JPH08310865A - Diamond sintered body and method for manufacturing the same - Google Patents
Diamond sintered body and method for manufacturing the sameInfo
- Publication number
- JPH08310865A JPH08310865A JP7141316A JP14131695A JPH08310865A JP H08310865 A JPH08310865 A JP H08310865A JP 7141316 A JP7141316 A JP 7141316A JP 14131695 A JP14131695 A JP 14131695A JP H08310865 A JPH08310865 A JP H08310865A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- sintered body
- powder
- sintering aid
- phosphorus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はダイヤモンド焼結体およ
びその製造方法に関するものである。本発明のダイヤモ
ンド焼結体は非鉄金属やセラミックス等の切削、研削工
具用素材および石油掘削用途等のドリルビットの刃先素
材として有効に使用できるものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond sintered body and a method for producing the same. INDUSTRIAL APPLICABILITY The diamond sintered body of the present invention can be effectively used as a material for cutting and grinding tools such as non-ferrous metals and ceramics and as a blade edge material for drill bits for oil drilling applications.
【0002】[0002]
【従来の技術】従来のダイヤモンド焼結体としては、焼
結助材あるいは結合材としてCo,Ni,Feなどの鉄
族金属を用いたものや、SiCなどのセラミックスを用
いたものが知られており、非鉄金属の切削工具や、掘削
ビットなどに工業的に利用されている。また、焼結助材
として炭酸塩を用いることも特開平 4-74766号、特開平
4-114966号によって提案されている。その他、天然のダ
イヤモンド焼結体(カーボナード)があるが、材質のバ
ラツキが大きく、また産出量も極少であるため、ほとん
ど工業的には使用されていない。2. Description of the Related Art As a conventional diamond sintered body, one using an iron group metal such as Co, Ni or Fe as a sintering aid or a binder, and one using a ceramic such as SiC is known. And is industrially used for non-ferrous metal cutting tools and drill bits. It is also possible to use a carbonate as a sintering aid.
Proposed by No. 4-114966. In addition, there is a natural diamond sintered body (carbonate), but it is rarely used industrially because of the large variation in the material and the minimal production.
【0003】[0003]
【発明が解決しようとする課題】Coなどの鉄族金属を
焼結助材としたダイヤモンド焼結体は、ダイヤモンド粒
の粒界にCoなどの金属が連続相として存在するため焼
結体の強度はあまり高くなく、欠損しやすい。耐熱性を
上げる目的で上記の粒界の金属を酸処理により除去され
たものも知られているが、焼結体が多孔質となるため強
度がさらに大幅(30%程度)に低下する。SiCを結合
材としたダイヤモンド焼結体は、ダイヤモンド粒同士の
結合がほとんどなく、そのため強度は低い。A diamond sintered body using an iron group metal such as Co as a sintering aid has strength of the sintered body because a metal such as Co exists as a continuous phase in the grain boundary of diamond grains. Is not very expensive and is easy to lose. It is also known that the metal of the grain boundary is removed by acid treatment for the purpose of improving heat resistance, but the strength becomes much lower (about 30%) because the sintered body becomes porous. The diamond sintered body using SiC as a binder has almost no bond between diamond grains, and therefore has low strength.
【0004】また、焼結助材として炭酸塩を用いたダイ
ヤモンド焼結体も提案されているが、炭酸塩は従来の鉄
族金属に比べ触媒能が低く、ダイヤモンドの溶解析出作
用が不十分なため、ダイヤモンド同士の結合が十分でな
く、強度上、耐欠損性上なお充分とは言い難い。また、
その製造には 7.7GPa、2000℃以上と厳しい圧力、温
度条件を要するため、工業生産上の難しさがある。本発
明は以上の問題点を解決して、高強度で耐欠損性に優れ
た、かつ、工業生産の容易な製造条件でできるダイヤモ
ンド焼結体とその製造方法を提供することを意図したも
のである。Further, a diamond sintered body using a carbonate as a sintering aid has been proposed, but the carbonate has a lower catalytic ability than the conventional iron group metal, and the dissolution and precipitation action of diamond is insufficient. Therefore, the bonds between diamonds are not sufficient, and it is hard to say that the strength and fracture resistance are still sufficient. Also,
Since its production requires severe pressure and temperature conditions of 7.7 GPa and 2000 ° C. or higher, it is difficult for industrial production. The present invention is intended to solve the above problems and provide a diamond sintered body which has high strength and excellent fracture resistance, and which can be manufactured under manufacturing conditions that facilitate industrial production, and a manufacturing method thereof. is there.
