[go: up one dir, main page]

JPS6249754B2 - - Google Patents

Info

Publication number
JPS6249754B2
JPS6249754B2 JP57018225A JP1822582A JPS6249754B2 JP S6249754 B2 JPS6249754 B2 JP S6249754B2 JP 57018225 A JP57018225 A JP 57018225A JP 1822582 A JP1822582 A JP 1822582A JP S6249754 B2 JPS6249754 B2 JP S6249754B2
Authority
JP
Japan
Prior art keywords
layer
inp
solar cell
impurity concentration
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57018225A
Other languages
Japanese (ja)
Other versions
JPS58137263A (en
Inventor
Atsushi Shibukawa
Zeio Kamimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57018225A priority Critical patent/JPS58137263A/en
Publication of JPS58137263A publication Critical patent/JPS58137263A/en
Publication of JPS6249754B2 publication Critical patent/JPS6249754B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • H10F10/144Photovoltaic cells having only PN homojunction potential barriers comprising only Group III-V materials, e.g. GaAs,AlGaAs, or InP photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は、光から電気への変換効率の高い太陽
電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell with high conversion efficiency from light to electricity.

太陽電池は、光照射によつて半導体中に発生し
た電子と正孔の対をpn接合によつて分離して外
部に起電力として取り出すものである。従来、こ
の種素子材料としてはシリコンSiが多く用いられ
ていた。Siは資源が豊富であるなどの特長がある
ものの、禁制帯幅が1.1eVであり、波長0.5μm
(エネルギーにして〜2.5eV)に極大をもつ太陽
光スペクトルを効率よく収集するためには禁制帯
幅が小さい欠点がある。太陽光を効率よく収集す
るためには、1.4〜1.6eVの禁制帯幅を有する半導
体材料を使用することが望ましい。このような材
料としてはGaAs、InPなどがある。GaAsには、
発生した電子−正孔対が表面で再結合し電流に寄
与しない欠点があるので、通常はAlGaAsを表面
にエピタキシヤル成長して用いる。InPについて
は、従来、CdSとのヘテロ接合を用いた太陽電池
が研究されていた。しかし、ヘテロ接合の場合に
は、表面の半導体の禁制帯幅以上のエネルギーの
光を利用できない。たとえば、CdSにおいては、
禁制帯幅が太陽光スペクトルの極大付近の2.5eV
にあり、短波長側で特に光の収集効率の低い欠点
があつた。
A solar cell separates pairs of electrons and holes generated in a semiconductor by light irradiation using a pn junction and extracts them to the outside as an electromotive force. Conventionally, silicon has been widely used as the material for this type of element. Although Si has the advantage of being abundant in resources, it has a forbidden band width of 1.1 eV and a wavelength of 0.5 μm.
In order to efficiently collect the solar spectrum, which has a maximum at ~2.5 eV (energy), the disadvantage is that the forbidden band width is small. In order to efficiently collect sunlight, it is desirable to use a semiconductor material with a forbidden band width of 1.4-1.6 eV. Such materials include GaAs and InP. GaAs has
Since the generated electron-hole pairs recombine on the surface and do not contribute to current, AlGaAs is usually grown epitaxially on the surface. Regarding InP, solar cells using heterojunctions with CdS have been researched. However, in the case of a heterojunction, light with an energy higher than the forbidden band width of the surface semiconductor cannot be used. For example, in CdS,
The forbidden band width is 2.5eV near the maximum of the solar spectrum.
However, it had the disadvantage of low light collection efficiency, especially on the short wavelength side.

本発明の目的は、これらの欠点を除去するた
め、InPのホモ接合を適切に構成して、太陽光を
有効に利用できる高効率太陽電池を提供すること
にある。
An object of the present invention is to provide a high-efficiency solar cell that can effectively utilize sunlight by appropriately configuring an InP homojunction in order to eliminate these drawbacks.

