JPH0347132B2 - - Google Patents
Info
- Publication number
- JPH0347132B2 JPH0347132B2 JP57180006A JP18000682A JPH0347132B2 JP H0347132 B2 JPH0347132 B2 JP H0347132B2 JP 57180006 A JP57180006 A JP 57180006A JP 18000682 A JP18000682 A JP 18000682A JP H0347132 B2 JPH0347132 B2 JP H0347132B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- cbn
- boron nitride
- examples
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Catalysts (AREA)
Description
本発明は新規な触媒を使用して六方晶窒化ホウ
素(以下HBNという)から立方晶窒化ホウ素
(以下CBNという)を製造する方法に関する。
周知のようにCBNはダイヤモンドに近い硬さ
を有し、しかも化学的安定性の点ではダイヤモン
ドより優れているため、研削材料(砥粒)として
の需要が増大しつつある。
上記のごときCBNの工業的な製造方法として
は、HBNの粉末と触媒粉末とを混合し、これを
40〜60kbar程度の高圧力、1400〜1600℃程度の
高温で処理して、HBNをCBNに変換する方法が
一般的である。このような方法に使用される触媒
としては、アルカリ金属もしくはアルカリ土類金
属の窒化物、またはアルカリ金属もしくはアルカ
リ土類金属と窒素およびホウ素からなる窒化ホウ
素系3元化合物例えばCa3B2N4やLi3BN2等が知
られている。このような方法は、六方晶窒化ホウ
素を触媒融液へ溶け込ませ、合成条件下での共晶
融体への溶解度がHBNよりCBNの方が小さいこ
とを利用してCBNを析出させるものである。
ところで研削材料(砥粒)としては、機械的強
度、特に破壊強度が高いことが必要であり、また
強度に関連して粒子の形状性が良好なこと、すな
わち扁平な形状であつたり鋭角状の形状であつた
りせずに可及的に球体に近い形状であること、あ
るいは表面の凹凸が少ないこと等が要求される。
しかるに前述の如く窒化物(2元化合物)や窒化
ホウ素系3元化合物を触媒として用いた従来の立
方晶窒化ホウ素製造方法においては、必ずしも充
分な機械的強度、良好な形状性を有するCBNを
得ることができるとは限らないのが実情である。
すなわち従来の触媒を用いた方法では、製造条件
の制御等を相当に精密かつ複雑にしなければ強度
改善や形状性改善がなされないのが実情である。
そこで本発明者等はCBNの強度改善、形状性
改善を図る方法を確立すべく鋭意実験・研究を行
ない、新規な触媒を開発し、これを用いることに
より、収率が高く、強度、形状等の優れたCBN
の製造に成功したものである。
この新規な触媒はX:BNをモル比で(1〜
1.4):2の割合に配合し、N2もしくいAr等の不
活性雰囲気下、800〜1300℃で加熱して得られる
ものである。ここでXはBe、Mg、Ca、Sr、Ba
の夫々の窒化物、即ちBe3N2、Mg3N2、Ca3N2、
Sr3N2、Ba3N2から選ばれた2種以上の混合物で
ある。混合割合は特に制限ないが、各成分が10%
以上であることが好ましい。
この加熱処理によつて生成する物質の構造等は
明らかでない。しかし単なる混合物ではないと考
えられる。なぜならこれらの混合物を加熱処理す
ることなく触媒に用いた場合とこの生成物を触媒
とした場合とでは明らかに効果が異なるからであ
る。
またBe、Mg等の窒化物は2種以上用いること
が重要である。Ca3N2とBNをモル比で1:2に
混合し、加熱すれば前記したCa3B2N4が得られ
ることは公知である。しかし本発明の実験によれ
ば、前記アルカリ土類の窒化物を2種以上用いて
BNと反応させたものを触媒にするとCBNの収
率、粒の特性等において優れたものとなることが
判明した。
上記処理において800℃未満では加熱の効果が
現れない、また1300℃を越えると蒸発が激しく生
成物は分解が起つていると考えられる。加熱時間
は20〜60分程度あれば充分である。上記の温度範
囲で混合物は発熱しながら溶融する。これらの点
から混合物の加熱により何らかの化合物が生成し
たものと推測される。なお、前記でモル比を特定
した理由は、この割合に混合加熱した場合が、触
媒としてその効果が大となるからである。
溶融物は不活性ガス中雰囲気中で冷却凝固さ
せ、150メツシユ以下程度に粉砕し、触媒として
用いる。
次に前述のようにして得られた触媒を用いて立
方晶窒化ホウ素を製造する方法を説明する。
先ず六方晶窒化ホウ素の望ましくは150メツシ
ユ以下の粉末100重量部に対し、触媒として前記
生成物の望ましくは150メツシユ以下の粉末5〜
50重量部、望ましくは10〜30重量部を配合し、均
一に混合して圧粉成形する。あるいはまた六方晶
