JP3731223B2 - Diamond sintered body and manufacturing method thereof - Google Patents
Diamond sintered body and manufacturing method thereof Download PDFInfo
- Publication number
- JP3731223B2 JP3731223B2 JP17209495A JP17209495A JP3731223B2 JP 3731223 B2 JP3731223 B2 JP 3731223B2 JP 17209495 A JP17209495 A JP 17209495A JP 17209495 A JP17209495 A JP 17209495A JP 3731223 B2 JP3731223 B2 JP 3731223B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- sintered body
- powder
- alkaline earth
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はダイヤモンド焼結体およびその製造方法に関するものである。本発明のダイヤモンド焼結体は非鉄金属やセラミックス等の切削、研削工具用素材および石油堀削用途等のドリルビットの刃先素材として有効に使用できるものである。
【0002】
【従来の技術】
従来のダイヤモンド焼結体としては、焼結助剤あるいは結合剤としてCo、Ni、Feなどの鉄族金属を用いたものや、SiCなどのセラミックスを用いたものが知られており、非鉄金属の切削工具や、堀削ビットなどに工業的に利用されている。
また、焼結助剤として炭酸塩を用いたものが知られている。(特開平4−74766号公報、特開平4−114966号公報)。
その他、天然のダイヤモンド焼結体(カーボナード)があるが、材質のバラツキが大きく、また産出量も極少量であるため、ほとんど工業的には使用されていない。
【0003】
【発明が解決しようとする課題】
Coなどの鉄族金属を焼結助剤としたダイヤ焼結体は、Coなどの鉄族金属がダイヤモンドの黒鉛化を促す触媒として作用するため耐熱性に劣る。すなわち、不活性ガス雰囲気中で、700℃程度で黒鉛化してしまう。また、ダイヤモンド粒の粒界にCoなどの金属が連続相として存在するため焼結体の強度はあまり高くなく、欠損しやしい。そして、この金属とダイヤモンドの熱膨張差のため熱劣化が起こり易くなるという問題もある。
耐熱性を上げるために上記の粒界の金属を酸処理により除去されたものも知られている。これにより耐熱温度は約1200℃と向上するが、焼結体が多孔質となるため強度がさらに大幅(30%程度)に低下する。
SiCを結合剤としたダイヤモンド焼結体は耐熱性には優れているが、ダイヤモンド粒同士には結合がないため、強度は低い。
一方、焼結助剤として炭酸塩を用いたダイヤモンド焼結体は、Co結合剤による焼結体に比べると耐熱性に優れるが、1000℃程度よりで炭酸塩の分解がはじまり焼結体の強度が低下する。また、炭酸塩は酸に溶けるため、堀削ビットなどの用途で使用できない。
本発明は以上の問題点を解決して、耐欠損性、耐熱性、耐酸性を有するダイヤモンド焼結体とその製造方法を提供することを意図したものである。
【0004】
【課題を解決するための手段】
上記の課題を解決するための手段として、本発明は、チタンおよびアルカリ金属またはアルカリ土類金属元素および酸素を含有する化合物からなる物質を0.1〜30体積%含み残部がダイヤモンドであるダイヤモンド焼結体を提供する。また、上記、チタンおよびアルカリ金属またはアルカリ土類金属元素および酸素を含有する化合物が、アルカリ金属またはアルカリ土類金属のチタン酸塩であるダイヤモンド焼結体を提供する。また、上記、チタンおよびアルカリ金属またはアルカリ土類金属元素および酸素を含有する化合物が、アルカリ金属またはアルカリ土類金属の酸化物と酸化チタンからなる複合酸化物または固溶体であるダイヤモンド焼結体を提供する。
【0005】
また、このダイヤモンド焼結体の製造方法として、焼結助剤としてアルカリ金属またはアルカリ土類金属のチタン酸塩を用い、この粉末と、ダイヤモンド粉末もしくは、非ダイヤモンド炭素粉末またはダイヤモンドと非ダイヤモンド炭素の混合粉末とを混合し、これをダイヤモンドの熱力学的安定領域の圧力、温度条件で保持し、焼結する方法を提供する。
このダイヤモンド焼結体の別の製造方法として、焼結助剤としてアルカリ金属またはアルカリ土類金属のチタン酸塩を用い、この粉末の成形体と、ダイヤモンド粉末の成形体または非ダイヤモンド炭素粉末の成形体またはダイヤモンドと非ダイヤモンド炭素の混合粉末の成形体とを積層し、これをダイヤモンドの熱力学的安定領域の圧力、温度条件で保持し、焼結する方法を提供する。