本発明では、禁制帯幅が約1.4eVであつて太陽
電池として適当な材料であるInP結晶を用い、そ
の電気的および光学的性質を十分に勘案して高効
率太陽電池を実現する。
In the present invention, a high-efficiency solar cell is realized by using InP crystal, which has a forbidden band width of about 1.4 eV and is a suitable material for solar cells, and fully takes into account its electrical and optical properties.

すなわち、本発明は、InP単結晶基板上に低不
純物濃度の第一導電型のInP層および高不純物濃
度の第二導電型のInP層をエピタキシヤル成長に
より付着させてホモ接合を形成した太陽電池にお
いて、前記第二導電型のInP層の膜厚を0.5μm以
下とし、および前記第一導電型のInP層を、2×
1015cm-3以下の不純物濃度で膜厚を1μm以上と
して、キヤリヤを収集できる深さと、光を大部分
吸収する深さとを略々等しくなしたことを特徴と
するものである。
That is, the present invention provides a solar cell in which a first conductivity type InP layer with a low impurity concentration and a second conductivity type InP layer with a high impurity concentration are deposited on an InP single crystal substrate by epitaxial growth to form a homojunction. The thickness of the second conductivity type InP layer is 0.5 μm or less, and the first conductivity type InP layer is 2×
The film is characterized by having an impurity concentration of 10 15 cm -3 or less and a film thickness of 1 μm or more, so that the depth at which the carrier can be collected is approximately equal to the depth at which most of the light is absorbed.

以下、図面により本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明太陽電池の構成の一例を示し、
ここで1はp型InP単結晶基板であり、この基板
1上に、低不純物濃度のp型InP層2および高不
純物濃度のn+型InP層3をこの順序でエピタキシ
ヤル成長により付着させ、以てInPからなるn+p
のホモ接合を形成する。ここで、n+層3の膜厚
を0.5μm以下とし、p層2を、2×1015cm-3以下
の不純物濃度で膜厚を1μm以上とすることによ
り、キヤリヤを収集できる深さと、光を大部分吸
収する深さとを略々等しくする。更に、n+層3
上に収集電極4を配設し、n+層3および収集電
極4全体を反射防止膜5で覆う。
FIG. 1 shows an example of the configuration of the solar cell of the present invention,
Here, 1 is a p-type InP single crystal substrate, and on this substrate 1, a p-type InP layer 2 with a low impurity concentration and an n + type InP layer 3 with a high impurity concentration are deposited in this order by epitaxial growth. n + p consisting of InP
to form a homozygote. Here, by setting the thickness of the n + layer 3 to 0.5 μm or less and the thickness of the p layer 2 to 1 μm or more with an impurity concentration of 2 × 10 15 cm -3 or less, the depth at which carriers can be collected can be increased. The depth at which most of the light is absorbed is made approximately equal. Furthermore, n + layer 3
A collector electrode 4 is disposed thereon, and the entire n + layer 3 and collector electrode 4 are covered with an antireflection film 5 .

ここでは、便宜上、p型基板1上に順次にエピ
タキシヤル成長されたp層2およびn+層3の構
成について説明するが、導電型を逆にして、n型
基板上にn層およびp+層を形成してもよく、そ
の場合にも以下に述べるのと同様の結果が得られ
る。
Here, for convenience, the structure of the p layer 2 and the n + layer 3 that are epitaxially grown in sequence on the p-type substrate 1 will be explained . A layer may also be formed, with similar results to those described below.

本発明太陽電池のエネルギーバンド図を第2図
に示す。本発明太陽電池においては、太陽光の収
集効率を大きくするために、以下のような条件を
設ける。
FIG. 2 shows an energy band diagram of the solar cell of the present invention. In the solar cell of the present invention, the following conditions are set in order to increase the sunlight collection efficiency.

InPは直接遷移型の半導体であるため、吸収係
数がエネルギーギヤツプ付近まで大きいので、光
を十分に吸収する膜厚は2〜3μmで十分であ
る。
Since InP is a direct transition type semiconductor, its absorption coefficient is large to near the energy gap, so a film thickness of 2 to 3 μm is sufficient to absorb light sufficiently.

