JPS60131811A - Synthesis method of boron nitride - Google Patents
Synthesis method of boron nitrideInfo
- Publication number
- JPS60131811A JPS60131811A JP23833383A JP23833383A JPS60131811A JP S60131811 A JPS60131811 A JP S60131811A JP 23833383 A JP23833383 A JP 23833383A JP 23833383 A JP23833383 A JP 23833383A JP S60131811 A JPS60131811 A JP S60131811A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- seed crystal
- crystal
- cbn
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052582 BN Inorganic materials 0.000 title claims description 18
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 18
- 238000001308 synthesis method Methods 0.000 title 1
- 239000013078 crystal Substances 0.000 claims description 47
- 239000002904 solvent Substances 0.000 claims description 20
- 239000002994 raw material Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 150000001342 alkaline earth metals Chemical group 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 230000005496 eutectics Effects 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 239000010432 diamond Substances 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101000777220 Homo sapiens Ubiquitin carboxyl-terminal hydrolase 3 Proteins 0.000 description 1
- 229910012328 Li3BN2 Inorganic materials 0.000 description 1
- 102100031287 Ubiquitin carboxyl-terminal hydrolase 3 Human genes 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Catalysts (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(イ)技術分野
立方晶型窒化硼素(以下Cl5Nと記す)はダイヤモン
ドに次ぐ硬度を有し、鉄系材料の研削加工用砥粒として
人工合成されたものが広く用いられている。最近合成技
術が進歩し2o/go USメツシュサイズの単結晶粉
末が合成されるようになった。Detailed description of the invention (a) Technical field Cubic boron nitride (hereinafter referred to as Cl5N) has a hardness second only to diamond, and is widely used as an artificially synthesized abrasive grain for grinding iron-based materials. It is being Recently, synthesis technology has advanced and single crystal powders of 2o/go US mesh size can now be synthesized.
CBNのダイヤに対する有利な点は、鉄属金属との反応
性が少ない点である。ダイヤモンドは既に1カラツトを
越える直径6醋以・上の単結晶が超高圧下での合成に成
功している。近年超精密加工技術への要求が強まり、ダ
イヤモンドの単結晶を用いたバイトが広く用いられてい
るが、前述した如く鉄系材料との反応性の為にこれ等の
超精密加工を行なうことが出来ず、ダイヤモンドに替る
工具材の開発が望まれていた。The advantage of CBN over diamond is that it is less reactive with ferrous metals. Single crystal diamonds weighing more than 1 carat and having a diameter of 6 mm or more have already been successfully synthesized under ultra-high pressure. In recent years, the demand for ultra-precision machining technology has increased, and tools using diamond single crystals are widely used, but as mentioned above, these ultra-precision machining tools cannot be performed due to their reactivity with iron-based materials. However, there was a desire to develop a tool material to replace diamond.
本発明はこのような用途にも使用できる大型のCBN単
結晶を再現性良く合成する方法に関するものである。The present invention relates to a method for synthesizing large CBN single crystals with good reproducibility, which can also be used for such applications.
(ロ)従来技術とその問題点
CBNO合成は通常六方晶型窒化硼素(以下hBNと記
す)を原料とし、アルヵり金属、アルカリ土類金属、ま
たはこれ等の窒化物を触媒とし超高圧、高温1下で行な
われる。良く、用いられる触媒としてはLi 、 Mg
、ca 、 Li3N 、 Mg4N2 、 Ca3
N2等である。合゛成に当ってhBNとこれ等の触媒
物質との混合物を容器に充填し、これを超高圧装置に入
れ、第1−図に示したCBNの安定領域に加圧、加熱す
る。このような方法ではCIIINの自然核生成が生じ
多数の微粒CBN単結晶が得られる。このような粉末状
CB、Nとしでは20/80USメツシユサイズ、即ち
約0.7mmまでの単結晶が工業的に製造されている。(b) Prior art and its problems CBNO synthesis usually uses hexagonal boron nitride (hereinafter referred to as hBN) as a raw material, and uses alkali metals, alkaline earth metals, or their nitrides as catalysts at ultra-high pressures and high temperatures. It is done under 1. Commonly used catalysts are Li, Mg
, ca, Li3N, Mg4N2, Ca3
It is N2 grade. During synthesis, a mixture of hBN and these catalyst materials is filled into a container, placed in an ultra-high pressure apparatus, and heated and pressurized to the stable region of CBN shown in FIG. In such a method, natural nucleation of CIIIN occurs and a large number of fine CBN single crystals are obtained. Single crystals of powdered CB and N up to a 20/80 US mesh size, that is, about 0.7 mm, are produced industrially.