【0005】[0005]
【課題を解決するための手段】上記の課題を解決するた
めの手段として、本発明は、リンと酸素の化合物からな
る物質を 0.1〜30体積%含み残部がダイヤモンドである
焼結体を提供する。また、このダイヤモンド焼結体の製
造方法として、焼結助材として酸化リンを用い、この粉
末と、ダイヤモンド粉末または非ダイヤモンド炭素粉末
またはダイヤモンドと非ダイヤモンド炭素の混合粉末と
を混合し、これをその儘、または圧縮成形してダイヤモ
ンドの熱力学的安定領域の圧力、温度条件で保持し、焼
結する方法を提供する。As a means for solving the above-mentioned problems, the present invention provides a sintered body containing 0.1 to 30% by volume of a substance consisting of a compound of phosphorus and oxygen and the balance being diamond. . Further, as a method for producing this diamond sintered body, phosphorus oxide is used as a sintering aid, and this powder is mixed with a diamond powder or a non-diamond carbon powder or a mixed powder of diamond and non-diamond carbon. Provided is a method for holding or sintering a diamond under a pressure or temperature condition in the thermodynamically stable region of diamond by compression molding or compression molding.
【0006】このダイヤモンド焼結体の別の製造方法と
して、焼結助材として用いる酸化リンの粉末の成形体
と、ダイヤモンド粉末の成形体または非ダイヤモンド炭
素粉末の成形体またはダイヤモンドと非ダイヤモンド炭
素の混合粉末の成形体、を積層し、これをダイヤモンド
の熱力学的安定領域の圧力、温度条件で保持し、焼結す
る方法を提供する。また、このダイヤモンド焼結体の製
造のための、別の焼結助材として酸化リンの水和物、ま
たはリン酸、またはリン酸の水和物を用いる方法を提供
する。As another method for producing the diamond sintered body, a phosphorus oxide powder compact used as a sintering aid, a diamond powder compact or a non-diamond carbon powder compact, or a diamond and a non-diamond carbon compact are used. Provided is a method for laminating mixed powder compacts, holding the mixture under the pressure and temperature conditions of the thermodynamically stable region of diamond, and sintering. Further, there is provided a method for producing the diamond sintered body, which uses a hydrate of phosphorus oxide, or phosphoric acid, or a hydrate of phosphoric acid as another sintering aid.
【0007】[0007]
【作用】本発明の特徴は、ダイヤモンド焼結体の焼結助
材として酸化リンやその水和物あるいはリン酸やその水
和物を用いた点にある。従来、酸化リンやリン酸、また
はそれらの水和物がダイヤモンドの触媒として働くこと
が知られておらず、そのためダイヤモンド焼結体の焼結
助材として用いられたことはなかった。今回、本発明者
らにより、これらの酸化リンやリン酸やその水和物は、
ダイヤモンドに対して強い触媒作用を示すことが見い出
された。そしてこれらを焼結助材とすることで、ダイヤ
モンド粒子同士が極めて強固に結合したマトリックスが
形成されることがわかった。その結果、従来にない高強
度で耐欠損性に優れたダイヤモンド焼結体が得られるこ
とがわかり、本発明に至った。The feature of the present invention resides in that phosphorus oxide or its hydrate or phosphoric acid or its hydrate is used as a sintering aid for the diamond sintered body. Heretofore, it has not been known that phosphorus oxide, phosphoric acid, or a hydrate thereof acts as a catalyst for diamond, and thus has never been used as a sintering aid for a diamond sintered body. This time, by the present inventors, these phosphorus oxide, phosphoric acid and hydrates thereof,
It has been found to exhibit a strong catalytic action on diamond. It was also found that by using these as sintering aids, a matrix in which diamond particles were extremely strongly bonded to each other was formed. As a result, it was found that a diamond sintered body having an unprecedentedly high strength and excellent fracture resistance was obtained, and the present invention was accomplished.
