[go: up one dir, main page]

JPS6253218B2 - - Google Patents

Info

Publication number
JPS6253218B2
JPS6253218B2 JP4355280A JP4355280A JPS6253218B2 JP S6253218 B2 JPS6253218 B2 JP S6253218B2 JP 4355280 A JP4355280 A JP 4355280A JP 4355280 A JP4355280 A JP 4355280A JP S6253218 B2 JPS6253218 B2 JP S6253218B2
Authority
JP
Japan
Prior art keywords
cbn
titanide
catalyst
boron
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4355280A
Other languages
Japanese (ja)
Other versions
JPS56145199A (en
Inventor
Eiichi Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP4355280A priority Critical patent/JPS56145199A/en
Publication of JPS56145199A publication Critical patent/JPS56145199A/en
Publication of JPS6253218B2 publication Critical patent/JPS6253218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は六方晶チツ化ホウ素(以下HBNと称
す)を出発原料として高温高圧下において、立方
晶チツ化ホウ素(以下CBNと称す)を合成する
方法に関する。 CBNはダイヤモンドと同等の硬さを有する物
質として研削、研摩材等として使用され、なかで
も特殊鋼等の研削にはダイヤモンドを凌ぐと云わ
れている。CBNが合成されるようになつたのは
かなり古く、以来多くの触媒が提案されている。
CBN合成において重要なことは収率が高いこ
と、出来るだけ大粒のものであること、さらに見
逃せないのは粒の形状である。CBNの研削砥粒
としては肉付きの悪い形骸化したようなものは望
ましくなく、多角形の自形の整つた(ここではブ
ロツキーと呼ぶ)粒子強度の大きな(タフ)粒子
が性能が良い。これら収率、形状等に大きな影響
を与えるのは合成の圧力、温度条件の外に触媒の
種類である。 従来、提案されている触媒はアルカリ金属、ア
ルカリ土類金属、これらのチツ化物、アルミニウ
ム、シリコンなどである。しかし。これらの触媒
を使用して得られるCBN粒子は黒色のものが主
体で、ブロツキーなものでなく粒子強度が小さい
上、小粒のものが多い。 高圧討論会(1978、10、24、日本化学会他共
催)における研究発表によるとカルシウムチツ化
ホウ素(Ca3B2N4)がCBN合成触媒として取上げ
られている。本発明者の研究によればこの触媒は
CBN合成の温度−圧力条件をHBN−CBN相平衡
線近傍のCBN安定域に維持すればブロツキーな
CBN生成の効果が認められる。しかし工業的な
生産において、高温高圧条件を平衡線近傍に常に
維持することは困難が多く、再現性の点で問題で
ある。 本発明者はCa3B2N4触媒に種々の添加物を加え
ることによつて、ブロツキーで強度の大きい
CBNが比較的緩やかな合成条件のもとにおいて
生成することを発見し、本発明に到達した。 即ち、本発明はHBNを原料として高温高圧下
でCBNを合成するに際し、触媒としてCa3B2N4
リン(P)、リン化ホウ素(BP)、チツ化リン
(P3N5)、ケイ素(Si)、チツ化ケイ素(Si3N4)、
アルミニウム(Al)、チツ化アルミニウム
(AlN)、ホウ化アルミニウム(AlB12)、イオウ
(S)、硫化カルシウム(CaS)、硫化ホウ素
(B2S3)、硫化チタンバリウム(BaTiS3)、硫化ジ
ルコンストロンチウム(SrZrS3)、ホウ酸アンモ
ニウム((NH43BO3)から選ばれた物質を重量で
0.1〜5%添加したものを用いることを特徴とす
る。これらの添加物は2種以上の混合であつても
よい。その場合は合量で0.1〜5%である。 カルシウムチツ化ホウ素は代表的にはCa3B2N4
で表わされるが、本発明者の研究によればこれに
は結晶欠陥等に基づくわずかの組成のずれたもの
があるがこれらのものは触媒としての作用に差異
はないので、以下は代表的にCa3B2N4で表わす。 Ca3B2N4に添加されるリン等はCa3B2N4のもつ
ブロツキーなCBN生成の効果を損なうことな
く、CBN合成条件を拡げる目的のもとに多くの
物質について実験した結果選択されたものであ
る。この加添物は前記目的に対して効果がある
外、CBN粒子の内部欠陥をを解消し、粒自体の
強度を増大する効果もある。また添加物を加える
ことによつてCa3B2N4単独に比べ合成温度も若干
低温側に移行する。 Ca3B2N4にこれらの添加物を加えた触媒を用い
ると得られるCBNは赤橙色透明で強度の大きな
ものであるが、Ca3B2N4単独触媒では白黄〜黄色
の色調で内部の欠陥のあるものが多い。 Ca3B2N4触媒に比べ前記添加物を加えることに
よつてブロツキーCBNの温度圧力領域が拡がる
のは次のように考えられる。 CBNの生成においてはCBN核の発生、その成
長が均衡がとれた状態で進行することが望まし
く、これによつてブロツキーに成長した粒子が得
られる。核の発生が多過ぎれば微粒が集合したよ
うな粒子となり、個々の粒子の成長が少ない。本
発明者の研究によればCa3B2N4単独触媒では狭い
温度圧力領域では上記の均衡のとれた状態となる
が、これから外れると微粒の集合物となる。
Ca3B2N4に前記の添加物を加えると共融化合物等
の生成によつて固相−液相共存領域が拡がり、
CBN核の発生、成長領域が拡大するものと考え
られる。 またCBN粒子内部の欠陥が少ないのは成長速
度が適当に制御されると、粒子内に結晶欠陥を起
すような内包物の取り込みや埋め残しが非常に少
なくなることによるものと考えられる。 添加物がホウ酸アンモニウムの場合は上記の効
果に加えて、この化合物が溶融し易いため、加圧
下における試料内の圧力均一化の作用も有する。 Ca3B2N4にこれらの添加物を加えた触媒を用い
てCBNを合成するにはCa3B2N4及び添加物を粉末
にしてよく混合し、これに原料HBN粉末を混合
するか、或いは触媒及びHBNを交互に積層配置
して超高圧装置に装填して行なう。これらの場
合、HBN100重量部に対し、触媒10〜50重量部が
適する。また第2図に示すようにHBNと触媒を
構成することもできる。 合成の圧力温度はCa3B2N4単独に比べ下限はや
や低くてよく、概略45〜70Kb、1400℃〜1800℃
である。 本発明で用いられるCa3B2N4は、例えば市販の
Ca3B2N4とHBNとをモル比で1:2に配合し、モ
リブデンルツボに入れ、チツ素雰囲気で1000℃、
5時間反応させ、冷却後同雰囲気で解砕すればよ
い。 実施例 1〜16 Ca3B2N4粉末に重量比で3%P(赤リン)粉末
を混合し、さらにこの混合物に対し、5重量倍の
HBN粉末を混合し、円柱状に成型し、第1図の
ように組立てた。これを通常の上下押し超高圧装
置に装填し、60Kb、1500℃を目標にして15分間
保持した。保持後室温近くまで冷却し、次いで圧
力を下げ、試料を取出した。試料から常法に従つ
てCBN粒子を抽出したところ100〜200μ赤橙色
透明ブロツキーで強度の大きなCBN粒子が2.5g
得られた。(HBNに対する収率30%)以下同様に
他の添加物を用いた例を併せ第1表にまとめて示
す。 なお、第1図で1は黒鉛円筒発熱体、2は
HBNと触媒の混合成型体、3は通電環、4は通
電板、5,6はパイロフイライト等の絶縁材、7
はパイロフイライト等の圧力媒体である。