史に大型の単結晶を育成する試みもなされtいる。例え
ば特開昭57−156899号には溶媒とし”’C−S
’r3112N4 +B a B B 2 N4を用い
、CBNを種結晶とじで1111度差法によるCBNO
単結晶育成の例が示されでいる。Historically, attempts have been made to grow large single crystals. For example, in JP-A-57-156899, the solvent "'C-S
'r3112N4 + B a B B 2 CBNO by 1111 degree difference method using CBN with seed crystal binding
An example of single crystal growth is shown.
超高圧下の温度差法による単結晶育成の例はダイヤモン
ドについて既に広く知られでいる。(例えばUSP3,
297,407) CBNの場合も窒化硼素を原料とし
、これを適度に溶解する溶媒があれば温度差による溶解
度の変化を利用して大型単結晶の育成■硼窒化物を溶媒
としで、CBNの0.7 mm径のものを種結晶として
低温部におき、棟々実験したが満足な結果は得られなか
った。最も大きな問題は殆んどの場合種結晶が先に溶媒
中に溶解してしまったため、自然核発生によるCBNが
多数生成してしまい、大型の良質単結晶が得られなかっ
たことである。An example of single crystal growth using the temperature difference method under ultra-high pressure is already widely known for diamond. (For example, USP3,
297,407) In the case of CBN, boron nitride is used as a raw material, and if there is a solvent that dissolves it appropriately, it is possible to grow large single crystals by taking advantage of changes in solubility due to temperature differences. A number of experiments were carried out using seed crystals with a diameter of 0.7 mm placed in a low-temperature area, but no satisfactory results were obtained. The biggest problem is that in most cases, the seed crystal is dissolved in the solvent first, resulting in the production of a large number of CBNs due to spontaneous nucleation, making it impossible to obtain large, high-quality single crystals.
(/→発明の構成
CBN単結晶の育成においてはとの種結晶の溶解防止が
大きな問題であることが分ったので、この対策を種々倹
約した。例えば特開昭57−156399号では種結晶
の溶解防止のためにFe−,10%hlj合金薄板をS
r B B 2 N 4濱媒とCBN種結晶の間に挿
入する方法をとっている。しかしこの方法でも種結晶の
溶解は完全に防止できなかった。これはFe−J合金が
CBNに対する溶解度を有しでいるためと思われる。(/→Constitution of the Invention In the growth of CBN single crystals, it was found that prevention of dissolution of the seed crystal was a major problem, so various measures were taken to save the seed crystal. For example, in JP-A-57-156399, the seed crystal Fe-, 10% hlj alloy thin plate is coated with S to prevent melting
A method is adopted in which the r B B 2 N 4 is inserted between the aqueous medium and the CBN seed crystal. However, even with this method, dissolution of the seed crystal could not be completely prevented. This seems to be because the Fe-J alloy has solubility in CBN.
種結晶の溶解は超高圧下で系が加゛熱され、種結晶上に
CBNの成長が始る前に溶媒が飽和濃度の窒化硼素を溶
解することによるものと考えられる。本発明の原理はこ
の点から予め溶媒中に種結晶とは別に予め合成温度、圧
力条件下での予見される飽和濃度以下の窒化硼素を加え
ておくことによって種結晶CBNの溶解を防止するもの
である。この方法によって適切な量の窒化硼素を予め含
有せしめた溶媒を用いると種結晶の溶解は殆んど防止す
ることが可能となシ、種結晶のみから大型のCIIN単
結晶を成長させることが可能となった。The dissolution of the seed crystal is thought to be due to the heating of the system under ultra-high pressure and the solvent dissolving the saturated concentration of boron nitride before CBN growth begins on the seed crystal. From this point of view, the principle of the present invention is to prevent dissolution of the seed crystal CBN by adding boron nitride to the solvent in advance, in addition to the seed crystal, at a concentration below the predicted saturation concentration under the synthesis temperature and pressure conditions. It is. By using this method, dissolution of the seed crystal can be almost prevented by using a solvent pre-contained with an appropriate amount of boron nitride, and it is possible to grow a large CIIN single crystal only from the seed crystal. It became.