【0008】本発明における酸化リンとしては、P4
O,P2 O,P2 O3 ,PO,P4 O 7 ,PO2 ,P4
O9 ,P2 O5 ,PO3 などが上げられる。酸化リンの
水和物P2 O5 ・nH2 Oとしてはポリリン酸(2>n
>1)、ウルトラリン酸(1>n>0)などが上げられ
る。リン酸としてはメタリン酸(HPO3 )、オルトリ
ン酸(H3 PO4 )、ペルオキソリン酸(H3 PO
5 )、ペルオキソ二リン酸(H4 P2 O8 )など、リン
酸の水和物としてたとえばH3 PO4 ・ 0.5H2 Oなど
が上げられる。The phosphorus oxide used in the present invention is PFour
O, P2 O, P2 O3 , PO, PFour O 7 , PO2 , PFour
O9 , P2 OFive , PO3 And so on. Of phosphorus oxide
Hydrate P2 OFive ・ NH2 As O, polyphosphoric acid (2> n
> 1), ultraphosphoric acid (1> n> 0), etc.
It As phosphoric acid, metaphosphoric acid (HPO3 ), Ortoli
Acid (H3 POFour ), Peroxophosphoric acid (H3 PO
Five ), Peroxodiphosphate (HFour P2 O8 ), Etc.
As a hydrate of an acid, for example, H3 POFour ・ 0.5H2 O etc.
Can be raised.
【0009】これらの酸化リンやリン酸やその水和物
は、ダイヤモンドに対して強い触媒作用を示すため、こ
れらを焼結助材とすることでダイヤモンド粒子同士が極
めて強固に結合した、高強度で耐欠損性に優れたダイヤ
モンド焼結体が得られる。こうして得られるダイヤモン
ド焼結体はリンと酸素からなる物質を含むのが特徴であ
る。また、酸化リンやリン酸あるいはこれらの水和物は
比較的低温で触媒作用が働くため、これらを焼結助材と
した場合、例えば特開平 4-74766号に示されるようなM
gやCaなどの炭酸塩を焼結助材とした場合より低圧、
低温の圧力温度条件で製造が可能である。すなわち、こ
の場合には6GPa、1500℃程度でも十分強固な焼結体
が得られる。Since these phosphorus oxides, phosphoric acids and hydrates thereof have a strong catalytic action on diamond, by using these as a sintering aid, the diamond particles are extremely strongly bonded to each other and have high strength. Thus, a diamond sintered body having excellent fracture resistance can be obtained. The diamond sintered body thus obtained is characterized by containing a substance composed of phosphorus and oxygen. Further, since phosphorus oxide, phosphoric acid or hydrates thereof act as a catalyst at a relatively low temperature, when these are used as sintering aids, for example, M as shown in JP-A-4-74766 is used.
Lower pressure than when using a carbonate such as g or Ca as a sintering aid,
It can be manufactured under low pressure and temperature conditions. That is, in this case, a sufficiently strong sintered body can be obtained even at about 6 GPa and 1500 ° C.
【0010】本発明のダイヤモンド焼結体において、リ
ンと酸素の化合物からなる物質の含有量は 0.1〜30体積
%が好ましいが、この理由は 0.1体積%未満ではダイヤ
モンド粒子間の結合性、すなわち焼結性が低下し、30体
積%を越えると過剰のリンと酸素の化合物の影響で、強
度、耐摩耗性が低下する。In the diamond sintered body of the present invention, the content of the substance consisting of the compound of phosphorus and oxygen is preferably 0.1 to 30% by volume. The reason for this is that if the content is less than 0.1% by volume, the bonding property between diamond particles, that is, the sintering. When the content exceeds 30% by volume, the strength and wear resistance are reduced due to the effect of excessive phosphorus and oxygen compounds.