InP結晶の特長としては、表面再結合速度が103
〜104cm/secと小さいこと、および少数キヤリヤ
の拡散長が0.5〜1μm程度と小さいことが挙げ
られる。
InP crystal has a surface recombination rate of 10 3
It is small at ~10 4 cm/sec, and the diffusion length of the minority carrier is as small as about 0.5 to 1 μm.

まず、表面のn+層3について述べる。n+層3
は、太陽電池の直列抵抗を減少させるために1018
〜1019cm-3のキヤリヤ濃度を必要とする。また、
InPでは、表面再結合が小さいため、GaAs太陽
電池で用いられるAlGaAsのようなヘテロ窓層は
不要であり、短波長側の光まで入射させることが
できる。
First, the n + layer 3 on the surface will be described. n + layer 3
10 to 18 to reduce the series resistance of the solar cell
Requires a carrier concentration of ~10 19 cm -3 . Also,
Since surface recombination is small in InP, there is no need for a hetero window layer like AlGaAs used in GaAs solar cells, and even light at short wavelengths can be input.

InPにおいては、短波長側では吸収係数が大き
いため、光は表面近傍で吸収されてキヤリヤが発
生する。表面再結合によるキヤリヤの消失は小さ
いが、少数キヤリヤの拡散長が小さいためpn接
合に到達する前に再結合して電流に寄与しなくな
ることがある。このような無効成分を減少するた
めに、n+層3の膜厚を薄くすることを検討し
た。第3図に、n+層3の厚さを変えた場合の収
集効率の波長依存性を示す。第3図からわかるよ
うに、n+層3の膜厚を0.2μmまで薄くすると特
に短波長側での収集効率が増加する。しかし、直
列抵抗の増加および薄層作製の難しさをも考慮す
ると、n+層3の膜厚としては0.5μm以下程度が
実用的である。
In InP, the absorption coefficient is large on the short wavelength side, so light is absorbed near the surface and carriers are generated. The loss of carriers due to surface recombination is small, but because the diffusion length of minority carriers is small, they may recombine before reaching the pn junction and no longer contribute to the current. In order to reduce such ineffective components, we considered reducing the thickness of the n + layer 3. FIG. 3 shows the wavelength dependence of the collection efficiency when the thickness of the n + layer 3 is changed. As can be seen from FIG. 3, when the thickness of the n + layer 3 is reduced to 0.2 μm, the collection efficiency increases particularly on the short wavelength side. However, considering the increase in series resistance and the difficulty of manufacturing a thin layer, the practical thickness of the n + layer 3 is about 0.5 μm or less.

次にp層2について述べる。n+層3を高キヤ
リヤ濃度としているため、キヤリヤ空乏層はほと
んどp層2中にできる。pnホモ接合を用いると
きには、ヘテロ接合の場合に問題となる界面再結
合は生じないので、空乏層中で発生したキヤリヤ
は有効に電流に寄与する。
Next, the p layer 2 will be described. Since the n + layer 3 has a high carrier concentration, most of the carrier depletion layer is formed in the p layer 2. When a pn homojunction is used, interfacial recombination, which is a problem in the case of a heterojunction, does not occur, so carriers generated in the depletion layer effectively contribute to the current.

ここで、空乏層幅は、不純物濃度を下げると大
きくなり、1016cm-3では約0.5μm、1015cm-3では
約1.3μmとなる。光吸収に必要なInPの厚さは
高々2〜3μmであるから、p層2中における空
乏層幅を1μm近くにすることにより、n+層3
の厚さおよびp層2で電界のない領域での少数キ
ヤリヤ拡散長の膜厚を含めて、キヤリヤを収集で
きる膜厚と光吸収をする膜厚とは、ほぼ同じとな
る。
Here, the depletion layer width becomes larger as the impurity concentration is lowered, and becomes approximately 0.5 μm at 10 16 cm −3 and approximately 1.3 μm at 10 15 cm −3 . Since the thickness of InP required for light absorption is at most 2 to 3 μm, by making the depletion layer width in the p layer 2 close to 1 μm, the n + layer 3
The film thickness that can collect carriers and the film thickness that can absorb light are almost the same, including the thickness of the p-layer 2 and the minority carrier diffusion length in the region where there is no electric field in the p layer 2.