この方法は非常に単純で、且つ再現性の高い結果が得ら
れ1いる。本発明で用いる窒化#llI素原料はhBN
、CBN、WBN (ウルツ鉱型窒化硼素?、又はアモ
ルファス状窒化硼素等特に結晶形は問わない。This method is very simple and gives highly reproducible results. The nitrided #llI raw material used in the present invention is hBN.
, CBN, WBN (wurtzite boron nitride? or amorphous boron nitride, etc.) The crystal form does not matter.
但し出来る限り高純度のものを選択する。実験ではCB
N又はCBNとI+RNの混合物を用いた場合が好結果
が得られた。However, choose one with the highest purity possible. In the experiment, CB
Good results were obtained when using a mixture of N or CBN and I+RN.
溶媒物質としてはアルカリ金属又はアルカリ土類金属の
硼窒化物で各々M−38N、又riML112N4の形
で表わされるものが使用できる。特にLi3BN2 、
Ca3B2N4 。As solvent substances, boronitrides of alkali metals or alkaline earth metals, each represented by M-38N or riML112N4, can be used. Especially Li3BN2,
Ca3B2N4.
る各溶媒の窒化硼素との共晶組成以下とすべきである。The eutectic composition of each solvent with boron nitride should be below.
それ以上ではCBNが溶媒中に析出しでしまう。また殆
んどの場合添加量が0.5モルチ以下では種結晶の明ら
かな溶解が認められた。If it exceeds this range, CBN will precipitate into the solvent. In most cases, when the amount added was less than 0.5 molt, clear dissolution of the seed crystals was observed.
以下実施例により更に具体的に説明する。This will be explained in more detail below with reference to Examples.
丙施例1
平均粒度約50μのCBN粉末とI+BN粉末を重量で
l:lの比に混合して型押成型した。L + 3 BN
2の粉末fchBN粉末を0*0.5*I、B*6t
8 モ)v%添加した混合粉末を調整した。第2図の4
14成の試料室を用い径約0.7ttunのCBN種結
晶と溶媒及び原料CIIINとhBNO型押体を配置し
た。これをベルシト型袢装圧装置に入れ53 Kbで原
料部の温度を1650℃に加圧、加熱し、24時間その
条件を持続した后取出してみた。bBN添加量が0、又
は8モルチの溶媒を用いたものはいずれも多数の径1g
以下のCBNが生成しておシ、hBN添加量0のものは
種結晶が溶解してしまっていた。他のものは種結晶から
径約8 amのCBN単結晶が成長していた。Example C 1 CBN powder with an average particle size of about 50 μm and I+BN powder were mixed in a weight ratio of 1:1 and pressed. L+3BN
2 powder fchBN powder 0*0.5*I, B*6t
8) A mixed powder containing v% was prepared. 4 in Figure 2
A CBN seed crystal with a diameter of about 0.7 ttun, a solvent, raw materials CIIIN, and an hBNO embossing body were placed in a 14-piece sample chamber. This was placed in a Velsito type loading pressure device and heated and pressurized at 53 Kb to bring the temperature of the raw material section to 1650° C., and after maintaining this condition for 24 hours, it was taken out. bBN addition amount of 0 or 8 molti of solvents are all 1g of diameter.
The following CBN was produced, and in the case where the amount of hBN added was 0, the seed crystals were dissolved. In other cases, CBN single crystals with a diameter of about 8 am were grown from seed crystals.