【0011】原料としては合成ダイヤモンド粉末、天然
ダイヤモンド粉末、多結晶ダイヤモンド粉末などを用い
ることができる。粉末の粒径は0.01〜 200μmで、用途
によって微粒または粗粒に粒径を揃えたもの、もしくは
微粒、粗粒の混合物を用いる。また、これらのダイヤモ
ンドに代えて黒鉛やグラッシーカーボン、熱分解黒鉛な
どの非ダイヤモンドも原料とすることができる。また、
ダイヤモンドとこれら非ダイヤモンド黒鉛の混合物を用
いることもできる。As raw materials, synthetic diamond powder, natural diamond powder, polycrystalline diamond powder and the like can be used. The particle size of the powder is 0.01 to 200 μm, and fine particles or coarse particles having a uniform particle diameter or a mixture of fine particles and coarse particles is used depending on the application. Further, instead of these diamonds, non-diamond such as graphite, glassy carbon, and pyrolytic graphite can be used as a raw material. Also,
It is also possible to use a mixture of diamond and these non-diamond graphites.
【0012】本発明のダイヤモンド焼結体の製造方法と
しては、ダイヤモンド粉末や非ダイヤモンド粉末と、酸
化リンやリン酸あるいはこれらの水和物を混合したも
の、またはこの混合物を圧縮成形したものを、ダイヤモ
ンドが熱力学的に安定な圧力、温度条件下で保持する方
法と、ダイヤモンド粉末や非ダイヤモンド黒鉛の成形体
と、酸化リンやリン酸あるいはこれらの水和物の成形体
を積層したものを原料として、上記の圧力、温度条件下
で保持する方法がある。As the method for producing a diamond sintered body of the present invention, a mixture of diamond powder or non-diamond powder with phosphorus oxide, phosphoric acid or a hydrate thereof, or a mixture obtained by compression molding the mixture, A method in which diamond is held under thermodynamically stable pressure and temperature conditions, and a laminate of diamond powder or non-diamond graphite compacts and phosphorous oxide, phosphoric acid or hydrates of these compacts As a method, there is a method of holding under the above pressure and temperature conditions.
【0013】原料と焼結助材を混合する方法において
は、原料と焼結助材を、機械的に乾式または湿式混合し
た粉末を圧縮成形したもの、もくしくはMo等のカプセ
ルに充填したものを高圧高温焼結する。原料粉末が微粒
でも焼結助材を均一に分散でき、また、厚い形状のダイ
ヤモンド焼結体の製造が可能である。例えば、良好な仕
上げ面が必要な切削工具(微粒焼結体)の製造や、ダイ
スなどの厚い形状を必要とする焼結体の製造に適する。
ただし、粗粒の原料を用いた場合、均一に焼結助材を混
合するのに困難を要す。一方、原料と焼結助材を積層配
置する方法は、原料と焼結助材の板状の成形体をそれぞ
れ製作し、これらを積層して接触させ、高圧高温処理す
る。このとき、焼結助材が原料層に拡散含浸し、ダイヤ
モンド粒子が焼結する。この方法は、粗粒の原料を用い
ても焼結助材を均一に添加できるため、より高強度で耐
摩耗性のあるダイヤモンド焼結体を安定して得ることが
でき、耐摩耗工具やドリルビットなどの焼結体の製造に
適する。In the method of mixing the raw material and the sintering auxiliary material, the raw material and the sintering auxiliary material are compression-molded from a powder obtained by mechanically dry- or wet-mixing, or filled in a capsule such as Mo or the like. The material is sintered at high pressure and high temperature. Even if the raw material powder is fine particles, the sintering aid can be uniformly dispersed, and a thick diamond sintered body can be manufactured. For example, it is suitable for manufacturing a cutting tool (fine-grained sintered body) that requires a good finished surface and a sintered body that requires a thick shape such as a die.