The present invention relates to a method for synthesizing cubic boron titanide (hereinafter referred to as CBN) using hexagonal boron titanide (hereinafter referred to as HBN) as a starting material under high temperature and high pressure. CBN is used as a grinding and abrasive material as it has a hardness equivalent to that of diamond, and is said to surpass diamond in grinding special steel. CBN has been synthesized for quite some time, and many catalysts have been proposed since then.
The important things in CBN synthesis are high yield and as large grains as possible, and what cannot be overlooked is the shape of the grains. As CBN grinding abrasive grains, it is undesirable to use grains that look like skeletons with no flesh, but grains with a well-formed polygonal shape (referred to here as Brodsky grains) with high particle strength (tough) have good performance. In addition to the synthesis pressure and temperature conditions, the type of catalyst has a large influence on the yield, shape, etc. Catalysts that have been proposed so far include alkali metals, alkaline earth metals, their silicides, aluminum, and silicon. but. The CBN particles obtained using these catalysts are mainly black in color, not Brodsky, have low particle strength, and are often small. According to a research presentation at the High Pressure Symposium (October 24, 1978, jointly sponsored by the Chemical Society of Japan and others), calcium boron titanide (Ca 3 B 2 N 4 ) was mentioned as a catalyst for CBN synthesis. According to the research of the present inventor, this catalyst
If the temperature-pressure conditions for CBN synthesis are maintained in the CBN stability region near the HBN-CBN phase equilibrium line, Brodsky
The effect of CBN generation is recognized. However, in industrial production, it is often difficult to constantly maintain high temperature and high pressure conditions near the equilibrium line, which poses a problem in terms of reproducibility. By adding various additives to the Ca 3 B 2 N 4 catalyst, the present inventor has developed Brodsky and high-strength catalysts.
The present invention was achieved by discovering that CBN is produced under relatively mild synthesis conditions. That is, the present invention synthesizes CBN under high temperature and high pressure using HBN as a raw material, and uses Ca 3 B 2 N 4 as a catalyst, phosphorus (P), boron phosphide (BP), phosphorus titanide (P 3 N 5 ), Silicon (Si), silicon titanide (Si 3 N 4 ),
Aluminum (Al), aluminum titanium (AlN), aluminum boride (AlB 12 ), sulfur (S), calcium sulfide (CaS), boron sulfide (B 2 S 3 ), barium titanium sulfide (BaTiS 3 ), zircon sulfide A substance selected from strontium (SrZrS 3 ) and ammonium borate ((NH 4 ) 3 BO 3 ) by weight.
It is characterized by the use of 0.1 to 5% additive. These additives may be a mixture of two or more. In that case, the total amount is 0.1 to 5%. Calcium boron oxide is typically Ca 3 B 2 N 4
However, according to the research of the present inventor, there are some compositions with slight deviations due to crystal defects, etc., but there is no difference in the action of these catalysts, so the following is a representative one. Expressed as Ca 3 B 2 N 4 . Phosphorus, etc. added to Ca 3 B 2 N 4 was selected as a result of experiments with many substances with the aim of expanding the CBN synthesis conditions without impairing the Brodsky CBN production effect of Ca 3 B 2 N 4 . It is what was done. In addition to being effective for the above purpose, this additive also has the effect of eliminating internal defects in CBN particles and increasing the strength of the particles themselves. Furthermore, by adding additives, the synthesis temperature shifts to a slightly lower temperature compared to Ca 3 B 2 N 4 alone. When a catalyst containing these