実施例2
溶媒としてCa3B2N4 、 Mg3B2N4を用い
、実施例1と同様に11BNを添加したも○を調整した
。他は実施例1と同様にしてCaBB2N4系濱媒では
531(b、原料部の温度1600℃、Mg3B2N4
系濱媒の場合は51Kbで同じ(1600℃に条件を設
定し24116間保持して実験した。その結果1+BN
を添加しなかった溶媒ではいずれも種結晶が消失し、多
艮○] MIN以下■CBNが溶媒下部に生成していた
。Example 2 Using Ca3B2N4 and Mg3B2N4 as solvents, 11BN was added in the same manner as in Example 1 to prepare a sample. Other conditions were the same as in Example 1, and the CaBB2N4-based aqueous medium was 531 (b, the temperature of the raw material part was 1600°C, the Mg3B2N4
In the case of a system aquatic medium, it is the same at 51 Kb (the conditions were set at 1600°C and held for 24116 hours. As a result, 1+BN
Seed crystals disappeared in all solvents to which CBN was not added, and CBN was formed at the bottom of the solvent.
実施例3
Ll 3BN2 、 S r3B2N4 、 h BN
をセル比で645:32.3:3.2の割合で混合し溶
媒を作成した。原料窒化硼素にはCBNの粉末を用い、
また種結晶には径0.7 mmのCBN単結晶を用いた
。圧力52Kb、温度1550℃で24時間保持したと
ころ、種結晶上にのみ径約3mgの良好な形態を持つC
BN単結晶が成長していた。Example 3 Ll 3BN2, S r3B2N4, h BN
were mixed at a cell ratio of 645:32.3:3.2 to prepare a solvent. CBN powder is used as the raw material boron nitride,
Further, a CBN single crystal with a diameter of 0.7 mm was used as a seed crystal. When kept at a pressure of 52 Kb and a temperature of 1550°C for 24 hours, C with a good morphology of about 3 mg in diameter was formed only on the seed crystal.
A BN single crystal was growing.
第1図は本発明のCBN単結晶合成条件を説明するため
の窒化硼素の温度、圧力相図である。第2硼素安定域を
示す。
l:パイロフイライトヌリープ
2:黒鉛ヒーター
3:窒化?1ljll素原料
4:溶 媒
5:CBN種結晶
6:白金製ンードベッド
7:hBN焼結体
8:Ta製容器FIG. 1 is a temperature and pressure phase diagram of boron nitride for explaining the CBN single crystal synthesis conditions of the present invention. The second boron stability region is shown. l: Pyrofluorite Nureep 2: Graphite heater 3: Nitriding? 1ljll Raw material 4: Solvent 5: CBN seed crystal 6: Platinum bed bed 7: hBN sintered body 8: Ta container
Claims (1)
の形で表わされる硼窒化物、アルカリ土類金属の硼窒化
物の共晶組成の量以下で、05モル嘱以上の窒化硼素を
混合もしくは固溶させたものを油媒とし、立方晶型窒化
硼素の単結晶を種結晶とし、立方晶型窒化硼素が安定な
圧力、温度条件下で且つ該溶媒物質の融点以上の温度に
系全体を保ち、原料窒化硼素の塊と溶媒物質の塊を接触
させ、その接触面から離れた位置に溶媒物質と接して種
結晶を配置し、この種結晶部の温度を原料と溶媒物質の
接触点の温度より相対的に低く保ちながら種結晶上に立
方晶型窒化硼素を成長させる窒化#jl素の合成方法。(1) Using boron nitride as a raw material, alkali metal MaBN2
Boron nitride expressed in the form, cubic crystal nitride using an oil medium containing 0.5 mole or more of boron nitride mixed or dissolved in an amount less than the eutectic composition of alkaline earth metal boronitride. Using a single crystal of boron as a seed crystal, the bulk of the raw material boron nitride and the bulk of the solvent substance are brought into contact under pressure and temperature conditions where cubic boron nitride is stable and the entire system is maintained at a temperature above the melting point of the solvent substance. The seed crystal is placed in contact with the solvent substance at a position away from the contact surface, and the cubic crystal is placed on the seed crystal while keeping the temperature of the seed crystal part relatively lower than the temperature of the contact point between the raw material and the solvent substance. A method for synthesizing #jl nitride to grow type boron nitride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23833383A JPS60131811A (en) | 1983-12-16 | 1983-12-16 | Synthesis method of boron nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23833383A JPS60131811A (en) | 1983-12-16 | 1983-12-16 | Synthesis method of boron nitride |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60131811A true JPS60131811A (en) | 1985-07-13 |
Family