また、このダイヤモンド焼結体の製造のための上記の方法において、別の焼結助剤としてアルカリ金属またはアルカリ土類金属の酸化物と酸化チタンの混合物を用いる方法を提供する。
上記製造方法において、焼結助剤は混合物中0.1〜30体積%となるよう配合する。
【0006】
【発明の実施の形態】
従来、アルカリ金属またはアルカリ土類金属のチタン酸塩や、アルカリ金属またはアルカリ土類金属の酸化物と酸化チタンの混合物がダイヤモンド焼結体の有効な焼結助剤として用いられた例はない。この度、本発明者らにより、アルカリ金属またはアルカリ土類金属のチタン酸塩や、アルカリ金属またはアルカリ土類金属の酸化物と酸化チタンの混合物を焼結助剤とすることで、従来にない高強度で、かつ耐欠損性、耐熱性、耐食性に優れたダイヤモンド焼結体が得られることが見いだされ、本発明に至った。
すなわち、本発明の特徴は、ダイヤモンド焼結体の焼結助剤としてアルカリ金属またはアルカリ土類金属のチタン酸塩あるいは、アルカリ金属またはアルカリ土類金属の酸化物と酸化チタンの混合物を用いた点にある。
アルカリ金属またはアルカリ土類金属のチタン酸塩としては、例えば、LiTiO3 、MgTiO3 、CaTiO3 、SrTiO3 などが挙げられる。これは、ダイヤモンドに対し、強い触媒作用を示し、これらを焼結助剤とするとダイヤモンド粒子が極めて強固に結合したマトリックスが形成される。また、異常粒成長が起こり難く、均質な組織の焼結体が得られる。その結果、従来にない高強度で耐欠損性や耐摩耗性に優れたダイヤモンド焼結体が得られる。このような焼結助剤は0.01〜10μmの粒径範囲のものが好ましい。
【0007】
こうして得られるダイヤモンド焼結体は、チタンおよびアルカリ金属またはアルカリ土類金属元素および酸素を含有する化合物からなる物質を含むのが特徴で、このような物質としては、上記のアルカリ金属またはアルカリ土類金属のチタン酸塩、あるいはアルカリ金属またはアルカリ土類金属の酸化物と酸化チタンの複合酸化物もしくは固溶体が挙げられる。これらの物質は1500℃程度の高温下でも安定で、また、酸やアルカリに対しても極めて安定である。このため、本発明のダイヤモンド焼結体は耐熱性や耐食性にも非常に優れた特性を示す。
【0008】
本発明のダイヤモンド焼結体において、チタンおよびアルカリ金属またはアルカリ土類金属元素および酸素を含有する化合物からなる物質の含有量は0.1〜30体積%が好ましいが、この理由は0.1体積%未満ではダイヤモンド粒子間の結合性、すなわち結合性が低下し、30体積%を越えると過剰のチタン酸化物の影響で、強度、耐摩耗性が低下するからである。
原料としては合成ダイヤモンド粉末、天然ダイヤモンド粉末、多結晶ダイヤモンド粉末などを用いることができる。粉末の粒径は0.01〜200μmで、用途によって微粒または粗粒に粒径を揃えたもの、もしくは微粒、粗粒の混合物を用いる。
また、これらのダイヤモンドに代えて黒鉛やグラッシーカーボン、熱分解黒鉛などの非ダイヤモンドも原料とすることができる。また、ダイヤモンドとこれら非ダイヤモンド黒鉛の混合物を用いることもできる。
【0009】
本発明のダイヤモンド焼結体の製造方法としては、ダイヤモンド粉末や非ダイヤモンド粉末と、アルカリ金属またはアルカリ土類金属のチタン酸塩あるいはアルカリ金属またはアルカリ土類金属の酸化物と酸化チタンの混合物とを、ダイヤモンドが熱力学的に安定な圧力、温度条件下で保持する方法と、ダイヤモンド粉末や非ダイヤモンド黒鉛の成形体と、アルカリ金属またはアルカリ土類金属のチタン酸塩あるいはアルカリ金属またはアルカリ土類金属の酸化物と酸化チタンの混合物の成形体を積層したものを原料として、上記の圧力、温度条件下で保持する方法がある。
原料と焼結助剤を混合する方法においては、原料と焼結助剤を、機械的に乾式または湿式混合した粉末を圧縮成形したもの、もしくはMo等のカプセルに充填したものを高圧高温焼結する。原料粉末が微粒でも焼結助剤を均一に分散でき、また、厚い形状のダイヤモンド焼結体の製造が可能である。例えば、良好な仕上げ面が必要な切削工具(微粒焼結体)の製造や、ダイスなどの厚い形状を必要とする焼結体の製造に適する。ただし、粗粒の原料を用いた場合、均一に焼結助剤を混合するのに困難を要す。
一方、原料と焼結助剤を積層配置する方法は、原料と焼結助剤の板状の成形体をそれぞれ作製し、これらを積層して接触させ、高圧高温処理する。このとき、焼結助剤が原料層に拡散含浸し、ダイヤモンド粒子が焼結する。この方法は、粗粒の原料を用いても焼結助剤を均一に添加できるため、より高強度で耐摩耗性のあるダイヤモンド焼結体を安定して得ることができ、耐摩耗工具やドリルビットなどの焼結体の製造に適する。