additives is added to Ca 3 B 2 N 4, the CBN obtained is reddish-orange, transparent, and strong, but when Ca 3 B 2 N 4 is used alone, the CBN is white-yellow to yellow in color. Many have internal defects. The reason why the temperature and pressure range of Brodsky CBN is expanded by adding the above-mentioned additives compared to the Ca 3 B 2 N 4 catalyst is considered to be as follows. In the production of CBN, it is desirable that the generation and growth of CBN nuclei proceed in a balanced manner, whereby particles with Brodsky growth can be obtained. If too many nuclei are generated, the particles will look like a collection of fine particles, and the growth of individual particles will be small. According to the research conducted by the present inventors, a Ca 3 B 2 N 4 single catalyst attains the above-mentioned balanced state in a narrow temperature and pressure range, but when it deviates from this, it becomes an aggregate of fine particles.
When the above additives are added to Ca 3 B 2 N 4 , the solid-liquid coexistence region expands due to the formation of eutectic compounds, etc.
It is thought that the generation and growth area of CBN nuclei will expand. Furthermore, the reason why there are fewer defects inside the CBN particles is thought to be due to the fact that when the growth rate is appropriately controlled, there are very few inclusions or unfilled inclusions that cause crystal defects within the particles. When the additive is ammonium borate, in addition to the above effects, since this compound is easily melted, it also has the effect of equalizing the pressure within the sample under pressure. To synthesize CBN using a catalyst containing Ca 3 B 2 N 4 and these additives, either Ca 3 B 2 N 4 and the additives are powdered and mixed well, and the raw material HBN powder is mixed with this. Alternatively, the catalyst and HBN may be stacked alternately and loaded into an ultra-high pressure device. In these cases, 10 to 50 parts by weight of catalyst is suitable for 100 parts by weight of HBN. Further, as shown in FIG. 2, it is also possible to constitute a catalyst with HBN. The lower limit of the synthesis pressure and temperature may be slightly lower than that of Ca 3 B 2 N 4 alone, approximately 45 to 70 Kb and 1400 to 1800 °C.
It is. Ca 3 B 2 N 4 used in the present invention is, for example, commercially available
Ca 3 B 2 N 4 and HBN were mixed in a molar ratio of 1:2, placed in a molybdenum crucible, and heated at 1000°C in a nitrogen atmosphere.
The mixture may be reacted for 5 hours, cooled, and then crushed in the same atmosphere. Examples 1 to 16 Ca 3 B 2 N 4 powder was mixed with 3% P (red phosphorus) powder by weight, and 5 times the weight of this mixture was added.
HBN powder was mixed, molded into a cylinder, and assembled as shown in Figure 1. This was loaded into a normal up-and-down ultra-high pressure device and held for 15 minutes at a target temperature of 60 Kb and 1500°C. After holding, the sample was cooled to near room temperature, the pressure was lowered, and the sample was taken out. When CBN particles were extracted from the sample according to a conventional method, 2.5g of 100-200μ red-orange transparent Brodsky CBN particles with high strength were obtained.
Obtained. (Yield 30% based on HBN) Examples using other additives are also summarized in Table 1 below. In Fig. 1, 1 is a graphite cylindrical heating element, and 2 is a graphite cylindrical heating element.
A mixed molded body of HBN and catalyst, 3 is a current-carrying ring, 4 is a current-carrying plate, 5 and 6 are insulating materials such as pyrofluorite, 7
is a pressure medium such as pyrofluorite.