However, when a coarse-grained raw material is used, it is difficult to uniformly mix the sintering aid. On the other hand, in the method of stacking the raw material and the sintering aid, a plate-shaped molded body of the raw material and the sintering aid is manufactured, and these are stacked and brought into contact with each other, and subjected to high-pressure and high-temperature treatment. At this time, the sintering aid is diffused and impregnated into the raw material layer, and the diamond particles are sintered. With this method, even if a coarse-grained raw material is used, the sintering aid can be added uniformly, so that a diamond sintered body with higher strength and wear resistance can be stably obtained. Suitable for manufacturing sintered bodies such as bits.
【0014】[0014]
実施例1 焼結助材として五酸化リン(P2 O5 )を用いた。平均
粒径 3.5μmの合成ダイヤモンド粉末と、五酸化リンの
粉末をそれぞれ95体積%、5体積%の割合で十分に混合
し、この混合物をMoカプセルに入れ、ベルト型の超高
圧高温発生装置を用いて、 6.5GPa、1700℃の圧力温
度条件で15分間保持し、焼結させた。得られたダイヤモ
ンド焼結体について、X線回折により組成を同定したと
ころ、ダイヤモンドの他、約5体積%の酸化リンが検出
された。この焼結体の硬度をヌープ圧子により評価した
ところ8000kg/mm2 と高硬度であった。また、破壊靭性
をインデンテーション法により従来の市販のCoバイン
ダー焼結体に対し相対比較したところ、従来焼結体の約
1.4倍の相対靭性であった。Example 1 Phosphorus pentoxide (P 2 O 5 ) was used as a sintering aid. A synthetic diamond powder with an average particle size of 3.5 μm and phosphorous pentoxide powder were thoroughly mixed at a ratio of 95% by volume and 5% by volume, respectively, and the mixture was put into a Mo capsule, and a belt-type ultrahigh pressure and high temperature generator was installed. It was used for 15 minutes under the pressure temperature condition of 6.5 GPa and 1700 ° C. to be sintered. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 5% by volume of phosphorus oxide was detected in addition to diamond. When the hardness of this sintered body was evaluated by a Knoop indenter, it was as high as 8000 kg / mm 2 . The fracture toughness of the conventional sintered Co binder was compared by conventional indentation method.
The relative toughness was 1.4 times.
【0015】実施例2 焼結助材として、5体積%のメタリン酸(HPO3 )を
用いた他は、実施例1と同様にしてダイヤモンド焼結体
を作製した。得られた焼結体にはリン酸が含まれてお
り、硬度、靭性、耐熱性とも実施例1と同様であった。Example 2 A diamond sintered body was produced in the same manner as in Example 1 except that 5% by volume of metaphosphoric acid (HPO 3 ) was used as a sintering aid. The obtained sintered body contained phosphoric acid, and had the same hardness, toughness, and heat resistance as in Example 1.
【0016】実施例3 焼結助材として、5体積%のオルトリン酸(H3 PO
4 )を用いた他は、実施例1と同様にしてダイヤモンド
焼結体を作製した。得られた焼結体にはリン酸が含まれ
ており、硬度、靭性、耐熱性とも実施例1と同様であっ
た。Example 3 As a sintering aid, 5% by volume of orthophosphoric acid (H 3 PO) was used.
A diamond sintered body was produced in the same manner as in Example 1 except that 4 ) was used. The obtained sintered body contained phosphoric acid, and had the same hardness, toughness, and heat resistance as in Example 1.
【0017】実施例4 焼結助材として、5体積%の含水オルトリン酸(H3 P
O4 ・ 0.5H2 O)を用い、焼結圧力温度条件を 6.5G
Pa、1600℃とした他は、実施例1と同様にしてダイヤ
モンド焼結体を作製した。得られた焼結体にはリン酸が
含まれており、硬度、靭性、耐熱性とも実施例1と同様
であった。Example 4 As a sintering aid, 5% by volume of hydrous orthophosphoric acid (H 3 P)
O 4 · 0.5H 2 O) and the sintering pressure temperature condition is 6.5G
A diamond sintered body was produced in the same manner as in Example 1 except that Pa and 1600 ° C. were used. The obtained sintered body contained phosphoric acid, and had the same hardness, toughness, and heat resistance as in Example 1.