窒化ホウ素の粉末および上述の触媒粉末を、それ
ぞれ各別に薄い板状に圧粉成形し、これらを前述
の配合比で交互に積層する。このようにして得ら
れた混合圧粉成形体もしくは積層体に対しCBN
の熱力学的安定領域、好ましくは1300〜1600℃の
高温下で40〜60kbarの高圧を加え、5分〜40分
保持する。斯くすれば立方晶窒化ホウ素の結晶粒
が得られる。なおこれらの温度、圧力、保持時間
は従来と同様である。
上述のように高温・高圧を与える手段としては
種々考えられるが、例えば第1図に示すような反
応容器に前記混合圧粉成形体もしくは積層体を収
容し、通電するとともにプレスにて加圧すれば良
い。第1図において、容器外壁1は伝圧体として
のパイロフイライトによつて円筒状に作られ、そ
の内側には黒鉛円筒体からなるヒーター2および
隔壁材としてパイロフイライト8が配設されてい
る。また容器の上下端にはそれぞれ通電用鋼製リ
ング3および通電用鋼板4が配設され、その内側
には焼結アルミナ板5および伝圧体としてのパイ
ロフイライト6が配設され、そしてそのパイロフ
イライト6および隔壁材としてのパイロフイライ
ト8によつて取囲まれる空間が反応原料を収容す
る収容室7となつている。
以下に本発明の触媒を用いて立方晶窒素ホウ素
を製造した実施例および比較例を示す。
実施例 1〜10
それぞれ150メツシユ以下に粉砕した化合物を
第1表に示す割合に混合し、白金容器に収容して
N2ガスを8/分の流量で流しながら電気炉に
て加熱昇温させ、同表に示す条件下に保持した。
反応生成物をN2ガス気流中にて電気炉内で冷却
し、その後N2ガス雰囲気中で150メツシユ以下に
粉砕した。
The present invention relates to a method for producing cubic boron nitride (hereinafter referred to as CBN) from hexagonal boron nitride (hereinafter referred to as HBN) using a novel catalyst. As is well known, CBN has a hardness close to that of diamond, and is superior to diamond in terms of chemical stability, so its demand as a grinding material (abrasive grain) is increasing. The industrial method for producing CBN as described above involves mixing HBN powder and catalyst powder, and then
A common method is to convert HBN into CBN by processing at high pressures of about 40 to 60 kbar and high temperatures of about 1,400 to 1,600 degrees Celsius. Catalysts used in such methods include nitrides of alkali metals or alkaline earth metals, or boron nitride-based ternary compounds consisting of alkali metals or alkaline earth metals, nitrogen, and boron, such as Ca 3 B 2 N 4 and Li 3 BN 2 are known. In this method, hexagonal boron nitride is dissolved in the catalyst melt, and CBN is precipitated by taking advantage of the fact that CBN has a lower solubility in the eutectic melt than HBN under the synthesis conditions. . By the way, grinding materials (abrasive grains) need to have high mechanical strength, especially breaking strength, and in relation to strength, the particles must have good shape, that is, flat or acutely angled. It is required that the shape be as close to a sphere as possible without any irregularities, or that the surface have few irregularities.