【表】 表中、添加物の量はCa3B2N4と添加物の合量中
の添加物の重量%を、触媒含有量はHBNと触媒
の合量中の触媒の重量%を、収率は原料HBNに
対するCBNの収量を%で表わしたものである。
温度圧力は多少の変動があるが、その中心値を示
す。なお、No.17はCa3B2N4単独の触媒の例であ
る。 実施例 17 Ca3B2N4に2%のPを混合した触媒9を第2図
に示すようにHBN容器8の中に充填し、その上
にHBN成型体10を載せ、これらを黒鉛円筒1
の中に挿入し、上下に絶縁材5を配して試料を組
立てた。この組立試料を超高圧装置に入れ、
65Kb、1700℃で30分間保持した。冷却、降圧後
試料を取出したところ触媒とHBNの界面に透明
ブロツキーなCBNが生成しており、その粒度は
大きいものは500μあり、総量は0.6gであつた。
なお触媒使用量は0.5gである。
[Table] In the table, the amount of additive is the weight % of the additive in the total amount of Ca 3 B 2 N 4 and the additive, and the catalyst content is the weight % of the catalyst in the total amount of HBN and the catalyst. Yield is the amount of CBN expressed as a percentage of the raw material HBN.
Although there are some fluctuations in temperature and pressure, the central values are shown. Note that No. 17 is an example of a catalyst containing Ca 3 B 2 N 4 alone. Example 17 A catalyst 9 consisting of Ca 3 B 2 N 4 mixed with 2% P was filled into an HBN container 8 as shown in FIG. 1
The sample was assembled by inserting the sample into the sample and placing the insulating material 5 on the top and bottom. Put this assembled sample into an ultra-high pressure device,
65Kb, held at 1700°C for 30 minutes. When the sample was taken out after cooling and pressure reduction, transparent blocky CBN was formed at the interface between the catalyst and HBN, and the particle size was as large as 500 μm, and the total amount was 0.6 g.
Note that the amount of catalyst used was 0.5 g.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は超高圧装置に装填する試料の
組立て状態を示す断面図である。 1……黒鉛円筒発熱体、2……原料と触媒の混
合物、3……通電環、4……通電板、5,6,7
……パイロフイライト、8,10……六方晶チツ
化ホウ素、9……触媒。
FIGS. 1 and 2 are cross-sectional views showing the assembled state of a sample to be loaded into an ultra-high pressure device. 1...Graphite cylindrical heating element, 2...Mixture of raw material and catalyst, 3...Electrification ring, 4...Electrification plate, 5, 6, 7
...Pyrophyllite, 8,10...Hexagonal boron titanide, 9...Catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1 六方晶チツ化ホウ素を原料として高温高圧下
で立方晶チツ化ホウ素を合成する方法において、
触媒としてカルシウムチツ化ホウ素にリン、リン
化ホウ素、チツ化リン、ケイ素、チツ化ケイ素、
アルミニウム、チツ化アルミニウム、ホウ化アル
ミニウム、イオウ、硫化カルシウム、硫化ホウ
素、硫化チタンバリウム、硫化ジルコンストロン
チウム、ホウ酸アンモニウムから選ばれた物質を
重量で0.1〜5%添加したものを用いることを特
徴とする方法。
1. In a method for synthesizing cubic boron titanide using hexagonal boron titanide as a raw material under high temperature and high pressure,
Calcium boron titanide as a catalyst, phosphorus, boron phosphide, phosphorus titanide, silicon, silicon titanide,
It is characterized by using a substance to which 0.1 to 5% by weight of a substance selected from aluminum, aluminum titride, aluminum boride, sulfur, calcium sulfide, boron sulfide, barium titanium sulfide, strontium zirconium sulfide, and ammonium borate is added. how to.
JP4355280A 1980-04-04 1980-04-04 Synthesis of cubic boron nitride Granted JPS56145199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4355280A JPS56145199A (en) 1980-04-04 1980-04-04 Synthesis of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4355280A JPS56145199A (en) 1980-04-04 1980-04-04 Synthesis of cubic boron nitride