【0018】実施例5 焼結助材として、5体積%のポリリン酸を用い、焼結圧
力温度条件を 6.5GPa、1650℃とした他は、実施例1
と同様にしてダイヤモンド焼結体を作製した。得られた
焼結体にはリン酸が含まれており、硬度、靭性、耐熱性
とも実施例1と同様であった。Example 5 Example 1 was repeated except that 5% by volume of polyphosphoric acid was used as a sintering aid and the sintering pressure temperature conditions were 6.5 GPa and 1650 ° C.
A diamond sintered body was produced in the same manner as in. The obtained sintered body contained phosphoric acid, and had the same hardness, toughness, and heat resistance as in Example 1.
【0019】実施例6 焼結助材としてP2 O5 を用いた。平均粒径15μmの合
成ダイヤモンド粉末と平均粒径10μmの黒鉛粉末を体積
比で3:2で混合し、厚み2mmに型押し成形したもの
と、P2 O5 の粉末を厚み1mmに型押し成形したものを
交互に積層してMoカプセルに入れ、ベルト型の超高圧
高温発生装置を用いて、 6.5GPa、1800℃の圧力温度
条件で15分間保持し、焼結させた。得られたダイヤモン
ド焼結体について、X線回折により組成を同定したとこ
ろ、ダイヤモンドの他、約2体積%のリン酸が検出され
た。この焼結体の硬度をヌープ圧子により評価したとこ
ろ約8300kg/mm2 と高硬度であった。また、破壊靭性を
インデンテーション法により従来の市販のCoバインダ
ー焼結体に対し相対比較したところ、従来焼結体の約1.
5倍の相対靭性であった。Example 6 P 2 O 5 was used as a sintering aid. A synthetic diamond powder with an average particle size of 15 μm and a graphite powder with an average particle size of 10 μm were mixed in a volume ratio of 3: 2 and pressed into a thickness of 2 mm, and P 2 O 5 powder was pressed into a thickness of 1 mm. These were alternately laminated and placed in a Mo capsule, which was then held for 15 minutes under a pressure temperature condition of 6.5 GPa and 1800 ° C. using a belt-type ultra-high pressure and high temperature generator to sinter. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 2% by volume of phosphoric acid was detected in addition to diamond. When the hardness of this sintered body was evaluated with a Knoop indenter, it was about 8300 kg / mm 2 , which was a high hardness. Further, when the fracture toughness was compared with the conventional commercially available Co binder sintered body by the indentation method, it was about 1.
The relative toughness was 5 times.
【0020】実施例7 焼結助材としてP2 O5 を用いた。平均粒径3μmの高
純度等方性黒鉛の厚み2mmの板状焼結体と、P2 O5 の
粉末を厚み1mmに型押し成形したものを交互に積層して
Moカプセルに入れ、ガードル型の超高圧高温発生装置
を用いて、 6.5GPa、1800℃の圧力温度条件で15分間
保持し、焼結させた。得られたダイヤモンド焼結体につ
いて、X線回折により組成を同定したところ、ダイヤモ
ンドの他、約3体積%の酸化リンが検出された。この焼
結体の硬度をヌープ圧子により評価したところ約8000kg
/mm2 と高硬度であった。また、破壊靭性をインデンテ
ーション法により従来の市販のCoバインダー焼結体に
対し相対比較したところ、従来焼結体の約 1.3倍の相対
靭性であった。Example 7 P 2 O 5 was used as a sintering aid. A plate-shaped sintered body of high-purity isotropic graphite having an average particle diameter of 3 μm and a thickness of 2 mm and a P 2 O 5 powder having a thickness of 1 mm which were embossed and molded were alternately laminated and put in a Mo capsule to form a girdle type. Using the ultra-high pressure and high temperature generator of No. 3, the product was held at a pressure and temperature of 6.5 GPa and 1800 ° C. for 15 minutes for sintering. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 3% by volume of phosphorus oxide was detected in addition to diamond. When the hardness of this sintered body was evaluated with a Knoop indenter, it was approximately 8000 kg.