本発明の一実施例として、公知の液相エピタキ
シヤル法により作製したp型基板1上のpnホモ
接合太陽電池の収集効率の波長依存性を第4図に
示す。ここでは、p層2の不純物濃度を2.0×
1015cm-3、n+層3の不純物濃度を1.0×1019cm-3
した。第4図からも明らかなように、本発明によ
れば、短波長側からバンド・ギヤツプ付近まで平
坦な特性が得られる。この実施例において、n+
層3が薄いことに起因して直列抵抗が増加する点
を補うため、フオトリソグラフイー技術により
n+層3の表面の収集電極4を細く密に配置し
た。また、太陽電池表面にはSiOを用いた反射防
止膜5を設けて反射防止を行なつた。本発明で
は、pn接合を形成するp層およびn+層(または
n層およびp+層)の不純物濃度、厚さなどをInP
の物質定数に対応して決めることにより、吸収さ
れた太陽光線を極めて効率よく光電流に変換する
ことができる。
As an example of the present invention, FIG. 4 shows the wavelength dependence of the collection efficiency of a pn homojunction solar cell on a p-type substrate 1 manufactured by a known liquid phase epitaxial method. Here, the impurity concentration of p layer 2 is set to 2.0×
10 15 cm -3 and the impurity concentration of the n + layer 3 was 1.0×10 19 cm -3 . As is clear from FIG. 4, according to the present invention, flat characteristics can be obtained from the short wavelength side to near the band gap. In this example, n +
To compensate for the increased series resistance due to the thin layer 3, photolithographic techniques are used to
The collection electrodes 4 on the surface of the n + layer 3 were thin and densely arranged. Further, an antireflection film 5 using SiO was provided on the surface of the solar cell to prevent reflection. In the present invention, the impurity concentration, thickness, etc. of the p layer and n + layer (or n layer and p + layer) forming the p-n junction are changed to InP.
By determining this in accordance with the material constant of , absorbed sunlight can be converted into photocurrent extremely efficiently.

以上説明したように、本発明によれば、InPを
用いて、容易に良質の膜を作製できるpnホモ接
合太陽電池において高効率化を達成できるため、
太陽光を有効に利用できる。特に、本発明の高効
率太陽電池は、設置場所が極めて限定されている
宇宙空間などで使用するのに有効である。
As explained above, according to the present invention, high efficiency can be achieved in a pn homojunction solar cell in which a high-quality film can be easily produced using InP.
Sunlight can be used effectively. In particular, the high-efficiency solar cell of the present invention is effective for use in outer space, where installation locations are extremely limited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明太陽電池の一例を示す断面図、
第2図は本発明太陽電池のエネルギーバンド図、
第3図はn+層の厚さを変えた場合の収集効率の
波長依存性を示す特性曲線図、第4図は本発明太
陽電池の一実施例における収集効率の波長依存性
を示す特性曲線図である。 1……p型InP基板、2……p型InP層、3…
…n+型InP層、4……収集電極、5……反射防止
膜。
FIG. 1 is a sectional view showing an example of the solar cell of the present invention;
Figure 2 is an energy band diagram of the solar cell of the present invention.
Fig. 3 is a characteristic curve diagram showing the wavelength dependence of collection efficiency when changing the thickness of the n + layer, and Fig. 4 is a characteristic curve showing the wavelength dependence of collection efficiency in an embodiment of the solar cell of the present invention. It is a diagram. 1... p-type InP substrate, 2... p-type InP layer, 3...
... n + type InP layer, 4 ... collection electrode, 5 ... antireflection film.

