A JPS62149813A JP S62149813 A JPS62149813 A JP S62149813A JP 28767185 A JP28767185 A JP 28767185A JP 28767185 A JP28767185 A JP 28767185A JP S62149813 A JPS62149813 A JP S62149813A
- Authority
- JP
- Japan
- Prior art keywords
- stress corrosion
- corrosion cracking
- sulfide stress
- steel pipe
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 49
- 239000010959 steel Substances 0.000 title claims abstract description 49
- 230000007797 corrosion Effects 0.000 title claims abstract description 40
- 238000005260 corrosion Methods 0.000 title claims abstract description 40
- 238000005336 cracking Methods 0.000 title claims abstract description 40
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000005496 tempering Methods 0.000 claims abstract description 19
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 5
- 230000009466 transformation Effects 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract 3
- 239000011796 hollow space material Substances 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 11
- 229910052758 niobium Inorganic materials 0.000 abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 abstract description 4
- 238000005098 hot rolling Methods 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910045601 alloy Inorganic materials 0.000 abstract 1
- 239000000956 alloy Substances 0.000 abstract 1
- 150000001247 metal acetylides Chemical class 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- LPSWFOCTMJQJIS-UHFFFAOYSA-N sulfanium;hydroxide Chemical class [OH-].[SH3+] LPSWFOCTMJQJIS-UHFFFAOYSA-N 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、サワー化傾向の下に深井戸化の著しい油井
管、またサワーガスやサワーオイル用のラインパイプ、
さらには化学プラント用配管などの用途に用いて好適な
耐硫化物応力腐食割れ性に優れる高強度継目無鋼管の製
造方法に関し、とくに硫化物応力腐食割れ発生の危険を
、少なくとも75kgf/mm”のように高い降伏強さ
の下に有効に回避することについての開発成果を開示す
るものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention is applicable to oil country tubular goods, which are becoming increasingly deeper due to the trend towards sour oil, and line pipes for sour gas and sour oil.
Furthermore, regarding the manufacturing method of high-strength seamless steel pipes with excellent sulfide stress corrosion cracking resistance suitable for use in applications such as chemical plant piping, etc. The present invention discloses the development results for effectively avoiding such high yield strength.
(従来の技術)
上記したような深井戸化かつサワー化する傾向に対して
は、一般に耐硫化物応力腐食割れ性が、強さの上昇と共
に劣化するので、両者の兼ね合いから現在のところ降伏
強さ64〜74kgf/mm2級のC「−Mo系鋼(C
:0.25〜0.3!5wt%(以下単に%と記す)。(Prior art) In response to the above-mentioned trend toward deeper and sour wells, the sulfide stress corrosion cracking resistance generally deteriorates as the strength increases. 64 to 74 kgf/mm2 class C-Mo steel (C
: 0.25 to 0.3!5wt% (hereinafter simply referred to as %).
Cr;約1%、Mo;0.2〜0.8%)が最も優れた
ものとされている。Cr: about 1%, Mo: 0.2-0.8%) are considered to be the most excellent.
ところで最近、特開昭53−78917号公報により、
従来の65kgf/mm2級Cr −Mogに比しCr
−Moを増量し、かつVを多量に添加して耐硫化物応
力腐食割れ性の改善を図った75〜90kgf/mm2
級の鋼が開発されたが、Mo、Vなどの高価な元素を多
量に含むため高価につき、また多量のVを含むため連続
鋳造による熱間加工中に割れが発生し易かった。By the way, recently, according to Japanese Patent Application Laid-Open No. 53-78917,
Cr compared to the conventional 65kgf/mm 2nd grade Cr-Mog
-75 to 90 kgf/mm2 with increased Mo and a large amount of V added to improve sulfide stress corrosion cracking resistance
A grade steel has been developed, but it is expensive because it contains large amounts of expensive elements such as Mo and V, and because it contains a large amount of V, it is prone to cracking during hot working by continuous casting.
また特開昭57−19322号および同57−1932
3号各公報において、耐硫化物応力腐食割れ性の優れた
La添加鋼が提案されたが、この鋼の降伏強さは最も高
くても80kgf/mm2程度であって従来鋼に比して
強度の改善は事実上はとんど見られない。Also, JP-A-57-19322 and JP-A-57-1932
In each publication No. 3, a La-added steel with excellent sulfide stress corrosion cracking resistance was proposed, but the yield strength of this steel is about 80 kgf/mm2 at the highest, which is lower than conventional steel. There is virtually no improvement seen.