【0010】
【実施例】
以下本発明を実施例により更に詳細に説明するが、本発明をこれによって限定するものではない。
(実施例1)
焼結助剤としてCaTiO3 を用いた。平均粒径3.5μmの合成ダイヤモンド粉末と、粒径1〜2μmのCaTiO3 の粉末をそれぞれ95体積%、5体積%の割合で十分に混合し、この混合物をMoカプセルに入れ、ベルト型の超高圧高温発生装置を用いて、7.5GPa2000℃の圧力温度条件で15分間保持し、焼結させた。得られたダイヤモンド焼結体について、X線回折により組成を固定したところ、ダイヤモンドの他、約5体積%のCaTiO3 が検出された。この焼結体の硬度をヌープ圧子により評価したところ、7800kg/mm2 と高硬度であった。また、破壊靱性をインデンテーション法により従来の市販のCo結合剤焼結体に対し相対比較したところ、従来焼結体の約1.4倍の相対靱性であった。また、得られた焼結体を真空中で1300℃に加熱処理した後、硬度、靱性を測定したが、処理前とほとんど変化がなかった。また、酸処理による焼結体の劣化は認められなかった。
【0011】
(実施例2)
焼結助剤として、5体積%のMgTiO3 を用いた他は、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはMgTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0012】
(実施例3)
焼結助剤として、5体積%のSrTiO3 を用いた他は、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはSrTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0013】
(実施例4)
焼結助剤として、5体積%のLiTiO3 を用いた他は、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはLiTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0014】
(実施例5)
焼結助剤として、CaOとTiO2 の1:1(体積比)の混合物を用い、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはCaTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0015】
(実施例6)
焼結助剤として、MgOとTiO2 の1:1(体積比)の混合物を用い、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはMgTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0016】
(実施例7)
焼結助剤としてCaTiO3 を用いた。平均粒径15μmの合成ダイヤモンド粉末と粒径1〜2μmのCaTiO3 粉末をそれぞれ厚み2mm、1mmに成形したものを交互に積層してMoカプセルに入れ、ベルト型の超高圧高温発生装置を用いて、7.5GPa、2000℃の圧力温度条件で15分間保持し焼結した。得られたダイヤモンド焼結体について、X線回折により組成を同定したところ、ダイヤモンドの他、約2体積%のCaTiO3 が検出された。この焼結体の硬度をヌープ圧子により評価したところ約8100kg/mm2 と高硬度であった。また、破壊靱性をインデンテーション法により従来の市販のCo結合剤焼結体に対し相対比較したところ、従来焼結体の約1.5倍の相対靱性であった。また、得られた焼結体を真空中で1300℃に加熱処理した後、硬度、靱性を測定したが、処理前とほとんど変化がなかった。また、酸処理による焼結体の劣化は認められなかった。
【0017】
(実施例8)
焼結助剤としてCaTiO3 を用いた。平均粒径3μmの高純度等方性黒鉛の厚み2mmの状焼結体と、粒径1〜2μmのCaTiO3 の粉末を厚み1mmに型押し成形したものを交互に積層してMoカプセルに入れ、ガードル型の超高圧高温発生装置を用いて、7.5GPa、2000℃の圧力温度条件で15分間保持し、焼結させた。得られたダイヤモンド焼結体について、X線回折により組成を同定したところ、ダイヤモンドの他、約3体積%のCaTiO3 が検出された。この焼結体の硬度をヌープ圧子により評価したところ約7800kg/mm2 と高硬度であった。また、破壊靱性をインデンテーション法により従来の市販のCo結合剤焼結体に対し相対比較したところ、従来焼結体の約1.3倍の相対靱性であった。また、得られた焼結体を真空中で1300℃に加熱処理した後、硬度、靱性を測定したが、処理前とほとんど変化がなかった。また、酸処理による焼結体の劣化は認められなかった。