However, as mentioned above, in the conventional cubic boron nitride manufacturing method using nitride (binary compound) or boron nitride-based ternary compound as a catalyst, it is not always possible to obtain CBN with sufficient mechanical strength and good shape. The reality is that this is not always possible.
In other words, in the conventional method using a catalyst, the actual situation is that strength and shape cannot be improved unless manufacturing conditions are controlled very precisely and complicated. Therefore, the present inventors conducted extensive experiments and research in order to establish a method for improving the strength and shape of CBN, and developed a new catalyst. Excellent CBN
was successfully manufactured. This novel catalyst has a molar ratio of X:BN (1~
1.4):2 and heated at 800 to 1300°C under an inert atmosphere such as N2 or Ar. Here, X is Be, Mg, Ca, Sr, Ba
nitrides of Be 3 N 2 , Mg 3 N 2 , Ca 3 N 2 ,
It is a mixture of two or more selected from Sr 3 N 2 and Ba 3 N 2 . There is no particular restriction on the mixing ratio, but each component should be 10%.
It is preferable that it is above. The structure of the substance produced by this heat treatment is not clear. However, it is thought that it is not just a mixture. This is because the effects are clearly different when a mixture of these is used as a catalyst without heat treatment and when this product is used as a catalyst. Furthermore, it is important to use two or more types of nitrides such as Be and Mg. It is known that the above-mentioned Ca 3 B 2 N 4 can be obtained by mixing Ca 3 N 2 and BN in a molar ratio of 1:2 and heating the mixture. However, according to the experiments of the present invention, when two or more kinds of alkaline earth nitrides are used,
It has been found that using a catalyst reacted with BN provides excellent CBN yield, particle properties, etc. In the above treatment, it is thought that the effect of heating is not apparent at temperatures below 800°C, and when the temperature exceeds 1300°C, evaporation is severe and the product is decomposed. A heating time of about 20 to 60 minutes is sufficient. The mixture melts exothermically in the above temperature range. From these points, it is presumed that some kind of compound was produced by heating the mixture. The reason for specifying the molar ratio above is that when mixed and heated to this ratio, the effect as a catalyst becomes greater. The molten material is cooled and solidified in an inert gas atmosphere, pulverized to about 150 mesh or less, and used as a catalyst. Next, a method for producing cubic boron nitride using the catalyst obtained as described above will be explained. First, to 100 parts by weight of a powder of hexagonal boron nitride, preferably of 150 mesh or less, 5 to 5 parts of a powder of preferably 150 mesh or less of the product as a catalyst is added.
50 parts by weight, preferably 10 to 30 parts by weight, are mixed uniformly and compacted. Alternatively, the hexagonal boron nitride powder and the above-mentioned catalyst powder are individually compacted into thin plate shapes, and these are alternately stacked in the above-mentioned mixing ratio. CBN is applied to the mixed powder compact or laminate thus obtained.
A high pressure of 40 to 60 kbar is applied at a high temperature in the thermodynamically stable region of , preferably 1300 to 1600°C, and maintained for 5 to 40 minutes. In this way, cubic boron nitride crystal grains are obtained. Note that these temperatures, pressures, and holding times are the same as conventional ones. As mentioned above, various means for applying high temperature and high pressure can be considered, but for example, the mixed powder compact or laminate is placed in a reaction vessel as shown in Fig. 1, and electricity is applied and pressure is applied using a press. Good. In FIG. 1, the outer wall 1 of the container is made of pyrofluorite as a pressure transmitting body in a cylindrical shape, and inside thereof a heater 2 made of a graphite cylinder and pyrofluorite 8 as a partition wall material are arranged. There is. Further, a current-carrying steel ring 3 and a current-carrying steel plate 4 are arranged at the upper and lower ends of the container, respectively, and inside thereof, a sintered alumina plate 5 and a pyrofilite 6 as a pressure transmitting body are arranged. A space surrounded by the pyrophyllite 6 and the pyrophyllite 8 serving as a partition wall material serves as a storage chamber 7 for accommodating the reaction raw materials. Examples and comparative examples in which cubic nitrogen boron was produced using the catalyst of the present invention are shown below. Examples 1 to 10 Compounds each pulverized to 150 mesh or less were mixed in the proportions shown in Table 1 and placed in a platinum container.