さらに特開昭57−35622号公報には、p、sを低
減した高強度油井用鋼が開示されているが、この鋼は強
度についてはかなり改善されているとはいえ、アルカリ
性環境のしかもH2Sは微量しか含まない場合にのみし
か耐応力腐食割れ性は保証されていない。Furthermore, JP-A-57-35622 discloses a high-strength steel for oil wells with reduced p and s, but although this steel has considerably improved strength, it is suitable for use in alkaline environments and H2S Resistance to stress corrosion cracking is guaranteed only when it is contained in only trace amounts.
(発明が解決しようとする問題点)
上記したように従来鋼はいずれも、価格の面または特性
の面で何かしらの問題を残していた。(Problems to be Solved by the Invention) As mentioned above, all conventional steels have had some problems in terms of price or properties.
この発明は、上記の問題を有利に解決するもので、上掲
したような高価な元素を多量に含まず連続鋳造にも適し
た安価に成分系であって、しかも優れた耐硫化物応力腐
食割れ性と共に降伏強さが75〜120kgf/mm”
という高強度を兼ね備える継目無鋼管の有利な製造方法
を提案することを目的とする。The present invention advantageously solves the above problems, and is an inexpensive component system suitable for continuous casting that does not contain large amounts of the expensive elements listed above, and has excellent sulfide stress corrosion resistance. Breakability and yield strength are 75-120kgf/mm”
The purpose of this study is to propose an advantageous manufacturing method for seamless steel pipes that have high strength.
(問題点を解決するための手段)
さて発明者らは、上記の問題を解決すべく鋭意研究を重
ねた結果、以下に述べる知見を得た。(Means for Solving the Problems) As a result of extensive research to solve the above problems, the inventors have obtained the knowledge described below.
(1)従来鋼のように、Cr、 Moのみで強度を向上
させたものよりも、Cを高くしかつTi、 Vを微量
ずつ複合添加した鋼の方が、耐硫化物応力腐食割れ性の
面で一層優れており、しかもこの場合Cr+ Moの添
加量を従来鋼より大幅に低下できコストダウンとなる。(1) Compared to conventional steels whose strength is improved only with Cr and Mo, steels with high C content and the combined addition of small amounts of Ti and V have better resistance to sulfide stress corrosion cracking. Moreover, in this case, the amount of Cr+Mo added can be significantly reduced compared to conventional steel, resulting in cost reduction.
(2)降伏強さ75kgf/mm2以上の綱で優れた耐
硫化物応力腐食割れ性を得るためには、少なくとも焼戻
し温度を620℃以上とする必要がある。(2) In order to obtain excellent sulfide stress corrosion cracking resistance with a steel having a yield strength of 75 kgf/mm2 or more, the tempering temperature must be at least 620°C or higher.
(3)優れた耐硫化物応力腐食割れ性を得るためには、
焼入を完全に行なう必要があるが、このためにはCr、
Moの添加量を少なめにした鋼においては、従来の耐
サワー用鋼よりもMnを多めにする必要がある。(3) In order to obtain excellent sulfide stress corrosion cracking resistance,
It is necessary to harden completely, but for this purpose Cr,
In steel with a smaller amount of Mo added, it is necessary to add more Mn than in conventional sour-resistant steel.
(4)焼戻し温度を620°C以上とした場合に、75
kgf/mm”以上の降伏強さを安定して得ると共に、
完全焼入れを実現するためには、C:0.45%以上、
Mn:0.8%以上とする必要がある。(4) When the tempering temperature is 620°C or higher, 75
In addition to stably obtaining a yield strength of kgf/mm” or more,
In order to achieve complete hardening, C: 0.45% or more,
Mn: Must be 0.8% or more.
(5)この発明鋼のような高強度鋼でMnが0.8%以
上含むような鋼においては、良好な耐硫化物応力腐食割
れ性を得るためには、Pを0.015%以下、Sを0.
005%以下に制限する必要がある。(5) In high-strength steels such as the steel of this invention containing 0.8% or more of Mn, in order to obtain good sulfide stress corrosion cracking resistance, the P content must be 0.015% or less. S is 0.
It is necessary to limit it to 0.005% or less.
(6)前掲(1)項に示したようにCr、 Moのみで
なく、Cr。(6) As shown in item (1) above, not only Cr and Mo, but also Cr.