【0018】
(比較例1)
焼結助剤としてCaTiO3 を用いた。平均粒径3.5μmの合成ダイヤモンド粉末に微量の粒径1〜2μmのCaTiO3 の粉末(約0.05体積%)添加し、十分に混合したものを原料にした他は、実施例1と同様にダイヤモンド焼結体の製造を試みた。しかし、得られた焼結体には、未焼結部が多く残留していた。
【0019】
(比較例2)
焼結助剤としてCaTiO3 を用いた。平均粒径3.5μmの合成ダイヤモンド粉末60体積%と、粒径1〜2μmのCaTiO3 の粉末40体積%を添加し、十分に混合したものを原料にした他は、実施例1と同様にダイヤモンド焼結体の製造を試みた。しかし、得られた焼結体は、粒子同士の結合が十分でなく、硬度は3500kg/mm2 程度と低かった。
【0020】
【発明の効果】
以上説明したように、本発明のダイヤモンド焼結体は、従来にない高強度で、耐熱性、耐欠損性、耐食性を有するので、非鉄金属やセラミックス等の切削、研削工具用素材の他、石油堀削用途等のドリルビットの刃先素材として有効に使用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diamond sintered body and a method for producing the same. The diamond sintered body of the present invention can be effectively used as a cutting edge material for drill bits for cutting non-ferrous metals, ceramics, etc., grinding tool materials, and petroleum drilling applications.
[0002]
[Prior art]
As conventional diamond sintered bodies, those using iron group metals such as Co, Ni, and Fe as sintering aids or binders and those using ceramics such as SiC are known. It is used industrially for cutting tools and excavation bits.
Further, one using a carbonate as a sintering aid is known. (Unexamined-Japanese-Patent No. 4-74766, Unexamined-Japanese-Patent No. 4-114966).
In addition, there is a natural diamond sintered body (carbonado), but due to the large variation in materials and the extremely small amount of production, it is hardly used industrially.
[0003]
[Problems to be solved by the invention]
A diamond sintered body using an iron group metal such as Co as a sintering aid is inferior in heat resistance because the iron group metal such as Co acts as a catalyst for promoting graphitization of diamond. That is, it graphitizes at about 700 ° C. in an inert gas atmosphere. In addition, since a metal such as Co is present as a continuous phase at the grain boundaries of the diamond grains, the strength of the sintered body is not so high and is easily damaged. And there also exists a problem that thermal deterioration becomes easy to occur because of the thermal expansion difference between this metal and diamond.