While flowing N 2 gas at a flow rate of 8/min, the sample was heated and heated in an electric furnace and maintained under the conditions shown in the table.
The reaction product was cooled in an electric furnace in a N2 gas stream, and then ground to 150 mesh or less in a N2 gas atmosphere.
【表】
上記各実施例によつて得られた150メツシユ以
下の粉末と150メツシユ以下のHBN粉末とを窒
素雰囲気中にて均一に混合し、面圧力700Kg/cm2
で外径20mm、長さ20mmの円柱状に成形し、第1図
に示す容器内に収容し、高圧プレスにて処理し、
CBNを生成させた。
なお、比較のため、実施例1に用いた各粉末
(比較例1)と実施例7に用いた粉末(比較例7)
を予め焼成せず、各実施例と同じモル比で単に混
合したものを夫々触媒にして実施例と同様に
CBNの製造を行なつた。
比較例 2〜6
Be、Mg等の窒化物をそれぞれ1種のみとBN
とを第2表に示す混合条件等の条件で、窒化ホウ
素ベリリウム等を生成した。この際の他の原料粒
度等の条件は実施例1〜10と同一条件である。
この生成化合物のそれぞれの150メツシユ以下
の粉末と、150メツシユ以下のHBN粉末とを窒
素雰囲気中にて均一に混合し、実施例1〜10と同
一条件等で成形し、高圧プレスにて処理し、
CBNを生成させた。[Table] The powder of 150 mesh or less obtained in each of the above examples and the HBN powder of 150 mesh or less were uniformly mixed in a nitrogen atmosphere, and the surface pressure was 700 Kg/cm 2
It was formed into a cylindrical shape with an outer diameter of 20 mm and a length of 20 mm, placed in a container shown in Figure 1, and processed with a high-pressure press.
CBN was generated. For comparison, each powder used in Example 1 (Comparative Example 1) and the powder used in Example 7 (Comparative Example 7)
were not calcined in advance, but were simply mixed in the same molar ratio as in each example, and the catalyst was used in the same manner as in the examples.
Manufactured CBN. Comparative Examples 2 to 6 Only one type of nitride such as Be and Mg and BN
Beryllium nitride and the like were produced under the mixing conditions shown in Table 2. Other conditions such as the particle size of the raw material at this time were the same as in Examples 1 to 10. Powders of 150 mesh or less of each of the produced compounds and HBN powder of 150 mesh or less were uniformly mixed in a nitrogen atmosphere, molded under the same conditions as Examples 1 to 10, and processed with a high-pressure press. ,
CBN was generated.
【表】
これらの実施例及び比較例の各条件及び結果を
第3表に示す。[Table] Table 3 shows the conditions and results of these Examples and Comparative Examples.