Moを減らしてTi、 Vなどを複合添加した方がより
耐硫化物応力腐食割れ性は向上する。すなわち炭化物形
成元素は1種類でなく、なるべく多種のものにした方が
良い結果となる。これは単一組成の炭化物を析出させる
よりも、種々の組成の炭化物を析出させるようにする方
が、析出温度も異なるので、析出炭化物はより微細かつ
均一に分散するようになり、かくして高強度が得られる
と同時に耐硫化物応力腐食割れ性が向上するものと考え
られる。Sulfide stress corrosion cracking resistance is improved by reducing Mo and adding Ti, V, etc. in combination. In other words, it is better to use as many different types of carbide-forming elements as possible, rather than just one type, for better results. This is because it is better to precipitate carbides of various compositions than to precipitate carbides of a single composition, because the precipitation temperature is also different, so the precipitated carbides are more finely and uniformly dispersed, thus achieving high strength. It is thought that the sulfide stress corrosion cracking resistance is improved at the same time.
したがって、Cr+Mo+Ti、Vの他に更に、Nb、
Zrの1種または2種を同時に添加することにより、
一層、強度と耐硫化物応力腐食割れ性を向上させること
が出来る。Therefore, in addition to Cr+Mo+Ti and V, Nb,
By adding one or two types of Zr at the same time,
Furthermore, strength and sulfide stress corrosion cracking resistance can be further improved.
この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.
すなわちこの発明は、
C:0.45〜0.65%
Si : 0.20〜0.35%
Mn : 0.8〜1.6%
Cr : 0.1%以上、0.8%未満、Mo : 0
.05%以上、0゜40%未満、AI : 0.005
〜0.1%
Ti : 0.02〜0.10%およびV : 0.
01〜0.10%
を含み、かつ
Nb : 0.1%以下および
Zr:0.1%以下
のうちから選んだ少なくとも一種を含有し、さらに不可
避混入不純物のうちPおよびSをそれぞれ、P : 0
.015%以下
S : 0.005%以下
に抑制し、残部は実質的にFeの組成になる継目無鋼管
用中空素材に、熱間圧延を施して製管し、ついで焼入れ
してマルテンサイト組織としたのち、620°C以上、
Ac、変態点以下の温度範囲で焼戻すことを特徴とする
、耐硫化物応力腐食割れ性に優れる高強度継目無鋼管の
製造方法である。That is, this invention includes: C: 0.45-0.65% Si: 0.20-0.35% Mn: 0.8-1.6% Cr: 0.1% or more and less than 0.8%, Mo : 0
.. 05% or more, less than 0°40%, AI: 0.005
~0.1% Ti: 0.02~0.10% and V: 0.
01 to 0.10%, and at least one selected from Nb: 0.1% or less and Zr: 0.1% or less; 0
.. 0.015% or less S: suppressed to 0.005% or less, the remainder being essentially Fe, is made into a hollow material for seamless steel pipes by hot rolling, and then quenched to form a martensitic structure. After that, the temperature exceeds 620°C,
This is a method for producing a high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking, which is characterized by tempering at a temperature range below Ac, transformation point.
以下この発明を、具体的に説明する。This invention will be specifically explained below.
まずこの発明において、素材成分を上記の範囲に限定し
た理由について説明する。First, in this invention, the reason why the material components are limited to the above range will be explained.
C: 0.45〜0.65%
Cは、高温焼戻しにおいても高い強度を得る上で有用な
元素であり、とくにこの発明で所jtJlシたように少
量の添加で620℃以上の高温焼戻し処理によって75
kgf/mm2以上の降伏強さを得るためには、少なく
とも0.45%を必要とするが、0.65%を超えると
焼割れが発生するおされが生じるので、0.45〜0.
65%の範囲で添加することにした。Si:0.20〜
0.35%
Siは、鋼の脱酸と強度向上のためには少なくとも0.
20%を必要とするが、0.35%を超えると靭性の劣
化を招くので、0.20〜0.35%の範囲に限定した
。C: 0.45 to 0.65% C is an element useful in obtaining high strength even in high temperature tempering, and especially when added in a small amount as shown in this invention, high temperature tempering at 620°C or higher can be achieved. by 75
In order to obtain a yield strength of kgf/mm2 or more, a content of at least 0.45% is required, but if it exceeds 0.65%, cracks that cause quench cracking will occur, so the content should be between 0.45% and 0.45%.
It was decided to add it in a range of 65%. Si: 0.20~
0.35% Si is at least 0.35% for deoxidizing steel and improving strength.