In order to increase the heat resistance, those obtained by removing the metal at the grain boundary by acid treatment are also known. As a result, the heat resistance temperature is improved to about 1200 ° C., but since the sintered body becomes porous, the strength is further greatly reduced (about 30%).
A diamond sintered body using SiC as a binder is excellent in heat resistance, but has no strength because there is no bonding between diamond grains.
On the other hand, a diamond sintered body using carbonate as a sintering aid is superior in heat resistance compared to a sintered body using a Co binder, but the decomposition of the carbonate starts at about 1000 ° C and the strength of the sintered body. Decreases. Further, since carbonate is soluble in acid, it cannot be used for applications such as excavation bits.
The present invention intends to solve the above problems and provide a diamond sintered body having fracture resistance, heat resistance and acid resistance and a method for producing the same.
[0004]
[Means for Solving the Problems]
As means for solving the above-mentioned problems, the present invention provides a diamond baked material comprising 0.1 to 30% by volume of a substance composed of titanium and an alkali metal or alkaline earth metal element and oxygen, and the balance being diamond. Provide a ligation. Further, the present invention provides a diamond sintered body in which the compound containing titanium and an alkali metal or alkaline earth metal element and oxygen is a titanate of an alkali metal or an alkaline earth metal. Also provided is a diamond sintered body in which the compound containing titanium and an alkali metal or alkaline earth metal element and oxygen is a composite oxide or solid solution composed of an oxide of an alkali metal or an alkaline earth metal and titanium oxide. To do.
[0005]
Further, as a method for producing this diamond sintered body, an alkali metal or alkaline earth metal titanate is used as a sintering aid, and this powder and diamond powder or non-diamond carbon powder or diamond and non-diamond carbon are used. Provided is a method of mixing with a mixed powder, holding it under pressure and temperature conditions in a thermodynamically stable region of diamond, and sintering.
As another method for producing this diamond sintered body, an alkali metal or alkaline earth metal titanate is used as a sintering aid, and this powder compact and diamond powder compact or non-diamond carbon powder compact. The present invention provides a method of laminating a body or a molded body of a diamond and a mixed powder of non-diamond carbon, and holding and sintering this in a pressure and temperature condition in a thermodynamically stable region of diamond.
In addition, in the above-described method for producing the diamond sintered body, a method of using a mixture of an oxide of alkali metal or alkaline earth metal and titanium oxide as another sintering aid is provided.
In the said manufacturing method, a sintering adjuvant is mix | blended so that it may become 0.1-30 volume% in a mixture.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Conventionally, there is no example in which an alkali metal or alkaline earth metal titanate or a mixture of an alkali metal or alkaline earth metal oxide and titanium oxide has been used as an effective sintering aid for a diamond sintered body. At this time, the present inventors have used a mixture of an alkali metal or alkaline earth metal titanate or an alkali metal or alkaline earth metal oxide and titanium oxide as a sintering aid. It was found that a diamond sintered body having strength and excellent fracture resistance, heat resistance, and corrosion resistance was obtained, and the present invention was achieved.
That is, the feature of the present invention is that an alkali metal or alkaline earth metal titanate or a mixture of an alkali metal or alkaline earth metal oxide and titanium oxide is used as a sintering aid for the diamond sintered body. It is in.
Examples of the alkali metal or alkaline earth metal titanate include LiTiO 3 , MgTiO 3 , CaTiO 3 , and SrTiO 3 . This shows a strong catalytic action against diamond, and when these are used as a sintering aid, a matrix is formed in which diamond particles are extremely firmly bonded. Moreover, abnormal grain growth hardly occurs, and a sintered body having a homogeneous structure can be obtained. As a result, it is possible to obtain a diamond sintered body having a high strength and excellent fracture resistance and wear resistance, which has not been conventionally obtained. Such a sintering aid preferably has a particle size range of 0.01 to 10 μm.