Publications (2)

Publication Number Publication Date
JPS56145199A JPS56145199A (en) 1981-11-11
JPS6253218B2 true JPS6253218B2 (en) 1987-11-09

Family

ID=12666910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4355280A Granted JPS56145199A (en) 1980-04-04 1980-04-04 Synthesis of cubic boron nitride

Country Status (1)

Country Link
JP (1) JPS56145199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200516U (en) * 1987-06-15 1988-12-23

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68919408T2 (en) * 1989-01-13 1995-04-20 Toshiba Kawasaki Kk Compound semiconductor, the same semiconductor component using and manufacturing method of the semiconductor component.
GB2256434A (en) * 1991-06-04 1992-12-09 Rolls Royce Plc Abrasive medium
FR2686101A1 (en) * 1992-01-14 1993-07-16 Centre Nat Rech Scient Process for the preparation of single crystals of cubic boron nitride
CN112316847A (en) * 2020-11-11 2021-02-05 吉林大学 High-temperature high-pressure synthesis method of phosphorus-nitrogen compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200516U (en) * 1987-06-15 1988-12-23

Also Published As

Publication number Publication date
JPS56145199A (en) 1981-11-11

Similar Documents

Publication Publication Date Title
KR100575905B1 (en) Crystal growth
US3944398A (en) Method of forming an abrasive compact of cubic boron nitride
JPS5939362B2 (en) Boron nitride compound and its manufacturing method
US4883648A (en) Cubic boron nitride manufacture
JPS6253218B2 (en)
JPH06182184A (en) Diamond single crystal synthesis method
US6984448B1 (en) Cubic boron nitride clusters
CA1157626A (en) Process for growing diamonds
JPS6225601B2 (en)
JP2691183B2 (en) Method for synthesizing cubic boron nitride crystals
JPS6225602B2 (en)
JPS60131811A (en) Synthesis method of boron nitride
KR100636415B1 (en) Manufacturing method of cubic boron nitride
JPS5848483B2 (en) Synthesis method of cubic boron titanide
JPH0314495B2 (en)
JP4183317B2 (en) Method for producing cubic boron nitride
JP3814660B2 (en) Manufacturing method of high-hardness ultrafine diamond composite sintered body
JPH0595B2 (en)
JPS605007A (en) Preparation of boron nitride of cubic system
JPS6117405A (en) Production of cubic boron nitride
JPS5973410A (en) Preparation of boron nitride of cubic system
JPH0691955B2 (en) Method for synthesizing high quality cubic boron nitride single crystal
JPH0321212B2 (en)
KR840008789A (en) High purity aluminum nitride fine powder, compositions thereof and sintered bodies thereof, and methods for producing them
JPH0342933B2 (en)