Although 20% is required, if it exceeds 0.35%, the toughness deteriorates, so it is limited to a range of 0.20 to 0.35%.
Mn : 0.8〜1.6%
Mnは、焼入性や強度の向上さらには脱酸にも有用なだ
けでなく、比較的安価な元素でもある。とくにこの発明
鋼のごとく他の添加元素が少量の場合は、含有量が0.
8%に満たないとその添加効果に乏しい。しかじなあく
ら、1.6%を超えるとP。Mn: 0.8 to 1.6% Mn is not only useful for improving hardenability and strength, and also for deoxidation, but is also a relatively inexpensive element. In particular, when other additive elements are contained in small amounts as in the steel of this invention, the content may be 0.
If the amount is less than 8%, the effect of the addition is poor. If Shikaji na Akura exceeds 1.6%, P.
Sなどの偏析を招いて耐硫化物応力腐食割れ性を劣化さ
せるので、0.8〜1.6%の範囲で含有させること−
にした。Since it causes segregation of S, etc. and deteriorates sulfide stress corrosion cracking resistance, it should be contained in the range of 0.8 to 1.6%.
I made it.
Cr : 0.1%以上、0.8%未満Crは、焼入れ
焼戻し処理において炭化物を形成し、強度および焼戻し
抵抗性を高めるのに有効に寄与する。そのためには゛0
.1%以上の添加が必要であるが、Mo、Ti、V等の
元素が共存する場合には0.8%以上添加してもその効
果は飽和に達するので、0.1〜0.8%の範囲に限定
した。Cr: 0.1% or more, less than 0.8% Cr forms carbides during quenching and tempering treatment, and effectively contributes to increasing strength and tempering resistance. For that, ゛0
.. It is necessary to add 1% or more, but if elements such as Mo, Ti, V, etc. coexist, the effect reaches saturation even if 0.8% or more is added, so 0.1 to 0.8%. limited to the range of
Mo : 0.05%以上、0.40%未満MOもCr
と同様、強度および焼戻し抵抗性を高め、しかもPの粒
界偏析を防いで耐硫化物応力腐食割れ性を向上させるの
に有効に寄与するが、含有量が0.05%に満たないと
その添加効果に乏しく、一方0.40%以上添加しても
T i + V等を同時添加する場合には、その効果は
飽和に達する。さらにコスト高となり、安価な材料を提
供するというこの発明の目的にも反するので、Moの含
有量は0.05〜0.40%の範囲に限定した。Mo: 0.05% or more, less than 0.40% MO is also Cr
Similarly, it increases strength and tempering resistance, and also effectively contributes to improving sulfide stress corrosion cracking resistance by preventing grain boundary segregation of P, but if the content is less than 0.05%, the The effect of addition is poor, and even if 0.40% or more is added, the effect reaches saturation when T i + V etc. are added simultaneously. Furthermore, the Mo content was limited to a range of 0.05 to 0.40% because it would increase the cost and go against the purpose of the present invention, which is to provide an inexpensive material.
^7!: o、oos〜0.1%
AIは、脱酸に寄与するだけでなく、Nと化合して結晶
粒を微細化し、靭性、強度および耐硫化物応力腐食割れ
性を向上させる有用な元素である。^7! : o, oos~0.1% AI is a useful element that not only contributes to deoxidation but also combines with N to refine crystal grains and improve toughness, strength, and resistance to sulfide stress corrosion cracking. be.
しかしながらその含有量がo、oos%に満たないとそ
の添加効果に乏しく、一方0.1%を超えるとその効果
は飽和に達するだけでなく、むしろ靭性の劣化を招くの
で、o、oos〜0.1%の範囲に限定した。However, if the content is less than o,oos%, the effect of its addition is poor, while if it exceeds 0.1%, the effect not only reaches saturation, but also causes deterioration of toughness, so o,oos~0 .1% range.
Ti : 0.02〜0.10%およびV:0.01〜
0.10%これらの元素は、Cr、 Moと同様に焼入
焼戻処理において炭化物を形成し、鋼の焼入性および焼
戻し軟化抵抗性の向上に有効に寄与する点で均等である
。この発明鋼においては炭化物形成元素として、従来タ
イプのCr −Mo系鋼よりもCr、 Moを低減した
上でTi、νを少量複合添加することにより、種々の組
成の炭化物を広い温度域にわたって析出させ得る。この
結果析出炭化物は微細かっ、球状で均一に分布し、高強
度と優れた耐硫化物応力腐食割れ性を兼ねそなえた鋼を
得ることができる。Ti: 0.02~0.10% and V: 0.01~
0.10%These elements form carbides in the quenching and tempering treatment like Cr and Mo, and are equally effective in contributing to improving the hardenability and tempering softening resistance of steel. In this invention steel, carbide forming elements of various compositions are precipitated over a wide temperature range by reducing Cr and Mo compared to conventional Cr-Mo steels and adding a small amount of Ti and ν. It can be done. As a result, the precipitated carbides are fine, spherical, and uniformly distributed, making it possible to obtain a steel that has both high strength and excellent sulfide stress corrosion cracking resistance.
しかし、Tiが0.02%以下また■が0,01%以下
ではこの効果は得られず、一方Ti:0.10%以上、
■:0.10%以上となると高価となるだけでなく、炭
化物の粗大化を招き、かえって耐硫化物応力腐食割れ性
を劣化させる。However, this effect cannot be obtained when Ti is less than 0.02% and ■ is less than 0.01%; on the other hand, when Ti is less than 0.10%,
(2) If it exceeds 0.10%, it not only becomes expensive, but also causes coarsening of carbides, which actually deteriorates the resistance to sulfide stress corrosion cracking.
このためTiの添加量は0.02〜0.10%、■の添
加量は0.01〜0.10%とした。Therefore, the amount of Ti added was set to 0.02 to 0.10%, and the amount of added Ti was set to 0.01 to 0.10%.
P : 0.015%以下、S : 0.005%以下
PおよびSはいずれも、鋼の耐硫化物応力腐食割れ性の
著しい劣化を招く有害元素であり、この発明に従い、焼
戻し温度を620℃以上の高温にした場合において、所
期した強度および耐硫化物応力腐食割れ性を確保するた
めには、それぞれP≦0.015%、S≦0.005%
に制御する必要がある。P: 0.015% or less, S: 0.005% or less Both P and S are harmful elements that cause a significant deterioration of the sulfide stress corrosion cracking resistance of steel. In order to ensure the desired strength and sulfide stress corrosion cracking resistance at higher temperatures, P≦0.015% and S≦0.005%, respectively.
need to be controlled.
さらにこの発明では、強度および耐サワー臨界応力比の
一層の向上を図るため、NbおよびZrのうち少なくと
も一種を下記の範囲で添加する。Furthermore, in this invention, in order to further improve the strength and sour critical stress ratio, at least one of Nb and Zr is added in the following range.
Nbおよび/またはZr:0.1%以下NbおよびZr
はいずれも、Cr、 Mo+ h + Vと同様に焼入
れ焼戻し処理において炭化物を形成し、鋼の焼入れ性お
よび焼戻し軟化抵抗性の向上に有効に寄与する。しかし
ながらこれらの添加量が0.1%を超えると析出物の粗
大化を招き、かえって耐硫化物応力腐食割れ性を劣化さ
せるだけでなく、加工性および靭性も低下させるので、
NbおよびZrは、単独添加および複合添加いずれの場
合も0.1%以下の範囲で添加する必要がある。Nb and/or Zr: 0.1% or less Nb and Zr
Like Cr and Mo + h + V, both form carbides in the quenching and tempering treatment, and effectively contribute to improving the hardenability and temper softening resistance of steel. However, if the amount added exceeds 0.1%, the precipitates become coarser, which not only deteriorates the sulfide stress corrosion cracking resistance but also reduces the workability and toughness.
Nb and Zr must be added in an amount of 0.1% or less, whether added alone or in combination.
さて上記した好適成分組成に調製した溶湯を鋳込んだの
ち、常法に従ううせん孔加工を施して中空素材とする。After casting the molten metal prepared to have the above-mentioned preferred composition, a hollow material is obtained by drilling according to a conventional method.
ついでかくして得られた継目無鋼管用中空素材に、熱間
で伸延加工を施したのち、焼入れ焼戻し処理を施す。The thus obtained hollow material for a seamless steel pipe is then subjected to a hot elongation process, and then subjected to a quenching and tempering process.
この焼入れ処理においては、90%以上をマルテンサイ
ト組織とすることが望ましい。In this hardening treatment, it is desirable that 90% or more of the steel be made into a martensitic structure.