Claims (1)

【特許請求の範囲】[Claims] 1 InP単結晶基板上に低不純物濃度の第一導電
型のInP層および高不純物濃度の第二導電型の
InP層をエピタキシヤル成長により付着させてホ
モ接合を形成した太陽電池において、前記第二導
電型のInP層の膜厚を0.5μm以下とし、および前
記第一導電型のInP層を、2×1015cm-3以下の不
純物濃度で膜厚を1μm以上として、キヤリアを
収集できる深さと、光を大部分吸収する深さとを
略々等しくなしたことを特徴とする太陽電池。
1 An InP layer of the first conductivity type with a low impurity concentration and an InP layer of the second conductivity type with a high impurity concentration are formed on an InP single crystal substrate.
In a solar cell in which a homojunction is formed by depositing an InP layer by epitaxial growth, the thickness of the second conductivity type InP layer is 0.5 μm or less, and the first conductivity type InP layer is 2×10 A solar cell characterized by having an impurity concentration of 15 cm -3 or less and a film thickness of 1 μm or more, so that the depth at which carriers can be collected is approximately equal to the depth at which most of the light is absorbed.
JP57018225A 1982-02-09 1982-02-09 Solar cell Granted JPS58137263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57018225A JPS58137263A (en) 1982-02-09 1982-02-09 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57018225A JPS58137263A (en) 1982-02-09 1982-02-09 Solar cell

Publications (2)

Publication Number Publication Date
JPS58137263A JPS58137263A (en) 1983-08-15
JPS6249754B2 true JPS6249754B2 (en) 1987-10-21

Family

ID=11965702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57018225A Granted JPS58137263A (en) 1982-02-09 1982-02-09 Solar cell

Country Status (1)

Country Link
JP (1) JPS58137263A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591654A (en) * 1983-07-18 1986-05-27 Nippon Telegraph And Telephone Public Corporation Solar cells based on indium phosphide
JPS6022381A (en) * 1983-07-18 1985-02-04 Nippon Telegr & Teleph Corp <Ntt> Solar cell
JPS6089982A (en) * 1983-10-24 1985-05-20 Nippon Telegr & Teleph Corp <Ntt> Solar battery
JPH01175269A (en) * 1987-12-29 1989-07-11 Nippon Mining Co Ltd Solar battery
JPH01307277A (en) * 1988-06-04 1989-12-12 Nippon Mining Co Ltd Manufacture of solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110783A (en) * 1974-07-17 1976-01-28 Hitachi Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110783A (en) * 1974-07-17 1976-01-28 Hitachi Ltd

Also Published As

Publication number Publication date
JPS58137263A (en) 1983-08-15

Similar Documents

Publication Publication Date Title
US5853497A (en) High efficiency multi-junction solar cells
US4547622A (en) Solar cells and photodetectors
US5376185A (en) Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
CN101740647B (en) There are four knot inverted metamorphic multijunction solar cells of two metamorphic layers
JP3223102B2 (en) Solar cell and method for manufacturing the same
US9865754B2 (en) Hole collectors for silicon photovoltaic cells
US20100282310A1 (en) Electromagnetic emission converter
JP2010118666A (en) Alternative substrate of inversion altered multi-junction solar battery
JPH05114747A (en) Improved monolithic tandem-type solar cell
JP3646940B2 (en) Solar cell
US5753050A (en) Thermophotovoltaic energy conversion device
US6043426A (en) Thermophotovoltaic energy conversion system having a heavily doped n-type region
EP0248953A1 (en) Tandem photovoltaic devices
JPS6249754B2 (en)
JP3414814B2 (en) Solar cell and manufacturing method thereof
JPH0955522A (en) Tunnel diode
JP2725993B2 (en) Light receiving element and solar cell
JPH0582812A (en) Solar cell
JPS636882A (en) Photocell of tandem structure
RU2099818C1 (en) Light energy to electric energy converter
JP2788778B2 (en) Photovoltaic element and method for manufacturing the same
WO2012173619A1 (en) Tunnel heterojunctions in group iv / goup ii-vi multijunction solar cells
RU2080690C1 (en) Light-to-voltage converter
JPS6214110B2 (en)
Karlina et al. The effects of irradiation on heteroepitaxial InP/InGaAs solar cells