ID=17028645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23833383A Pending JPS60131811A (en) | 1983-12-16 | 1983-12-16 | Synthesis method of boron nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60131811A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4699687A (en) * | 1985-09-24 | 1987-10-13 | Sumitomo Electric Industries, Ltd. | Method of synthesizing cubic system boron nitride |
JPS6339617A (en) * | 1986-07-30 | 1988-02-20 | デ ビアス インダストリアル ダイアモンド デイビジヨン (プロプライエタリイ) リミテツド | Reaction container and production of cbn crystal |
JPS63274447A (en) * | 1987-05-01 | 1988-11-11 | Natl Inst For Res In Inorg Mater | Growth method of semiconductor cubic boron nitride single crystal |
CN103316612A (en) * | 2013-06-25 | 2013-09-25 | 河南飞孟金刚石工业有限公司 | Continuous growing method for synthesizing large single crystals of cubic boron nitride by using seed crystals |
JP2021519736A (en) * | 2018-04-25 | 2021-08-12 | モントロス,チャーリー | Catalytic solvent for carbon nitride |
CN113818072A (en) * | 2021-10-22 | 2021-12-21 | 郑州中南杰特超硬材料有限公司 | A kind of hexagonal boron nitride single crystal growth method |
-
1983
- 1983-12-16 JP JP23833383A patent/JPS60131811A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4699687A (en) * | 1985-09-24 | 1987-10-13 | Sumitomo Electric Industries, Ltd. | Method of synthesizing cubic system boron nitride |
JPS6339617A (en) * | 1986-07-30 | 1988-02-20 | デ ビアス インダストリアル ダイアモンド デイビジヨン (プロプライエタリイ) リミテツド | Reaction container and production of cbn crystal |
JPS63274447A (en) * | 1987-05-01 | 1988-11-11 | Natl Inst For Res In Inorg Mater | Growth method of semiconductor cubic boron nitride single crystal |
CN103316612A (en) * | 2013-06-25 | 2013-09-25 | 河南飞孟金刚石工业有限公司 | Continuous growing method for synthesizing large single crystals of cubic boron nitride by using seed crystals |
JP2021519736A (en) * | 2018-04-25 | 2021-08-12 | モントロス,チャーリー | Catalytic solvent for carbon nitride |
CN113818072A (en) * | 2021-10-22 | 2021-12-21 | 郑州中南杰特超硬材料有限公司 | A kind of hexagonal boron nitride single crystal growth method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100823760B1 (en) | Method for producing abrasive product containing cubic boron nitride | |
KR100503541B1 (en) | Sintering process for diamond and diamond growth | |
JP2005514300A (en) | Low oxygen cubic boron nitride and its products | |
JPH07242466A (en) | Production of polycrystalline cubic boron nitride | |
JPS6320792B2 (en) | ||
JPS62274034A (en) | Manufacturing method of polycrystalline diamond sintered body by reaction sintering | |
JPS60131811A (en) | Synthesis method of boron nitride | |
CN107820441B (en) | The monocrystalline state diamond particles and its manufacturing method of the particle containing cubic boron nitride | |
Singh et al. | On the low-pressure synthesis of cubic boron nitride | |
JPS6345346A (en) | Abrasion resistant material and its production | |
KR100572418B1 (en) | Substance containing crystals | |
JPH0691955B2 (en) | Method for synthesizing high quality cubic boron nitride single crystal | |
JPS60145958A (en) | Synthesis method of boron nitride | |
JPS6253218B2 (en) | ||
US5869015A (en) | Method for producing cubic boron nitride using melamine as a catalyst | |
JPH0372940A (en) | Manufacturing method of cubic boron nitride | |
KR100636415B1 (en) | Manufacturing method of cubic boron nitride | |
JPH0594B2 (en) | ||
JPS5938164B2 (en) | Manufacturing method of cubic boron nitride | |
JPH0595B2 (en) | ||
JPS6225601B2 (en) | ||
JPH0314495B2 (en) | ||
JPS6225602B2 (en) | ||
JPH052369B2 (en) | ||
JPS59164605A (en) | Method for synthesizing diamond |