[0007]
The diamond sintered body obtained in this way is characterized by containing a substance comprising a compound containing titanium and an alkali metal or alkaline earth metal element and oxygen. Examples of such a substance include the alkali metal or alkaline earth described above. Examples thereof include metal titanates, or composite oxides or solid solutions of oxides of alkali metals or alkaline earth metals and titanium oxide. These substances are stable even at a high temperature of about 1500 ° C., and are extremely stable against acids and alkalis. For this reason, the diamond sintered body of the present invention exhibits very excellent characteristics in heat resistance and corrosion resistance.
[0008]
In the diamond sintered body of the present invention, the content of the substance composed of titanium and an alkali metal or alkaline earth metal element and an oxygen-containing compound is preferably 0.1 to 30% by volume. If it is less than%, the bondability between diamond particles, that is, the bondability is lowered, and if it exceeds 30% by volume, the strength and wear resistance are lowered due to the influence of excess titanium oxide.
As a raw material, synthetic diamond powder, natural diamond powder, polycrystalline diamond powder, or the like can be used. The powder has a particle size of 0.01 to 200 μm, and a fine or coarse particle having a uniform particle size or a mixture of fine and coarse particles is used depending on the application.
Further, in place of these diamonds, non-diamonds such as graphite, glassy carbon, and pyrolytic graphite can be used as a raw material. A mixture of diamond and these non-diamond graphites can also be used.
[0009]
The method for producing a diamond sintered body of the present invention includes diamond powder or non-diamond powder, alkali metal or alkaline earth metal titanate, or a mixture of alkali metal or alkaline earth metal oxide and titanium oxide. , A method in which diamond is maintained under thermodynamically stable pressure and temperature conditions, a diamond powder or non-diamond graphite molded body, and an alkali metal or alkaline earth metal titanate or alkali metal or alkaline earth metal There is a method in which a material obtained by laminating a molded body of a mixture of the above oxide and titanium oxide is used as a raw material and held under the above pressure and temperature conditions.
In the method of mixing the raw material and the sintering aid, high-pressure and high-temperature sintering is performed by compressing and molding the raw material and the sintering aid into a mechanically dry or wet-mixed powder or filling a capsule such as Mo. To do. Even if the raw material powder is fine, the sintering aid can be uniformly dispersed, and a thick diamond sintered body can be produced. For example, it is suitable for manufacturing a cutting tool (fine sintered body) that requires a good finished surface and a sintered body that requires a thick shape such as a die. However, when using coarse raw materials, it is difficult to mix the sintering aid uniformly.
On the other hand, the raw material and the sintering aid are laminated and prepared by preparing plate-like molded bodies of the raw material and the sintering aid, laminating them and bringing them into contact with each other, followed by high-pressure and high-temperature treatment. At this time, the sintering aid diffuses and impregnates the raw material layer, and the diamond particles are sintered. In this method, since a sintering aid can be uniformly added even when coarse raw materials are used, a diamond sintered body with higher strength and wear resistance can be stably obtained, and wear resistant tools and drills can be obtained. Suitable for manufacturing sintered bodies such as bits.
[0010]
【Example】
The present invention will be described in more detail below by way of examples, but the present invention is not limited thereby.
Example 1
CaTiO 3 was used as a sintering aid. Synthetic diamond powder having an average particle size of 3.5 μm and CaTiO 3 powder having a particle size of 1 to 2 μm are sufficiently mixed at a ratio of 95% by volume and 5% by volume, respectively, and this mixture is put into a Mo capsule. Using an ultra-high pressure and high temperature generator, it was held for 15 minutes under a pressure temperature condition of 7.5 GPa 2000 ° C. and sintered. When the composition of the obtained diamond sintered body was fixed by X-ray diffraction, about 5% by volume of CaTiO 3 was detected in addition to diamond. When the hardness of the sintered body was evaluated using a Knoop indenter, it was a high hardness of 7800 kg / mm 2 . Further, when the fracture toughness was compared relative to a conventional commercially available Co binder sintered body by an indentation method, the relative toughness was about 1.4 times that of the conventional sintered body. Moreover, after heat-treating the obtained sintered compact at 1300 degreeC in the vacuum, the hardness and toughness were measured, but there was almost no change with the process front. Moreover, deterioration of the sintered compact by acid treatment was not recognized.