また焼戻し処理は、620℃以上、Ac、変態点以下の
温度範囲で行う必要がある。というのは、この発明で所
期したように降伏強さ=75〜120kgf/mm”で
かつ良好な耐硫化物応力腐食割れ性を得るには、620
℃以上の高温で焼戻し処理を施すことが不可欠だからで
あり、一方Ac、点を超えるとオーステナイトが生じる
結果、常温まで冷却したときにこノオーステナイトが焼
戻しを受けないマルテンサイトとなって耐硫“化物応力
腐食割れ性の著しい劣化を招くからである。Further, the tempering treatment needs to be performed in a temperature range of 620° C. or higher, Ac, or lower than the transformation point. This is because in order to obtain a yield strength of 75 to 120 kgf/mm and good sulfide stress corrosion cracking resistance as expected in this invention, 620
This is because it is essential to perform the tempering treatment at a high temperature of ℃ or higher.On the other hand, when the temperature exceeds the Ac point, austenite is formed, and when cooled to room temperature, this austenite becomes martensite that does not undergo tempering, making it sulfur-resistant. This is because it causes a significant deterioration in chemical stress corrosion cracking properties.
かくして優れた耐硫化物応力腐食割れ性を有する高強度
継目無鋼管が得られるのである。In this way, a high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking can be obtained.
(作 用)
この発明に従うことによって、強度のみならず耐硫化物
応力腐食割れ性が著しく改善される理由は、まだ明確に
解明されたわけではないが、次のとおりと考えられる。(Function) The reason why not only the strength but also the resistance to sulfide stress corrosion cracking is significantly improved by following the present invention has not yet been clearly elucidated, but it is thought to be as follows.
すなわち硫化物応力腐食割れは、硫化水素を含む水溶液
による鋼材の腐食によって生じた水素が鋼中に侵入し、
介在物、析出物、転位などの応力集中部に集積して鋼を
脆化させる水素脆性の一種と考えられるが、P、sを低
域し、介在物を減らすと共に、620℃以上の高温焼戻
しによって転位密度を減少させ、析出物を球状化させる
こと、さらに炭化物形成元素として、従来タイプのCr
−M。In other words, sulfide stress corrosion cracking occurs when hydrogen generated by corrosion of steel by an aqueous solution containing hydrogen sulfide penetrates into the steel.
It is considered to be a type of hydrogen embrittlement that accumulates in stress concentration areas such as inclusions, precipitates, and dislocations and embrittles the steel. However, in addition to lowering P and s to reduce inclusions, it is necessary to temper at a high temperature of 620℃ or higher. to reduce the dislocation density and make the precipitates spheroidal.
-M.
鋼よりCr、 Moを低減しかっTi、Vの少量を複合
添加することにより種々の組成の炭化物を広い温度域に
わたって析出させることが出来るため、析出炭化物が微
細かつ均一に分布する組織が得られること、などによっ
て水素が集積する応力集中個所が著しく減少されること
によるものと考えられる。By reducing Cr and Mo content compared to steel, but by adding a small amount of Ti and V in combination, carbides of various compositions can be precipitated over a wide temperature range, resulting in a structure in which precipitated carbides are finely and uniformly distributed. This is thought to be due to the fact that stress concentration points where hydrogen accumulates are significantly reduced by .
通常、上記のように低転位密度、球状析出物とするため
高温焼戻しを行うと鋼材の強度は低下するのであるが、
この発明の成分の組合せによれば適切な形状、分布の析
出物を有する組織が得られ耐硫化物応力腐食割れ性を損
なうことなく高強度が得られるものと考えられる。Normally, as mentioned above, when high temperature tempering is performed to obtain low dislocation density and spherical precipitates, the strength of the steel material decreases.
It is believed that by combining the ingredients of this invention, a structure having precipitates with an appropriate shape and distribution can be obtained, and high strength can be obtained without impairing sulfide stress corrosion cracking resistance.
(実施例)
表1に示した各成分組成による継目無鋼管用中空素材を
熱間加工後、焼入れし、ついで同じく表1に示した各温
度で焼戻し処理を施して、製品とした。(Example) Hollow materials for seamless steel pipes having the component compositions shown in Table 1 were hot-worked and then quenched, and then tempered at the temperatures shown in Table 1 to produce products.
かくして得られた各継目無鋼管の降伏強さくY。The yield strength of each seamless steel pipe thus obtained is Y.
S、)、引張り強さくT、S、)、耐硫化物応力腐食割
れ性について調べた結果を表1に併記する。Table 1 also shows the results of the investigation on tensile strength T, S, ), and resistance to sulfide stress corrosion cracking.
なお耐応力腐食割れ性は、丸棒引張り試験片をNACE
液(0,5%酢酸、5%食塩添加飽和硫化水素水)中に
おいて、降伏強さの80%の応力を負荷する試験によっ
て評価し、かかる試験において30日間破断しなかった
ものを○印で、また破断したものをX印で示した。For stress corrosion cracking resistance, round bar tensile test pieces were tested by NACE.
It was evaluated by a test in which a stress of 80% of the yield strength was applied in a solution (0.5% acetic acid, 5% salt-added saturated hydrogen sulfide water), and those that did not break for 30 days in this test were marked with an ○. , and the broken ones are indicated with an X mark.
同表より明らかなように、この発明に従って得られた継
目無鋼管(隘1〜8)はいずれも、高いY、S、および
T、S、値と共に、優れた耐硫化物応力腐食割れ性が得
られた。As is clear from the same table, all the seamless steel pipes (numbers 1 to 8) obtained according to the present invention have high Y, S, and T, S values as well as excellent sulfide stress corrosion cracking resistance. Obtained.
これに対し成分組成は適正範囲を満足しているものの、
焼戻し温度が下限に満たない比較鋼(階9.10)は、
耐硫化物応力腐食割れ性に劣っていた。On the other hand, although the component composition satisfies the appropriate range,
The comparative steel (floor 9.10) whose tempering temperature is below the lower limit is
It had poor sulfide stress corrosion cracking resistance.
また成分組成のいずれかがこの発明の適正範囲を逸脱し
ているもの(阻11〜24)のうち、C量が下限に満た
ない隘11およびMnNが下限に満たない尚12は、そ
れぞれ耐硫化物応力腐食割れ性は良好ではあったものの
、低いy、s、およびT、S、値しか得られなかった。In addition, among the components (Nos. 11 to 24) in which any of the component compositions deviate from the appropriate range of this invention, No. 11 where the C content is below the lower limit and No. 12 where the MnN content is below the lower limit are sulfur resistant, respectively. Although the material stress corrosion cracking resistance was good, only low y, s, and T, S values were obtained.
その他の隘13〜24はいずれも、Y、S、 、T、S
、値は良好であったが、耐硫化物応力腐食割れ性に劣っ
ていた。All other columns 13 to 24 are Y, S, , T, S.
Although the values were good, the resistance to sulfide stress corrosion cracking was poor.
(発明の効果)
かくしたこの発明によれば、従来のように高価な元素を
多量に含まず、連続鋳造にも適した安価な成分系で、し
かも優れた耐硫化物応力腐食割れ性と共に、降伏強さ:
75kgf/mm”以上という高強度を兼ね備える継
目無鋼管を得ることができる。(Effects of the Invention) According to the present invention, it does not contain a large amount of expensive elements as in the past, is an inexpensive component system suitable for continuous casting, and has excellent resistance to sulfide stress corrosion cracking. Yield strength:
A seamless steel pipe having a high strength of 75 kgf/mm" or more can be obtained.
Claims (1)
.05wt%以上、0.40wt%未満、Al:0.0
05〜0.1wt% Ti:0.02〜0.10wt%および V:0.01〜0.10wt% を含み、かつ Nb:0.1wt%以下および Zr:0.1wt%以下 のうちから選んだ少なくとも一種を含有し、さらに不可
避混入不純物のうちPおよびSをそれぞれ、 P:0.015wt%以下 S:0.005wt%以下 に抑制し、残部は実質的にFeの組成になる継目無鋼管
用中空素材に、熱間圧延を施して製管し、ついで焼入れ
してマルテンサイト組織としたのち、620℃以上、A
c_1変態点以下の温度範囲で焼戻すことを特徴とする
、耐硫化物応力腐食割れ性に優れる高強度継目無鋼管の
製造方法。[Claims] 1. C: 0.45 to 0.65 wt% Si: 0.20 to 0.35 wt% Mn: 0.8 to 1.6 wt% Cr: 0.1 wt% or more, 0.8 wt% Less than, Mo: 0
.. 05wt% or more, less than 0.40wt%, Al: 0.0
05 to 0.1 wt% Ti: 0.02 to 0.10 wt% and V: 0.01 to 0.10 wt%, and selected from Nb: 0.1 wt% or less and Zr: 0.1 wt% or less. A seamless steel pipe containing at least one type of P and S among unavoidable impurities, P: 0.015 wt% or less, S: 0.005 wt% or less, and the remainder being substantially Fe. A hollow material for use is hot-rolled to form a pipe, then quenched to form a martensitic structure, and then heated to a temperature of 620°C or higher, A
A method for producing a high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking, characterized by tempering at a temperature range below the c_1 transformation point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28767185A JPS62149813A (en) | 1985-12-23 | 1985-12-23 | Production of high-strength seamless steel pipe having excellent resistance to sulfide stress corrosion cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28767185A JPS62149813A (en) | 1985-12-23 | 1985-12-23 | Production of high-strength seamless steel pipe having excellent resistance to sulfide stress corrosion cracking |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62149813A true JPS62149813A (en) | 1987-07-03 |