【表】【table】
【表】
なお、第3表中、破壊試験は次のようにして行
なつたものである。すなわちWC−Co製の直径10
mmの上下のシリンダの下部シリンダ上に直径100
〜150μmのサンプル粒を1個置き、上部のシリ
ンダを直流モータ駆動により降下させた。そして
上部シリンダが下部シリンダ上のサンプル粒に接
触する位置を電気的に検出し、これに対応する上
下シリンダの表面間の距離Dを求めてこれを粒の
直径とした。さらに荷重を増して行き、粒が破壊
する総荷重Wから、周知のように次の(1)式
σt=W/(0.32A) ……(1)
により粒の破壊強度σtを求めた。但し実際にはそ
れぞれ50サンプルについて上述のような試験を行
ない、Dの平均値およびWの平均値を求め、(1)式
から平均破壊強度を算出した。なお(1)式は、例え
ば「理化学研究所報告Vol 39、No.6」(昭和38年
発行)、第310頁に吉川弘之によつて明らかにされ
ている。
また表中、収率は配合したHBN(触媒は除く)
に対して生成したCBNの比である。
上記実施例及び比較例で得られたCBN粒の代
表例について電子顕微鏡写真を示す。倍率は夫々
100倍である。第2図は実施例1のもの、第3図
は比較例1のものである。他の実施例、比較例に
ついても同様であつた。この写真からわかるよう
に本発明によるCBNは全体として球形に近く、
しかも表面に微細な凹凸が少なく滑らかな形状を
していることがわかる。
第3表でわかる様に、Be、Mg等の窒化物を1
種のみとBNとを反応させた複合触媒に比べ、本
発明の様に2種以上の窒化物とBNとを反応させ
た複合触媒を用いるとCBNの収率、粒の強度等
の特性等において優れたものとすることがわか
る。
さらに本発明によればCBNの収率を上げるこ
とができる外、以下のような効果がある。触媒組
成物は予じめ焼成されているので、CBN生成の
高温高圧処理時間が短縮でき、その分金型が高温
高圧に曝されている時間が短かくなるため金型の
寿命が延びる。Be3N2、Mg3N2等は予じめBNと
混合し、処理されているので、この間に反応が起
つていると考えられ、CBN生成中にこの反応が
起ることがなく、触媒中にスムーズなHBNの溶
解−析出が可能となり、高品位のCBNが生成す
る。予じめ焼成された触媒は安定な組織が出来る
と思われ、従来窒素等の雰囲気ボツクス中でしか
扱えなかつたものが大気中で充分安定であるた
め、保管、取扱いが極めて容易になり、CBN製
造における再現性がよくなる。
参考例
前記実施例と比較例によつて得られた砥粒の代
表例についての研削試験を次に示す。
粒度はJIS規格の#120/140を用い、常法に従
つて電着砥石を製造した。砥石仕様、研削条件は
以下の通り。
研削方式 湿式平面研削(トラバースカツト)
砥石仕様 IAI 180D×10T×3X×76.2H
粒度 #120/140
集中度 100
砥石周速 1500m/分
テーブル送り 15m/分
クロス送り 2mm/パス
切込 20μ/パス
研削液 ソリユブルタイプ
被削材 SKH−57(HRC=62)
結果は次の通り。
実施例1 比較例1
研削比 610 420
(研削比=被削材の研削量(体積)/砥石摩耗量
(体積))[Table] In Table 3, the destructive tests were conducted as follows. i.e. diameter 10 made of WC-Co
Diameter 100 on the bottom cylinder of the upper and lower cylinders in mm
One sample grain of ~150 μm was placed, and the upper cylinder was lowered by driving a DC motor. Then, the position where the upper cylinder contacts the sample grain on the lower cylinder was electrically detected, and the corresponding distance D between the surfaces of the upper and lower cylinders was determined, and this was taken as the diameter of the grain. As the load was further increased, the fracture strength σ t of the grain was determined from the total load W at which the grain fractured using the following formula (1), σ t =W/(0.32A)...(1), as is well known. . However, in reality, the above-mentioned test was conducted on 50 samples each, the average value of D and the average value of W were determined, and the average breaking strength was calculated from equation (1). Note that formula (1) is clarified by Hiroyuki Yoshikawa, for example, in "RIKEN Report Vol. 39, No. 6" (published in 1960), page 310. In addition, in the table, the yield is the blended HBN (excluding catalyst)
This is the ratio of CBN produced to Electron micrographs are shown of representative examples of CBN grains obtained in the above Examples and Comparative Examples. The magnification is
It is 100 times more. FIG. 2 shows Example 1, and FIG. 3 shows Comparative Example 1. The same was true for other Examples and Comparative Examples. As can be seen from this photo, the CBN according to the present invention has a nearly spherical shape as a whole;
Moreover, it can be seen that the surface has a smooth shape with few minute irregularities. As shown in Table 3, nitrides such as Be and Mg are
Compared to a composite catalyst in which only seeds are reacted with BN, using a composite catalyst in which two or more types of nitrides and BN are reacted as in the present invention improves CBN yield, grain strength, and other characteristics. You can see that it will be excellent. Furthermore, according to the present invention, in addition to being able to increase the yield of CBN, there are the following effects. Since the catalyst composition is pre-calcined, the time required for high-temperature, high-pressure treatment to generate CBN can be shortened, and the time that the mold is exposed to high temperature and high pressure is correspondingly shortened, extending the life of the mold. Since Be 3 N 2 , Mg 3 N 2 , etc. are mixed with BN and treated in advance, it is thought that a reaction occurs during this time, and this reaction does not occur during CBN production, and the catalyst This enables smooth dissolution and precipitation of HBN during the process, producing high-grade CBN. The pre-calcined catalyst is thought to have a stable structure, and although it could previously only be handled in a nitrogen atmosphere box, it is sufficiently stable in the atmosphere, making it extremely easy to store and handle. Improves reproducibility in manufacturing. Reference Example Grinding tests for representative examples of abrasive grains obtained in the above Examples and Comparative Examples are shown below. The grain size was #120/140 according to the JIS standard, and an electrodeposited grindstone was manufactured according to a conventional method. The grindstone specifications and grinding conditions are as follows. Grinding method Wet surface grinding (traverse cut) Grinding wheel specifications IAI 180 D × 10 T × 3 /Pass grinding fluid Soluble type work material SKH-57 (H RC = 62) The results are as follows. Example 1 Comparative Example 1 Grinding ratio 610 420 (Grinding ratio = grinding amount of work material (volume) / grinding wheel wear amount (volume))
第1図はCBNを製造する際に使用される反応
容器の一例を示す縦断面図、第2図はこの発明の
実施例1によつて得られたCBN粒の顕微鏡拡大
写真(100倍)、第3図は比較例1によつて得られ
たCBN粒の顕微鏡拡大写真(100倍)である。
1……容器外壁、2……ヒーター、3……通電
用鋼板リング、4……通電用鋼板、5……アルミ
ナ板、7……原料収容室。
FIG. 1 is a vertical cross-sectional view showing an example of a reaction vessel used in producing CBN, and FIG. 2 is an enlarged micrograph (100x) of CBN grains obtained in Example 1 of the present invention. FIG. 3 is an enlarged micrograph (100 times magnification) of CBN grains obtained in Comparative Example 1. DESCRIPTION OF SYMBOLS 1... Container outer wall, 2... Heater, 3... Steel plate ring for energizing, 4... Steel plate for energizing, 5... Alumina plate, 7... Raw material storage chamber.
Claims (1)
で立方晶窒化ホウ素が熱力学的に安定である高
温、高圧領域に保持して立方晶窒化ホウ素を合成
するに当り、前記触媒としてX:BNをモル比で
(1〜1.4):2で配合し、予じめ800℃〜1300℃の
不活性雰囲気中で焼成したものを用いることを特
徴とする立方晶窒化ホウ素の製造法(上記Xは
Be、Mg、Ca、Sr、Baの夫々の窒化物から選ば
れた2種以上の混合物)。1. When synthesizing cubic boron nitride by holding hexagonal boron nitride and a catalyst in a high temperature and high pressure region where cubic boron nitride is thermodynamically stable, X:BN is used as the catalyst. A method for producing cubic boron nitride, characterized in that the molar ratio of (1 to 1.4):2 is used, and the product is fired in an inert atmosphere at 800°C to 1300°C (the above X is
A mixture of two or more nitrides selected from Be, Mg, Ca, Sr, and Ba nitrides).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57180006A JPS5973410A (en) | 1982-10-15 | 1982-10-15 | Preparation of boron nitride of cubic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57180006A JPS5973410A (en) | 1982-10-15 | 1982-10-15 | Preparation of boron nitride of cubic system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5973410A JPS5973410A (en) | 1984-04-25 |
JPH0347132B2 true JPH0347132B2 (en) | 1991-07-18 |
Family