[0011]
(Example 2)
A diamond sintered body was produced in the same manner as in Example 1 except that 5% by volume of MgTiO 3 was used as a sintering aid. The obtained sintered body contained MgTiO 3 , and the hardness, toughness, and heat resistance were the same as in Example 1.
[0012]
Example 3
A diamond sintered body was produced in the same manner as in Example 1 except that 5% by volume of SrTiO 3 was used as a sintering aid. The obtained sintered body contained SrTiO 3 , and the hardness, toughness, and heat resistance were the same as in Example 1.
[0013]
(Example 4)
A diamond sintered body was produced in the same manner as in Example 1 except that 5% by volume of LiTiO 3 was used as a sintering aid. The obtained sintered body contained LiTiO 3 , and the hardness, toughness and heat resistance were the same as in Example 1.
[0014]
(Example 5)
A diamond sintered body was produced in the same manner as in Example 1, using a 1: 1 (volume ratio) mixture of CaO and TiO 2 as a sintering aid. The obtained sintered body contained CaTiO 3 , and the hardness, toughness, and heat resistance were the same as in Example 1.
[0015]
(Example 6)
A diamond sintered body was produced in the same manner as in Example 1 using a 1: 1 (volume ratio) mixture of MgO and TiO 2 as a sintering aid. The obtained sintered body contained MgTiO 3 , and the hardness, toughness, and heat resistance were the same as in Example 1.
[0016]
(Example 7)
CaTiO 3 was used as a sintering aid. Synthetic diamond powder with an average particle size of 15 μm and CaTiO 3 powder with a particle size of 1 to 2 μm, each molded to a thickness of 2 mm and 1 mm, are alternately stacked and placed in a Mo capsule, using a belt-type ultrahigh pressure and high temperature generator , 7.5 GPa, 2000 ° C. under pressure and temperature conditions for 15 minutes, and sintered. When the composition of the obtained sintered diamond was identified by X-ray diffraction, about 2% by volume of CaTiO 3 was detected in addition to diamond. When the hardness of the sintered body was evaluated using a Knoop indenter, it was as high as about 8100 kg / mm 2 . Moreover, when the fracture toughness was compared with a conventional commercially available Co binder sintered body by an indentation method, the relative toughness was about 1.5 times that of the conventional sintered body. Moreover, after heat-treating the obtained sintered compact at 1300 degreeC in the vacuum, the hardness and toughness were measured, but there was almost no change with the process front. Moreover, deterioration of the sintered compact by acid treatment was not recognized.
[0017]
(Example 8)
CaTiO 3 was used as a sintering aid. A 2 mm thick sintered compact of high purity isotropic graphite with an average particle diameter of 3 μm and CaTiO 3 powder with a particle diameter of 1 to 2 μm embossed into a thickness of 1 mm are alternately stacked and placed in a Mo capsule. Using a girdle type ultra-high pressure and high temperature generator, it was held for 15 minutes under pressure conditions of 7.5 GPa and 2000 ° C. and sintered. When the composition of the obtained sintered diamond was identified by X-ray diffraction, about 3% by volume of CaTiO 3 was detected in addition to diamond. When the hardness of this sintered body was evaluated with a Knoop indenter, it was as high as about 7800 kg / mm 2 . Further, when the fracture toughness was compared with a conventional commercially available Co binder sintered body by an indentation method, the relative toughness was about 1.3 times that of the conventional sintered body. Moreover, after heat-treating the obtained sintered compact at 1300 degreeC in the vacuum, the hardness and toughness were measured, but there was almost no change with the process front. Moreover, deterioration of the sintered compact by acid treatment was not recognized.
[0018]
(Comparative Example 1)
CaTiO 3 was used as a sintering aid. Example 1 except that a minute amount of CaTiO 3 powder (about 0.05% by volume) was added to a synthetic diamond powder having an average particle size of 3.5 μm and mixed well and used as a raw material. Similarly, production of a diamond sintered body was attempted. However, many unsintered parts remained in the obtained sintered body.