The hardness was as high as / mm 2 . When the fracture toughness was compared with the conventional commercially available Co binder sintered body by the indentation method, the relative toughness was about 1.3 times that of the conventional sintered body.
【0021】比較例1 焼結助材としてP2 O5 を用いた。平均粒径 3.5μmの
合成ダイヤモンド粉末に微量のP2 O5 の粉末(約0.05
体積%)添加し、十分に混合したものを原料にした他
は、実施例1と同様にダイヤモンド焼結体の製造を試み
た。しかし、得られた焼結体には、未焼結部が多く残留
していた。Comparative Example 1 P 2 O 5 was used as a sintering aid. A small amount of P 2 O 5 powder (about 0.05
The production of a diamond sintered body was attempted in the same manner as in Example 1 except that a raw material was added to the mixture and mixed sufficiently. However, many unsintered parts remained in the obtained sintered body.
【0022】比較例2 焼結助材としてP2 O5 を用いた。平均粒径 3.5μmの
合成ダイヤモンド粉末60体積%と、P2 O5 の粉末40体
積%を添加し、十分に混合したものを原料にした他は、
実施例1と同様にダイヤモンド焼結体の製造を試みた。
しかし、得られた焼結体は、粒子同士の結合が十分でな
く、硬度は3500kg/mm2 程度と低かった。Comparative Example 2 P 2 O 5 was used as a sintering aid. 60% by volume of synthetic diamond powder having an average particle size of 3.5 μm and 40% by volume of P 2 O 5 powder were added and sufficiently mixed, and used as a raw material.
An attempt was made to manufacture a diamond sintered body in the same manner as in Example 1.
However, in the obtained sintered body, the particles were not sufficiently bonded to each other, and the hardness was low at about 3500 kg / mm 2 .
【0023】[0023]
【発明の効果】以上説明したように、本発明のダイヤモ
ンド焼結体は、従来にない極めて高い強度を有し、耐欠
損性に優れているので、非鉄金属やセラミックス等の切
削、研削工具用素材、および石油掘削用途等のドリルビ
ットの刃先素材として有効に使用できる。しかも比較的
低い圧力、低い温度で焼結できるので経済的効果も大き
い。As described above, since the diamond sintered body of the present invention has extremely high strength and has excellent fracture resistance, it is suitable for cutting and grinding tools such as non-ferrous metals and ceramics. It can be effectively used as a material and a cutting edge material for drill bits for oil drilling applications. Moreover, since it can be sintered at a relatively low pressure and a low temperature, it has a great economic effect.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B23B 27/20 B23B 27/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // B23B 27/20 B23B 27/20
Claims (4)
〜30体積%含み残部がダイヤモンドであることを特徴と
するダイヤモンド焼結体。1. A substance comprising a compound of phosphorus and oxygen is added to 0.1.
A diamond sintered body, characterized in that it contains up to 30% by volume and the balance is diamond.
末と、ダイヤモンド粉末または非ダイヤモンド炭素粉末
またはダイヤモンドと非ダイヤモンド炭素の混合粉末、
を混合し、これをダイヤモンドの熱力学的安定領域の圧
力、温度条件で保持し、焼結することを特徴とする請求
項1記載のダイヤモンド焼結体の製造方法。2. A phosphorous oxide is used as a sintering aid, and this powder is mixed with a diamond powder or a non-diamond carbon powder or a mixed powder of diamond and non-diamond carbon,
2. The method for producing a diamond sintered body according to claim 1, further comprising the steps of: mixing, holding the mixture under conditions of pressure and temperature in a thermodynamically stable region of diamond, and sintering the mixture.
末の成形体と、ダイヤモンド粉末の成形体または非ダイ
ヤモンド炭素粉末の成形体またはダイヤモンドと非ダイ
ヤモンド炭素の混合粉末の成形体を積層し、これをダイ
ヤモンドの熱力学的安定領域の圧力、温度条件で保持
し、焼結することを特徴とする請求項第1記載のダイヤ
モンド焼結体の製造方法。3. A molded body of this powder, a molded body of diamond powder or a molded body of non-diamond carbon powder, or a molded body of mixed powder of diamond and non-diamond carbon is laminated by using phosphorus oxide as a sintering aid. 2. The method for producing a diamond sintered body according to claim 1, wherein the diamond sintered body is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered.