Family
ID=17720210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28767185A Pending JPS62149813A (en) | 1985-12-23 | 1985-12-23 | Production of high-strength seamless steel pipe having excellent resistance to sulfide stress corrosion cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62149813A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5938865A (en) * | 1995-05-15 | 1999-08-17 | Sumitomo Metal Industries, Ltc. | Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance |
JP5333700B1 (en) * | 2012-11-05 | 2013-11-06 | 新日鐵住金株式会社 | Low alloy oil well pipe steel with excellent resistance to sulfide stress cracking and method for producing low alloy oil well pipe steel |
-
1985
- 1985-12-23 JP JP28767185A patent/JPS62149813A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5938865A (en) * | 1995-05-15 | 1999-08-17 | Sumitomo Metal Industries, Ltc. | Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance |
JP5333700B1 (en) * | 2012-11-05 | 2013-11-06 | 新日鐵住金株式会社 | Low alloy oil well pipe steel with excellent resistance to sulfide stress cracking and method for producing low alloy oil well pipe steel |
WO2014068794A1 (en) * | 2012-11-05 | 2014-05-08 | 新日鐵住金株式会社 | Low-alloy steel for oil well pipes which has excellent sulfide stress cracking resistance, and method for manufacturing low-alloy steel for oil well pipes |
AU2012393719B2 (en) * | 2012-11-05 | 2016-03-24 | Nippon Steel Corporation | Low-alloy steel for oil well pipes which has excellent sulfide stress cracking resistance, and method for manufacturing low-alloy steel for oil well pipes |
RU2605033C1 (en) * | 2012-11-05 | 2016-12-20 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Low alloyed steel for oilfield gage pipes having excellent resistance to sulphide stress cracking, and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007031734A (en) | High strength bolt excellent in delayed fracture resistance and method for producing the same | |
US5288347A (en) | Method of manufacturing high strength and high toughness stainless steel | |
JPH01259124A (en) | Method for manufacturing high-strength oil country tubular goods with excellent corrosion resistance | |
JPH0421718A (en) | Manufacturing method for high-strength steel with excellent sulfide stress cracking resistance | |
JPH06271975A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JPS6254021A (en) | Manufacture of high strength seamless steel pipe superior in sulfide stress corrosion cracking resistance | |
US4689198A (en) | Austenitic stainless steel with high corrosion resistance and high strength when heat treated | |
JP2000178692A (en) | 655Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH STRESS CORROSION CRACKING RESISTANCE, AND ITS MANUFACTURE | |
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JPS62149813A (en) | Production of high-strength seamless steel pipe having excellent resistance to sulfide stress corrosion cracking | |
JPH05156409A (en) | High-strength martensitic stainless steel with excellent seawater resistance and its manufacturing method | |
JPH0225969B2 (en) | ||
JPS62202052A (en) | High strength, high fracture toughness steel material for chains | |
JPH0553855B2 (en) | ||
JP2730090B2 (en) | High yield ratio martensitic stainless steel | |
JPH04228536A (en) | Steel excellent in wear resistance | |
KR890002612B1 (en) | Process for manufacturing steel of structure having a good tungsten | |
JPS62202053A (en) | Steel materials for low yield ratio chains | |
JPS5916950A (en) | Soft-nitriding steel | |
JPS62149814A (en) | Production of low-carbon high-strength seamless steel pipe by direct hardening method | |
JPS6358892B2 (en) | ||
JPS637328A (en) | Production of steel having excellent sulfide corrosion cracking resistance | |
JP2563164B2 (en) | High strength non-tempered tough steel | |
JP3169464B2 (en) | Heat treatment method for mechanical structural parts with high fatigue strength | |
JP2541389B2 (en) | Method of manufacturing low yield ratio high strength steel |