[0019]
(Comparative Example 2)
CaTiO 3 was used as a sintering aid. As in Example 1, except that 60% by volume of synthetic diamond powder having an average particle size of 3.5 μm and 40% by volume of CaTiO 3 powder having a particle size of 1 to 2 μm were added and mixed thoroughly. An attempt was made to produce a diamond sintered body. However, the obtained sintered body had insufficient bonding between particles, and the hardness was as low as about 3500 kg / mm 2 .
[0020]
【The invention's effect】
As described above, since the diamond sintered body of the present invention has unprecedented high strength, heat resistance, fracture resistance, and corrosion resistance, in addition to cutting materials such as non-ferrous metals and ceramics, materials for grinding tools, petroleum It can be used effectively as a cutting edge material for drill bits for excavation.
Claims (6)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17209495A JP3731223B2 (en) | 1995-07-07 | 1995-07-07 | Diamond sintered body and manufacturing method thereof |
US08/675,932 US5769176A (en) | 1995-07-07 | 1996-07-05 | Diamond sintered compact and a process for the production of the same |
ZA965744A ZA965744B (en) | 1995-07-07 | 1996-07-05 | A diamond sintered compact and a process for the production of the same |
EP96305018A EP0752267A3 (en) | 1995-07-07 | 1996-07-08 | Sintered diamond body and process for its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17209495A JP3731223B2 (en) | 1995-07-07 | 1995-07-07 | Diamond sintered body and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0925164A JPH0925164A (en) | 1997-01-28 |
JP3731223B2 true JP3731223B2 (en) | 2006-01-05 |
Family
ID=15935436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17209495A Expired - Fee Related JP3731223B2 (en) | 1995-07-07 | 1995-07-07 | Diamond sintered body and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3731223B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111673932B (en) * | 2020-04-21 | 2022-05-20 | 广州领拓仪器科技有限公司 | Preparation method of silicon wafer section sample |
-
1995
- 1995-07-07 JP JP17209495A patent/JP3731223B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0925164A (en) | 1997-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5326380A (en) | Synthesis of polycrystalline cubic boron nitride | |
US5769176A (en) | Diamond sintered compact and a process for the production of the same | |
EP0698447B1 (en) | Abrasive body | |
JPS62226854A (en) | Manufacture of single phase or multiple phase ceramic formedbody | |
JPS62274034A (en) | Manufacturing method of polycrystalline diamond sintered body by reaction sintering | |
JPH0530897B2 (en) | ||
JP3731223B2 (en) | Diamond sintered body and manufacturing method thereof | |
JP3733613B2 (en) | Diamond sintered body and manufacturing method thereof | |
JPH09142932A (en) | Diamond sintered body and method for manufacturing the same | |
JPH09142933A (en) | Diamond sintered body and method for manufacturing the same | |
JPS6213311B2 (en) | ||
JP3978789B2 (en) | Diamond sintered body and method for producing the same | |
JP3622261B2 (en) | Diamond sintered body and manufacturing method thereof | |
JP4110339B2 (en) | Cubic boron nitride sintered body | |
JP3642082B2 (en) | Diamond sintered body and manufacturing method thereof | |
KR920006807B1 (en) | Preparation method of calcined body made by al2o3-ticx | |
JPH08310865A (en) | Diamond sintered body and method for manufacturing the same | |
JPS63100055A (en) | Alumina-based ceramic cutting tools with high toughness | |
JPH0952766A (en) | Diamond sintered body and method for manufacturing the same | |
JPH0967164A (en) | Diamond sintered body and method for manufacturing the same | |
JPH09324236A (en) | Diamond sintered body and method for manufacturing the same | |
JPS59563B2 (en) | Manufacturing method of diamond sintered body | |
JPH11335174A (en) | Cubic boron nitride sintered body | |
JPH1135375A (en) | Sintered body for drill bit and manufacturing method thereof | |
JPH1135374A (en) | Sintered body for drill bit and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050819 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051003 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091021 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101021 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |