JPS6225602B2 - - Google Patents
Info
- Publication number
- JPS6225602B2 JPS6225602B2 JP55040453A JP4045380A JPS6225602B2 JP S6225602 B2 JPS6225602 B2 JP S6225602B2 JP 55040453 A JP55040453 A JP 55040453A JP 4045380 A JP4045380 A JP 4045380A JP S6225602 B2 JPS6225602 B2 JP S6225602B2
- Authority
- JP
- Japan
- Prior art keywords
- cbn
- boron
- catalyst
- nitride
- hbn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Catalysts (AREA)
Description
【発明の詳細な説明】
本発明は六方晶チツ化ホウ素(以下HBNと称
す)を出発原料として、高温高圧下において、立
方晶チツ化ホウ素(以下CBNと称す)を合成す
る方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing cubic boron titanide (hereinafter referred to as CBN) using hexagonal boron titanide (hereinafter referred to as HBN) as a starting material under high temperature and high pressure.
周知の如く、CBNはダイヤモンドに匹敵する
硬さを有する物質として研削材、研磨材、切削材
等に使用されている。特に特殊鋼の研削等には、
CBNが研削中の高温においても安定であること
から、CBNが重要視されている。 As is well known, CBN is a substance with hardness comparable to diamond and is used in abrasives, abrasives, cutting materials, etc. Especially for grinding special steel, etc.
CBN is considered important because it is stable even at high temperatures during grinding.
HBNから高温高圧下でCBNが合成されること
は古くから知られ、また両者の相平衡関係も解明
されている。合成の際の触媒についてもこれまで
多くのものが提案されている。 It has been known for a long time that CBN is synthesized from HBN under high temperature and pressure, and the phase equilibrium relationship between the two has also been elucidated. Many catalysts have been proposed for synthesis.
例えばアルカリ金属、アルカリ土類金属、これ
らのチツ化物及びSn、Sb、Pb、を触媒とするも
のである。しかし、これらの触媒を用いて合成し
たCBNは微細なものが多く、かつ粒の形態も肉
付きが少なく形骸化したものとなり、研削材等に
は望ましいものではない。 For example, catalysts include alkali metals, alkaline earth metals, their titanides, and Sn, Sb, and Pb. However, CBN synthesized using these catalysts is often fine, and the grains are bulky and bulky, making them undesirable for use as abrasives, etc.
研削材等に使用される粒は多角形の自形の整つ
た(以下、本発明においてはブロツキー状とい
う)の粒子が望ましいとされている。 It is said that grains used in abrasives and the like are preferably polygonal, self-shaped (hereinafter referred to as Brodsky-shaped in the present invention) grains.
上記の触媒の他、Al又はAlNとSiとの混合物を
用いた触媒も提案されている。それによると比較
的ブロツキーなCBNが出来るが、合成圧が高い
割に生成量が少ないこと及び粒子が小さいことが
欠点である。 In addition to the above catalysts, catalysts using Al or a mixture of AlN and Si have also been proposed. According to this method, relatively blocky CBN can be produced, but the drawbacks are that the amount produced is small despite the high synthesis pressure, and the particles are small.
また高圧討論会(1978、10、24、日本化学会等
の共催)における研究発表によるとカルシウムチ
ツ化ホウ素(Ca3B2N4)がCBN合成触媒として取
上げられている。この触媒を使つて、本発明者が
研究したところによれば、ブロツキーな粒を得る
点に関してはこの触媒の効果が認められる。ただ
し、そのためには厳密に制御された圧力−温度条
件を必要とする。即ち、HBN−CBNの相平衡線
近傍のCBN安定域の狭い範囲内で合成しなけれ
ばならず、その範囲から外れると生成量は下らな
いが、微細なものが多くなり、しかもブロツキー
な形状のものが得られない。高温高圧装置におい
て、その温度圧力条件を非常に狭い範囲に制御す
ることは困難を伴ない、常に安定した運転、即ち
再現性よく運転することができない。CBN合成
のような高温高圧装置を用いた運転においては操
作上その制御条件が緩やかである方が望ましいこ
とは云うまでもない。 Furthermore, according to a research presentation at the High Pressure Symposium (1978, October 24, jointly sponsored by the Chemical Society of Japan and others), calcium boron oxide (Ca 3 B 2 N 4 ) was mentioned as a catalyst for CBN synthesis. According to research conducted by the present inventor using this catalyst, it has been found that this catalyst is effective in obtaining Brodsky grains. However, this requires strictly controlled pressure-temperature conditions. In other words, it must be synthesized within a narrow range of CBN stability near the phase equilibrium line of HBN-CBN, and if it deviates from this range, the amount produced will not decrease, but there will be many fine particles, and moreover, those with a Brodsky shape. is not obtained. In high-temperature, high-pressure equipment, it is difficult to control the temperature and pressure conditions within a very narrow range, and it is not always possible to operate stably, that is, with good reproducibility. Needless to say, in operations using high-temperature, high-pressure equipment such as CBN synthesis, it is desirable for the control conditions to be gentle in terms of operation.
本発明は上記のような背景のもとにブロツキー
で粒子強度の大きな(タフ)なCBNを得るこ
と、さらにそのCBNを比較的緩やかな制御条
件、即ち温度−圧力の比較的広い範囲に亘つて合
成できる触媒を開発することを目的としたもので
ある。 Based on the above background, the present invention aims to obtain tough CBN using Brodsky and have a large particle strength, and further to control the CBN under relatively gentle control conditions, that is, over a relatively wide range of temperature and pressure. The aim is to develop a catalyst that can be synthesized.
本発明はカルシウムチツ化ホウ素とチツ化バリ
ウム、バリウムチツ化ホウ素、チツ化ストロンチ
ウム、ストロンチウムチツ化ホウ素の少なくとも
1種との混合物をCBN合成触媒に用いることを
特徴とする。 The present invention is characterized in that a mixture of calcium boron nitride and at least one of barium nitride, barium boron nitride, strontium nitride, and strontium boron nitride is used as a CBN synthesis catalyst.
カルシウムチツ化ホウ素は前記した通りであ
り、その化学式は主としてCa3B2N4で表わされる
が、必らずしも正確にこの式のものに固定された
ものではなく、結晶欠陥等に基ずきわずかに組成
がずれたものもある。本発明においてはカルシウ
ムチツ化ホウ素としてこれらを含むが、以下にお
いては代表的にCa3B2N4で表わす。 Calcium boron nitride is as described above, and its chemical formula is mainly expressed as Ca 3 B 2 N 4 , but it is not necessarily fixed exactly to this formula, and may be based on crystal defects etc. Some have slightly different compositions. In the present invention, these are included as calcium boron oxide, and hereinafter they are typically expressed as Ca 3 B 2 N 4 .
一般にCBN合成触媒としてアルカリ土類金属
のチツ化物は公知に属し、チツ化バリウム
(Ba3N2)、チツ化ストロンチウム(Sr3N2)もこの
範疇に入るが、これらはカルシウムやマグネシウ
ムのチツ化物に比べてその作用機構は未知な点が
多い。 In general, alkaline earth metal nitrides are known as CBN synthesis catalysts, and barium nitride (Ba 3 N 2 ) and strontium nitride (Sr 3 N 2 ) also fall into this category; Compared to chemical compounds, there are many unknowns about its mechanism of action.
CBN合成においては、先ずCBNの核の生成が
あり、次いでその核が成長して行くものと考えら
れている。適当な数の核の発生及びその成長が
CBNの収率を増し、かつその粒子を大きくする
上で重要な因子である。また充分に成長したもの
は粒子の形状もブロツキーとなる。この核の発
生、成長に大きな作用を及ぼすのが触媒と考えら
れる。 In CBN synthesis, it is thought that first a CBN nucleus is generated, and then the nucleus grows. Generation of an appropriate number of nuclei and their growth
It is an important factor in increasing the yield of CBN and increasing the size of its particles. In addition, when the particles have grown sufficiently, the shape of the particles becomes Brodsky. Catalysts are thought to have a major effect on the generation and growth of these nuclei.
本発明者の研究によればCa3B2N4は温度−圧力
の狭い範囲においては成長作用が大であるが、そ
の範囲を外れると核の生成が多くなり、成長は不
充分となり、得られるCBN粒子は微粒で、かつ
ブロツキーなものでなくなる。 According to the research conducted by the present inventors, Ca 3 B 2 N 4 has a strong growth effect within a narrow range of temperature and pressure, but outside of this range, more nuclei are generated, growth is insufficient, and no gain is obtained. The resulting CBN particles are fine and non-Brodsky.
Ba3N2、Sr3N2は単独もしくはこの両者を混合
したものでは核発生の作用が大きいためか得られ
るCBN粒子は細かく、かつブロツキーでないも
のが多い。 Ba 3 N 2 and Sr 3 N 2 alone or in combination have a strong nucleation effect, so the resulting CBN particles are often fine and non-Brodsky.
ところが、Ca3B2N4にBa3N2もしくはSr3N2を混
合した触媒を使用すると、理由は明らかではない
が、ブロツキーなCBN粒子が得られる温度−圧
力範囲が広がり、HBN−CBN平衡線の近傍から
CBN安定域内にかなりずれてもブロツキーな
CBNが得られる。そしてCBNの収量も下らな
い。従つて容易に再現性よくブロツキーCBNを
得ることができる。またCa3B2N4単独ではCBN粒
子内部に結晶欠陥が生じ易いのに対し、前記混合
触媒ではこのような欠点がない。 However, when a catalyst containing Ca 3 B 2 N 4 mixed with Ba 3 N 2 or Sr 3 N 2 is used, the temperature-pressure range in which Brodsky CBN particles can be obtained expands, and HBN-CBN From the vicinity of the equilibrium line
Brodsky even if it deviates considerably within the CBN stability region.
CBN is obtained. And the yield of CBN is also low. Therefore, Brodsky CBN can be easily obtained with good reproducibility. Furthermore, while Ca 3 B 2 N 4 alone tends to cause crystal defects inside the CBN particles, the mixed catalyst described above does not have such defects.
さらにこの混合触媒を使用すればCa3B2N4単独
の場合に比べて合成における温度圧力を下げるこ
とができる。これは混合触媒においてはそれらが
固溶体を生成し、融点が下るためと思われる。例
えば55Kbの場合、Ca3B2N4単独の場合では最低
1450℃近傍の温度にしなければならないのに対
し、本願発明の混合触媒だと低温限界が1350℃と
かなり低温側に移行する。 Furthermore, if this mixed catalyst is used, the temperature and pressure during synthesis can be lowered compared to when Ca 3 B 2 N 4 is used alone. This is thought to be because in the mixed catalyst, they form a solid solution, lowering the melting point. For example, in the case of 55Kb, the minimum for Ca 3 B 2 N 4 alone is
While the temperature must be around 1450°C, the mixed catalyst of the present invention has a low temperature limit of 1350°C, which is considerably lower.
本発明者はさらにバリウムチツ化ホウ素
(Ba3B2N4)、ストロンチウムチツ化ホウ素
(Sr3B2N4)について研究した結果、これらを
Ca3B2N4に混合した場合はCa3B2N4にBa3N2、
Sr3N2を混合した場合と殆んど同じであることが
わかつた。Ba3N2、Sr3N2はCBNの合成過程にお
いて原料のHBNと反応し、夫々Ba3B2N4、
Sr3B2N4が生成すると考えられる。その結果は出
発物質としてBa3B2N4、Sr3B2N4を用いても、合
成途中よりこれらを生成させてもCa3B2N4との混
合系においては差がないわけである。 As a result of further research on barium boron nitride (Ba 3 B 2 N 4 ) and strontium boron nitride (Sr 3 B 2 N 4 ), the present inventor found that these
When mixed with Ca 3 B 2 N 4 , Ba 3 N 2 is added to Ca 3 B 2 N 4 ,
It was found that the result was almost the same as when Sr 3 N 2 was mixed. Ba 3 N 2 and Sr 3 N 2 react with the raw material HBN in the CBN synthesis process, resulting in Ba 3 B 2 N 4 and
It is thought that Sr 3 B 2 N 4 is generated. The results show that there is no difference in the mixed system with Ca 3 B 2 N 4 even if Ba 3 B 2 N 4 and Sr 3 B 2 N 4 are used as starting materials, or they are generated during the synthesis . be.
Ca3B2N4は後述するような方法で予じめつくら
れ、原料HBNと混合する。 Ca 3 B 2 N 4 is prepared in advance by the method described below and mixed with the raw material HBN.
本発明の混合触媒においてその混合割合は
Ca3B2N4100重量部に対し、Ba3N2等が10〜300重
量部が適し、好ましくは30〜200重量部である。
Ca3B2N4に混合するBa3N2等は2種以上を併用し
てもよい。併用した場合はその合量が前記の範囲
である。 In the mixed catalyst of the present invention, the mixing ratio is
For 100 parts by weight of Ca 3 B 2 N 4 , 10 to 300 parts by weight of Ba 3 N 2 etc. is suitable, preferably 30 to 200 parts by weight.
Two or more types of Ba 3 N 2 and the like to be mixed with Ca 3 B 2 N 4 may be used in combination. When used together, the total amount is within the above range.
これらの混合触媒を用いてCBNを合成するに
はHBN粉末と触媒粉末を混合するか、あるいは
これらを交互に積層配置してこれに高温高圧を負
荷する。また第2図に示すようにHBNの容器の
中に触媒を充填して行なうこともできる。混合し
て用いる場合HBN100重量部に対し混合触媒10〜
50重量部が適する。温度圧力の適正な範囲は1350
℃以上、40Kb以上でCBNの安定域であるが、実
用的には1350℃〜1800℃、40〜70Kbである。 To synthesize CBN using these mixed catalysts, HBN powder and catalyst powder are mixed, or they are alternately stacked and subjected to high temperature and pressure. Alternatively, as shown in FIG. 2, the catalyst can be filled in an HBN container. When mixed, use 10 to 10 parts of mixed catalyst per 100 parts by weight of HBN.
50 parts by weight is suitable. The appropriate range of temperature and pressure is 1350
The stable range of CBN is above ℃ and 40 Kb, but in practical terms it is 1350 ℃ to 1800 ℃ and 40 to 70 Kb.
次に本発明で使用される触媒の製法の1例につ
いて説明する。 Next, one example of the method for producing the catalyst used in the present invention will be described.
Ca3B2N4は金属カルシウムとHBNをモル比で
3:2の割合で混合し、チツ素もしくはアンモニ
ア気流中で950〜1050℃に加熱することによつて
得られる。またCa3N2とHBNからも得ることがで
きる。 Ca 3 B 2 N 4 can be obtained by mixing metallic calcium and HBN at a molar ratio of 3:2 and heating the mixture to 950 to 1050° C. in a nitrogen or ammonia stream. It can also be obtained from Ca 3 N 2 and HBN.
Ba3N2は金属バリウムをモリブデンの容器に入
れ、チツ素雰囲気中で450〜800℃で2時間反応さ
せ、冷却後チツ素中で取出し粉砕する。 For Ba 3 N 2 , metal barium is placed in a molybdenum container, reacted at 450 to 800°C for 2 hours in a nitrogen atmosphere, and after cooling, taken out in a nitrogen atmosphere and pulverized.
Ba3B2N4は上記で得たBa3N2粉末とHBN粉末を
モル比で1:2に混合成型し、チツ素あるいはア
ンモニア雰囲気中で1000℃、約5時間保持すれば
黒色の粉末として得られる。その取扱いはチツソ
雰囲気中で行なう。 Ba 3 B 2 N 4 can be obtained by mixing and molding the Ba 3 N 2 powder obtained above and HBN powder at a molar ratio of 1:2 and holding it at 1000°C for about 5 hours in a nitrogen or ammonia atmosphere to form a black powder. obtained as. The handling is carried out in a chitso atmosphere.
Sr3N2、Sr3B2N4についても上記に準じて製造
することができる。 Sr 3 N 2 and Sr 3 B 2 N 4 can also be produced in the same manner as above.
実施例 1
Ca3B2N4とBa3N2の粉末を重量比で2:1に混
合し、さらにこの合量の約5重量倍のHBN粉末
を混合し、円柱状に成型し、第1図のように組立
てた。図で1は黒鉛円筒発熱体でその中に前記円
柱状成型体2を収納した。加熱は通電環3、通電
板(モリブデン)4を通して発熱体3に通電する
ことにより行なわれる。図で5、6はパイロフイ
ライト等の断熱材であり、7は同材の圧力媒体で
ある。この組立体を通常の上下方向より圧縮する
超高圧装置に装填し、60Kb、1500℃を目標に温
度、圧力の制御を行ない、同条件で15分間保持し
た。時間経過後加熱を中止し、室温近くまで冷却
した後圧力を下げた。試料を取り出し、常法によ
りCBNを抽出した結果100〜200μの透明なブロ
ツキーCBNが2.1g得られた。(HBNに対する収
率は40%である。)このものの圧壊強度は
Ca3B2N4単独の場合より大であつた。Example 1 Ca 3 B 2 N 4 and Ba 3 N 2 powders were mixed at a weight ratio of 2:1, and then HBN powder in an amount of about 5 times the total weight was mixed, molded into a cylinder, and Assembled as shown in Figure 1. In the figure, 1 is a graphite cylindrical heating element in which the cylindrical molded body 2 is housed. Heating is performed by supplying electricity to the heating element 3 through a current-carrying ring 3 and a current-carrying plate (molybdenum) 4. In the figure, 5 and 6 are heat insulating materials such as pyrofilite, and 7 is a pressure medium made of the same material. This assembly was loaded into an ultra-high pressure device that compresses it from above and below, and the temperature and pressure were controlled to a target of 60Kb and 1500℃, and the same conditions were maintained for 15 minutes. After a period of time, heating was stopped, and after cooling to near room temperature, the pressure was lowered. The sample was taken out, and CBN was extracted by a conventional method. As a result, 2.1 g of transparent Brodsky CBN with a size of 100 to 200 microns was obtained. (The yield based on HBN is 40%.) The crushing strength of this product is
It was larger than that of Ca 3 B 2 N 4 alone.
実施例 2
Ca3B2N4とBa3B2N4の粉末を重量比で1:1に
混合し、さらにこの合量の5重量倍のHBN粉末
を混合し、円柱状に成型し、実施例1と同様にし
てCBNを合成した。150〜250μの透明なブロツ
キーCBNが1.9g得られた。Example 2 Ca 3 B 2 N 4 and Ba 3 B 2 N 4 powders were mixed at a weight ratio of 1:1, and then 5 times the weight of HBN powder was mixed, and the mixture was molded into a cylinder. CBN was synthesized in the same manner as in Example 1. 1.9g of transparent Brodsky CBN of 150-250μ was obtained.
実施例 3
Ca3B2N4粉末とSr3N2粉末とを重量比で2:1
に混合し、さらにその合量に5重量倍のHBN粉
末を混合し、円柱状に成型し、実施例1と同様に
してCBNを合成した。得られたCBNは透明ブロ
ツキーで、大きさは130〜170μ、量は2.0gであ
つた。Example 3 Ca 3 B 2 N 4 powder and Sr 3 N 2 powder in a weight ratio of 2:1
CBN was synthesized in the same manner as in Example 1 by mixing the total amount with 5 times the weight of HBN powder and molding it into a cylinder. The obtained CBN was transparent Brodsky, the size was 130-170μ, and the amount was 2.0g.
実施例 4
HBN粉末を成型して第2図の8に示すような
容器を製作した。この容器の中にCa3B2N4粉末と
Sr3B2N4粉末の重量で1:1の混合成型体9を詰
め、さらにその上にHBN成型体10を配置し
た。黒鉛円筒1にこの組立体を挿入し上下に絶縁
材5を配した。これを超高圧装置に装填し、
50Kb、1400℃で30分間保持した。試料を取出し
たところHBNと触媒の界面近くに透明なブロツ
キーCBNの生成が認められ、その回収量は0.45g
であつた。使用したHBNの量は5g、触媒は0.6
gである。Example 4 A container as shown at 8 in FIG. 2 was manufactured by molding HBN powder. In this container there is Ca 3 B 2 N 4 powder and
A mixed molded body 9 containing Sr 3 B 2 N 4 powder in a weight ratio of 1:1 was packed, and an HBN molded body 10 was further placed on top of it. This assembly was inserted into a graphite cylinder 1, and insulating materials 5 were arranged above and below. Load this into an ultra-high pressure device,
50Kb, held at 1400°C for 30 minutes. When the sample was taken out, transparent Brodsky CBN was observed near the interface between HBN and the catalyst, and the amount recovered was 0.45g.
It was hot. The amount of HBN used was 5g, and the catalyst was 0.6g.
It is g.
なお、Ba3N2、Sr3N2等を併用して、これに
Ca3B2N4を混合して用いた場合も上記と同様の結
果が得られた。 In addition, by using Ba 3 N 2 , Sr 3 N 2 , etc.
The same results as above were obtained when a mixture of Ca 3 B 2 N 4 was used.
比較例 1
Ca3B2N4粉末を触媒にして、これに重量で5倍
量のHBN粉末を混合し、温度を1600℃とした以
外は実施例1と同様にしてCBNを合成した。結
果はCBNの収量は2.0gで実施例1と差はなかつ
たが、粒子が40〜80μと細かく、かつ形状もブロ
ツキーなものではなかつた。Comparative Example 1 CBN was synthesized in the same manner as in Example 1, except that Ca 3 B 2 N 4 powder was used as a catalyst, 5 times the weight of HBN powder was mixed therein, and the temperature was 1600°C. As a result, the yield of CBN was 2.0 g, which was the same as in Example 1, but the particles were as fine as 40 to 80 microns, and the shape was not Brodsky.
比較例 2〜5
Ba3N2、Ba3B2N4、Sr3N2、Sr3B2N4を夫々単独
で触媒とし、これらに夫々5重量倍のHBN粉末
を混合し、温度圧力を1600℃、60Kbとした以外
は実施例1と同様にしてCBNを合成した。結果
はいずれも得られたCBNの粒子は20〜100μの範
囲で実施例のものに比べてかなり細かく、かつ形
状もブロツキーではなかつた。Comparative Examples 2 to 5 Ba 3 N 2 , Ba 3 B 2 N 4 , Sr 3 N 2 , and Sr 3 B 2 N 4 were each used alone as a catalyst, and 5 times the weight of HBN powder was mixed with each of them, and the mixture was heated under temperature and pressure. CBN was synthesized in the same manner as in Example 1 except that 1600°C and 60 Kb were used. The results showed that the CBN particles obtained were much finer in the range of 20 to 100μ than those of the examples, and the shape was not Brodsky.
本発明方法によれば合成の制御条件が緩やかに
して、かつ得られるCBNは透明ブロツキーでし
かもタフなものとなる。従つてこのCBN粒子は
研削、研磨、切削材として極めて優れたものであ
る。 According to the method of the present invention, the synthesis control conditions are relaxed, and the resulting CBN is transparent Brodsky and tough. Therefore, this CBN particle is extremely excellent as a grinding, polishing, and cutting material.
第1図、第2図は超高圧装置に装填する試料の
組立状態の例を示す断面図である。
1……黒鉛円筒発熱体、2……原料と触媒の混
合物、3……通電環、4……通電板、5,6,7
……パイロフイライト、8,10……六方晶チツ
化ホウ素、9……触媒。
FIGS. 1 and 2 are cross-sectional views showing an example of an assembled state of a sample to be loaded into an ultra-high pressure apparatus. 1...Graphite cylindrical heating element, 2...Mixture of raw material and catalyst, 3...Electrification ring, 4...Electrification plate, 5, 6, 7
...Pyrophyllite, 8,10...Hexagonal boron titanide, 9...Catalyst.
Claims (1)
で立方晶チツ化ホウ素を合成する方法において、
触媒としてカルシウムチツ化ホウ素とチツ化バリ
ウム、バリウムチツ化ホウ素、チツ化ストロンチ
ウム、ストロンチウムチツ化ホウ素の中から選ば
れた少なくとも1種との混合物を用いることを特
徴とする方法。 2 高温高圧が1350℃以上、40Kb以上の立方晶
チツ化ホウ素の安定域である特許請求の範囲第1
項記載の方法。 3 カルシウムチツ化ホウ素100重量部に対し、
チツ化バリウム、バリウムチツ化ホウ素、チツ化
ストロンチウム、ストロンチウムチツ化ホウ素の
少なくとも1種を30〜200重量部とする特許請求
の範囲第1項又は第2項記載の方法。[Claims] 1. A method for synthesizing cubic boron titanide using hexagonal boron titanide as a raw material under high temperature and high pressure,
A method characterized by using as a catalyst a mixture of calcium boron nitride and at least one selected from barium nitride, barium boron nitride, strontium nitride, and strontium boron nitride. 2. Claim 1 in which the high temperature and high pressure are in the stability range of cubic boron titanide of 1350°C or higher and 40 Kb or higher
The method described in section. 3 For 100 parts by weight of calcium boron oxide,
3. The method according to claim 1 or 2, wherein at least one of barium titide, barium boron titide, strontium nitride, and strontium boron titide is contained in an amount of 30 to 200 parts by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4045380A JPS56140015A (en) | 1980-03-31 | 1980-03-31 | Synthesizing method for cubic system boron nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4045380A JPS56140015A (en) | 1980-03-31 | 1980-03-31 | Synthesizing method for cubic system boron nitride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56140015A JPS56140015A (en) | 1981-11-02 |
JPS6225602B2 true JPS6225602B2 (en) | 1987-06-04 |
Family
ID=12581050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4045380A Granted JPS56140015A (en) | 1980-03-31 | 1980-03-31 | Synthesizing method for cubic system boron nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56140015A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010013237A (en) * | 2008-07-04 | 2010-01-21 | Tsubakimoto Chain Co | Automatic high-rise warehouse |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939362B2 (en) * | 1981-11-12 | 1984-09-22 | 昭和電工株式会社 | Boron nitride compound and its manufacturing method |
JPS5973410A (en) * | 1982-10-15 | 1984-04-25 | Showa Denko Kk | Preparation of boron nitride of cubic system |
-
1980
- 1980-03-31 JP JP4045380A patent/JPS56140015A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010013237A (en) * | 2008-07-04 | 2010-01-21 | Tsubakimoto Chain Co | Automatic high-rise warehouse |
Also Published As
Publication number | Publication date |
---|---|
JPS56140015A (en) | 1981-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4469802A (en) | Process for producing sintered body of boron nitride | |
US4680278A (en) | Process for preparing aluminum nitride powder | |
US4409193A (en) | Process for preparing cubic boron nitride | |
JPS62274034A (en) | Manufacturing method of polycrystalline diamond sintered body by reaction sintering | |
KR100351712B1 (en) | Manufacturing method of cubic boron nitride | |
CA1157626A (en) | Process for growing diamonds | |
JPS6225602B2 (en) | ||
JP3855671B2 (en) | Method for producing cubic boron nitride | |
US4045186A (en) | Method for producing large soft hexagonal boron nitride particles | |
JPS6225601B2 (en) | ||
JPS6253218B2 (en) | ||
JPS5848483B2 (en) | Synthesis method of cubic boron titanide | |
JPH0314495B2 (en) | ||
JPH0347132B2 (en) | ||
KR100636415B1 (en) | Manufacturing method of cubic boron nitride | |
JPH0315486B2 (en) | ||
JP4183317B2 (en) | Method for producing cubic boron nitride | |
JPS5938164B2 (en) | Manufacturing method of cubic boron nitride | |
US3773903A (en) | Method of manufacturing diamond crystals | |
JPH0595B2 (en) | ||
JPH0594B2 (en) | ||
JPH0315488B2 (en) | ||
JP2585335B2 (en) | Method for producing cubic boron nitride | |
JPH0342933B2 (en) | ||
JPH0355177B2 (en) |