ることを特徴とする請求項2または3記載のダイヤモン
ド焼結体の製造方法。 A.酸化リンの水和物 B.リン酸 C.リン酸の水和物4. The method for producing a diamond sintered body according to claim 2, wherein the sintering aid is any one of the following A, B, and C. A. Phosphorus oxide hydrate B. Phosphoric acid C.I. Phosphoric acid hydrate
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7141316A JPH08310865A (en) | 1995-05-15 | 1995-05-15 | Diamond sintered body and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7141316A JPH08310865A (en) | 1995-05-15 | 1995-05-15 | Diamond sintered body and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08310865A true JPH08310865A (en) | 1996-11-26 |
Family
ID=15289080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7141316A Pending JPH08310865A (en) | 1995-05-15 | 1995-05-15 | Diamond sintered body and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08310865A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009138774A1 (en) * | 2008-05-12 | 2009-11-19 | Bizesp Limited | A process for the manufacture of a high density ito sputtering target |
CN116180237A (en) * | 2023-02-23 | 2023-05-30 | 四川大学 | Preparation method of n-type semiconductor diamond material |
-
1995
- 1995-05-15 JP JP7141316A patent/JPH08310865A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009138774A1 (en) * | 2008-05-12 | 2009-11-19 | Bizesp Limited | A process for the manufacture of a high density ito sputtering target |
US8778234B2 (en) | 2008-05-12 | 2014-07-15 | Bizesp Limited | Process for the manufacture of a high density ITO sputtering target |
CN116180237A (en) * | 2023-02-23 | 2023-05-30 | 四川大学 | Preparation method of n-type semiconductor diamond material |
CN116180237B (en) * | 2023-02-23 | 2024-12-10 | 四川大学 | A method for preparing n-type semiconductor diamond material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6913633B2 (en) | Polycrystalline abrasive grit | |
US5769176A (en) | Diamond sintered compact and a process for the production of the same | |
IE59164B1 (en) | Improved cubic boron nitride compact and method of making same | |
EP0701861A2 (en) | A diamond sintered body and a process for the production of the same, tools and abrasive grains using the same | |
EP0698447B1 (en) | Abrasive body | |
JP2013530914A (en) | High-strength diamond-SiC compact and manufacturing method thereof | |
JPH08133839A (en) | Diamond sintered body and its manufacturing method, diamond sintered body tool and abrasive grains | |
JPH08310865A (en) | Diamond sintered body and method for manufacturing the same | |
JPH09142932A (en) | Diamond sintered body and method for manufacturing the same | |
JP3733613B2 (en) | Diamond sintered body and manufacturing method thereof | |
JPH09142933A (en) | Diamond sintered body and method for manufacturing the same | |
JP3622261B2 (en) | Diamond sintered body and manufacturing method thereof | |
JP3731223B2 (en) | Diamond sintered body and manufacturing method thereof | |
JP3893631B2 (en) | Diamond sintered body, manufacturing method thereof, diamond sintered body tool, and abrasive grains | |
JP3642082B2 (en) | Diamond sintered body and manufacturing method thereof | |
JP3978789B2 (en) | Diamond sintered body and method for producing the same | |
JPS59563B2 (en) | Manufacturing method of diamond sintered body | |
JPH09157023A (en) | Method for manufacturing diamond sintered body and diamond sintered body | |
JPH09324236A (en) | Diamond sintered body and method for manufacturing the same | |
JPH09157024A (en) | Method for manufacturing diamond sintered body | |
JPH0952766A (en) | Diamond sintered body and method for manufacturing the same | |
JPH0967164A (en) | Diamond sintered body and method for manufacturing the same | |
RU2113531C1 (en) | Diamond sintered material, method of its production and tool and abrasive powder made from diamond sintered material | |
JPS5950075A (en) | Manufacture of cubic boron nitride sintered body | |
EP0192391B1 (en) | Cubic boron nitride abrasive body |