ID=16075801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57180006A Granted JPS5973410A (en) | 1982-10-15 | 1982-10-15 | Preparation of boron nitride of cubic system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973410A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5618509A (en) * | 1993-07-09 | 1997-04-08 | Showa Denko K.K. | Method for producing cubic boron nitride |
US7214359B2 (en) | 2003-02-03 | 2007-05-08 | Showa Denko K.K. | Cubic boron nitride, catalyst for synthesizing cubic boron nitride, and method for producing cubic boron nitride |
JP4160898B2 (en) | 2003-12-25 | 2008-10-08 | 住友電工ハードメタル株式会社 | High strength and high thermal conductivity cubic boron nitride sintered body |
JP4925463B2 (en) * | 2005-02-16 | 2012-04-25 | 日本碍子株式会社 | Method for producing hexagonal boron nitride single crystal |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56140015A (en) * | 1980-03-31 | 1981-11-02 | Showa Denko Kk | Synthesizing method for cubic system boron nitride |
JPS56140014A (en) * | 1980-03-31 | 1981-11-02 | Showa Denko Kk | Synthesizing method for cubic system boron nitride |
JPS57149899A (en) * | 1981-03-06 | 1982-09-16 | Natl Inst For Res In Inorg Mater | Manufacture of cubic system boron nitride |
JPS57156399A (en) * | 1981-03-20 | 1982-09-27 | Natl Inst For Res In Inorg Mater | Preparation of boron nitride of cubic system |
-
1982
- 1982-10-15 JP JP57180006A patent/JPS5973410A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56140015A (en) * | 1980-03-31 | 1981-11-02 | Showa Denko Kk | Synthesizing method for cubic system boron nitride |
JPS56140014A (en) * | 1980-03-31 | 1981-11-02 | Showa Denko Kk | Synthesizing method for cubic system boron nitride |
JPS57149899A (en) * | 1981-03-06 | 1982-09-16 | Natl Inst For Res In Inorg Mater | Manufacture of cubic system boron nitride |
JPS57156399A (en) * | 1981-03-20 | 1982-09-27 | Natl Inst For Res In Inorg Mater | Preparation of boron nitride of cubic system |
Also Published As
Publication number | Publication date |
---|---|
JPS5973410A (en) | 1984-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5266236A (en) | Thermally stable dense electrically conductive diamond compacts | |
US3944398A (en) | Method of forming an abrasive compact of cubic boron nitride | |
US4551316A (en) | Process for producing boron nitride of cubic system | |
KR100487145B1 (en) | Manufacturing method of cubic boron nitride | |
KR20030036197A (en) | Method for producing cubic boron nitride and product obtained through the method | |
JPH0314495B2 (en) | ||
JPH0347132B2 (en) | ||
JP2002284511A (en) | Method for manufacturing cubic boron nitride | |
JPH0315488B2 (en) | ||
KR100636415B1 (en) | Manufacturing method of cubic boron nitride | |
JP4183317B2 (en) | Method for producing cubic boron nitride | |
JPH09142932A (en) | Diamond sintered body and method for manufacturing the same | |
JPS6225602B2 (en) | ||
JPH09142933A (en) | Diamond sintered body and method for manufacturing the same | |
JPH0594B2 (en) | ||
JPS5938164B2 (en) | Manufacturing method of cubic boron nitride | |
JPH0315486B2 (en) | ||
IE913698A1 (en) | Unsupported sintered cbn/diamond conjoint compacts and their¹fabrication | |
JP3733613B2 (en) | Diamond sintered body and manufacturing method thereof | |
JPS605007A (en) | Preparation of boron nitride of cubic system | |
JPH06305732A (en) | Wc type tantalum nitride and method for synthesizing the same | |
JPH052369B2 (en) | ||
JPH0355177B2 (en) | ||
JPH0595B2 (en) | ||
JP3731223B2 (en) | Diamond sintered body and manufacturing method thereof |